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Abstract.  The use of lightweight materials has been steadily increasing in the automotive industry, and 
presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is 
particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials 
(such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint 
performance, it often requires a long trial-and-error testing of the SPR process. This is because current state 
of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and 
separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving 
boundary algorithm to overcome these numerical difficulties. The simulation results are compared with 
physical measurements to demonstrate the effectiveness of the present method. 
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self piercingriveting 

 
 
1.Introduction 
 

Today‟s vehicle manufacture heavily relies on computer-aided engineering (CAE) analysis. In 

most scenarios, the CAE analysis provides a quick and cost-effective assessment of the 

manufacturing process feasibility. Also, the analysis helps improve the design by virtually optimizing 

process parameters to achieve the design target. With the help of the CAE analysis, the amount of 

expensive and time-consuming physical tests is greatly reduced. Still, there are scenarios that current 

CAE technologies cannot comprehend well. Exemplary problems are events and processes involving 

severe deformation, material separation, fluid-solid interaction, phase changing and other complex 

physics. The self-piercing riveting (SPR) process addressed in this paper is one of these challenging 

problems. SPR is a high-speed cold mechanical joining process without fusion or heat input. As 

illustrated in Fig. 1, a semi-tubular rivet is driven into the materials to be joined between a punch and 

a die in a press tool. The rivet drives through the toplayers and toward the die, where the die shape 

causes the rivet skirt to flare within the lower layer and forms a mechanical interlock. 
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Fig. 1 A schematic representation of the self-piercing riveting process (TWI 2000) 

 

 

It is particularly attractive for joining lightweight materials (such as aluminum alloys), dissimilar 

materials, and coated or pre-painted sheets (Sunday 1983, Hill 1994, Litherland 1998). With the 

increasing use of mixed lightweight materials in the automotive industry under the drive for better 

fuel efficiency, the SPR process is nowadays becoming more and more popular for vehicle 

assembly. For example, the aluminum constructed body-in-white of the Jaguar XJ uses 3200 self-

piercing rivets (Jaguar 2013). However, to establish a process window for optimal SPR joint 

performance, it often requires time-consuming and expensive trial-and-error tests. Therefore, it is 

necessary to develop effective CAE analysis tools such as finite element modeling schemes to 

accurately and effectively simulate the SPR processes. 

Many studies have been performed to develop reliable SPR numerical models and calibrate 

them with experimental data. The early modeling work can be traced back to King‟s thesis work in 

1997 (King 1997), where a very basic finite element (FE) model was created to model the 

indentation of a SPR process. Most other modeling works were published in recent years after the 

finite element method has become more stable in terms of handling contact constraints, mesh 

distortion and crack propagation. Porcaroet al. (2004, 2006) modeled the process using the 

commercial tool LS-Dyna, where r-adaptivity was used to prevent mesh distortion and a geometric 

failure criterion based on the change in thickness of the connected plates was employed to trigger 

the adaptivity. To consider material separation in the SPR simulation, Bouchard et al. (2008) 

implemented a Lemaitre coupled damage model with „kill-element‟ technique in the Forge2005® 

finite element software to address the damage in the process and additional „kill-element‟ criterion 

which was based on the element quality to remove distorted elements. Caiet al. (2005) reported 

dimension analysis of riveted assembly by using mixed empirical-analytical approach, without 

modeling the local SPR distortion and material damage. Casalinoet al. (2008) used LS-Dyna to 

model the SPR process with attention to finding the right mesh size and critical damage 

parameters. Sun and Khaleel (2005) studied the strength optimization and failure mode prediction 

of self-piercing rivets (SPRs) for automotive applications. Masters et al. (2012) presented a 

simulation method based on a local/global approach where the distortion occurring around a single 

SPR was projected on to a global assembly at each rivet location. An overview on the state of the 

art of the research on the SPR was given by He et al. (2012), where the latest finite element 

modeling approaches on the SPR process were listed. In all the above mentioned work, finite 

element methods with either an implicit or explicit solution techniques have been used in the SPR 

simulation. Research efforts inevitably focused on how to model the large material distortion and 
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separation accurately. The experimental data of progressive sectional profiles and curve of the 

piercing force versus the piercing displacement were commonly used to calibrate the numerical 

models.  

The conventional mesh-based finite element method models the physical domain with discrete, 

non-overlapping and conforming meshes. The order of the finite element approximation being 

constructed at each element degenerates when the element has aspect-ratio or geometric distortion. 

Consequently, the accuracy of the finite element based CAE analysis degrades or even the analysis 

fails. This is especially true in the simulations of severe deformation or large shape change such as 

the ones in the SPR process even if adaptive remeshing is used. Meshfree methods are a series of 

methods proposed and developed to resolve the mesh-distortion difficulty since 1990s due to their 

„meshfree‟ characteristics. Typical meshfree methods are Element-free Galerkin (EFG) Method, 

Reproducing Kernel Particle Method, HP-clouds method, Partition of Unity method (Belytschkoet 

al. 1994, Liu et al. 1995, Chen et al. 1996, Melenk an Babuska 1996, Duarte and Oden 1996) and 

more recently the convex meshfree method (Wu et al. 2011). The common feature of these 

methods is the construction of the approximation functions at discrete points of a domain without 

the usage of element connectivity among the discrete points. The approximation functions are then 

applied in interpolating field variables so that the corresponding math models can be solved in the 

approximated domain. These approximation functions are naturally conforming, and can have high 

order smoothness and exactly approximate high order monomials; therefore, meshfree 

approximations can better model problems with material interface (Wu et al. 2013) and 

nonlinearity. Preliminary applications of these approximations in solving nonlinear large 

deformation (Chen et al. 1996) or material separation problems (Fleming et al. 1997, Krongauz 

and Belytschko 1998) have shown their great advantages over the conventional finite element 

methods in terms of model adaptivity and solution accuracy. However, the meshfree methods are 

generally more computational extensive than the FE methods, greatly limiting their potentials in 

solving large-scale industrial problems. Many versions of the coupled meshfree/finite element 

method (Caiet al. 2004, Wang et al. 2009, Wu et al. 2012) reduced the high CPU consumption of 

meshfree computation to local distortion zone by modeling the remaining area with the finite 

element method. It makes the meshfree method available for modeling large-scale industrial 

problems where the number of degrees of freedom (DOFs) in the distortion region is small relative 

to the overall number of DOFs in the model.   

In this paper, a coupled meshfree/finite element method is employed in conjunction with a 

moving boundary algorithm to model the self-pierce riveting problem. The whole paper is 

organized as follows: Section 2 reviews the Moving Least-squares (MLS) approximation and the 

coupled meshfree/finite element method. Section 3 describes the moving boundary algorithm, 

material damage law and their implementations in LS-DYNA. Section 4 reports a simulation of 

the SPR process using the present method and with a comparison to experimental result. 

Conclusions are made in Section 5. 

 
 

2. Overview on moving least-squares approximation (MLS) and a coupled 
meshfree/finite method 

 
2.1 MLS approximation 
 
The meshfree method employed in this research is the EFG method developed in (Belytschko 
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(a) Meshfree discretization (b) Meshfree shape function 

Fig.1 Example of meshfree discretization and shape function in two-dimensional domain 

 

 
et al. 1995). The EFG method was one of the meshless methods for the large deformation analysis. 

When damage appears in severe deformation, the visibility criterion introduces discontinuity and 

avoids any tangling of the integration cell.  The Moving Least Squares (MLS) approximation is 

used to construct the shape function in the EFG method. Let u be a function defined on a domain 

Ω, and let the domain Ω be discretized by a set of points  
1

NP

I I
x . The MLS approximation 

of the function u(x), denoted by u
h
(x), is 
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where
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in a two dimensional domain, and [ ] 2( ) (1, , , , , , )n n Tx y z x z h x a vector of a 

monomial basis in [ , , ]T x y zx  in a three dimensional domain so that the basis is complete. The 
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( )a I x x is the weight function which attaches to each point and has a compact support “a”. 

When ( ) 0j jb b  E , the coefficients bj are solved as 
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[ ] [ ] [ ]

1

( ) ( ) ( )
NP

Tn n n

a J J J

J

)=


 M (x x x h x h x

                   

(4) 

assuming [ ]( )n
M x  is non-singular. For the case 1n  , a sufficient condition for a non-singular 

[1]( )M x  is that x  for x  is at least covered by the supports of four weight functions 

J( ),  J 1,2,3,4a  x x , where 1x , 2x , 
3x  and 4x  are not on the same plane in the three 

dimensional problem. Substituting Eq. (3) into Eq. (1), the MLS interpolant can be expressed as 
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where [ ] ( ; )n

I I x x x  is the MLS shape function.  

Fig. 2 is a two-dimensional example of a MLS shape function constructed using a cubic B-

spline weight function with a linear basis. The employment of the MLS shape functions in the 

Galerkin approximation of a PDE is called the EFG method.  

Notice that [ ] ( ; )n

I I x x x  in Eq. (6) is generally not an interpolation function, that is, the 

MLS shape functions do not have Kronecker-delta properties and ( )h

Iu x  may not be equal to 

( )Iu x  in Eq. (5). Because of this lack of Kronecker-delta property, special treatments are 

necessary when the MLS shape functions are used to approximate boundary value problems. 

Additional computation is needed to calculate ( )h

Iu x  from the coefficients ( ),I  I=1,2,...,NPu x

using Eq. (5) compared to the finite element method. Also, the resulting stiffness matrix for the 

linear system of algebraic equation after these treatments is usually neither banded nor sparse. This 

is why the solution of the linear system in the meshfree method is computationally intensive, 

which is especially evident in an implicit computation.  

 
2.2 Coupled mshfree/fniteelement method 
 
The purpose of coupling the meshfree method and the FE method is to keep computational cost 

low from the meshfree modeling so that the problems can be solved efficiently.illustrates the main 

concept of this coupling. The problem domain   is divided into FE sub-domains and meshfree 

sub-domains, that is, FEM meshfree  . The FE sub-domains consist of non-overlapping and 

conforming elements. The meshfree sub-domains are discretized into sets of points attached by 

weight functions with compact supports. 

In the coupled model, the finite element approximation remains in the finite element sub-

domains. The meshfree approximation is constructed in the meshfree sub-domains such that the 

continuity of the approximation remains across the interface between the finite element and mesh-

free sub-domains or across the interface between any two mesh-free sub-domains. The function 

u( )x  with x  and FEM meshfree   is approximated by 
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In Eq. (7), 
][m

L  is the regular mth-order finite element shape function and KP is the total 

number of nodes per element. Also, the interfaces between the finite element and mesh-free sub-

domains are defined by Interface FEM meshfree   . NP denotes the total number of meshfree 

nodes whose supports cover evaluation point x , and MP is the total number of the finite element 

nodes which are on the interface and whose supports cover evaluation point x. I
ˆ (I 1,2, , )n    

are the coupled finite element and mesh-free shape functions. When the finite element 

interpolation order [m] is equal to the reproducing order [n], it can be proved (Wang et al. 2009) that 

 

 

 

Fig.3Example of a coupled meshfree/finite element model 

 

 

Fig.4 Visibility criterion in a crack 
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0)(ˆ  xI for all nodes   0support:I  InterfaceI  and Interfacex
         

(8) 

Eq. (8) is called the interface constraint, i.e., the MLS shape function of all internal nodes 

becomes zero evaluated at the interface. If the interface constraint is satisfied, the resulting 

solution approximation of Eq. (7) becomes 

Interface

MP

J
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J

h
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du  



xxx
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 ,)()(
1

][ .                     (9) 

In other words, the shape functions on the interface are reduced to the standard finite element 

shape functions and possess the Kronecker-delta property. Therefore, there are no conforming 

problems for the shape functions across the interface. In this study, bilinear finite elements are 

considered and a reproducing order of one is imposed on the meshfree approximation. Please refer 

to Wang et al. (2009) for detailed formulations on the coupled method. 

 
 

3.Moving bundaryalgorithm and is numerical Implementation 
 
In this section, the moving boundary algorithm for the meshfree method is presented to address 

the strong discontinuity and material separation issues in this study. These features are of great 

importance to the effective and accurate simulation of the self-piercing riveting process. The 

algorithm includes: (a) the inclusion of discontinuous shape functions to allow the material 

separation; (b) the introduction of moving boundaries to define the cracks and new contact 

surfaces. The moving boundaries also provide the visibility criterion for discontinuous 

approximation.  

Belytschkoet al. (Fleming et al. 1997, Krongauz and Belytschko 1998) described a method for 

construction of approximations around the tip of a discontinuity called the diffraction method. The 

method was motivated by the way light diffracting around a sharp corner, though the equations 

used in constructing the domain of influence and the weight function born almost no relationship 

to the equations of diffraction. This method was applied to the brittle materials under small strain 

assumption.Fig. 4 illustrates the basic concept of this approach where the discontinuity was 

introduced along the crack line through the visibility criterion near a crack.  

When the crack moves in a ductile material, it can emit dislocations and stop propagation. The 

crack becomes blunted and begins to cause intense local deformation before next crack 

propagation. Under such circumstances, continuum damage mechanics offers advantages to 

predict the initiation and propagation of the cracks. 

In this work, the continuum damage mechanics theory is adopted to define the failure of the 

material. The diffraction method based on the continuum damage mechanics is used to determine 

the discontinuous shape functions and to allow for a material separation. The evolution equationfor 

the damage variable is defined as 
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Fig. 5 Geometrical mapping in the meshfree computation domain subject to visibility criterion 

 

 

where d is the damage variable, and S is the so-called strain energy release rate. The damage value 

d=0 corresponds to the undamaged state, d=dcriticaldefines a complete local rupture. Damage can 

only develop for tensile stresses, and damage unloading is assumed to be an elastic process. rd is 

the damage threshold. The material softening begins when the damage effective plastic strain 

reaches this value.r is the damage accumulated plastic strain or can be considered as the current 

damage threshold, and is calculated by 

)d1(r p

eff  
                             (11) 

where p

eff is the effective plastic strain rate. 

The term Y/S(1‒d) shown in the damage evolution equation is an evolution function used to 

define the damage growth. This is similar to the hardening function used to define the hardening 

behavior in the plasticity model. Y is the elastic-damage potential energy, and is defined by 

e

0

e e:C:ed)-(1
2

1
Y 

                       
(12) 

Whereeeis the elastic strain tensor, and C
0
is the virgin linear elasticity stiffness. The colon (:) 

signifies tensor contraction. This elastic-damage potential energy Y also characterizes the 

progressive degradation of mechanical properties of the material due to damage by means of a 

simple isotropic damage mechanism. A default of σ0/200 is used in LS-DYNA where σ0 is 

theinitial yield stress. The definition of variables can also be found in (LSTC 2012).  

Since the material failure evolves in the large deformation region, it is advantageous to define 

the visibility criterion based on the un-deformed configuration as shown in Fig. 5. Because the 

spatial coordinates x and material coordinatesX are one-to-one mapping between each other, the 

derivatives of material basis functions with respect to spatial coordinates can be carried out by 

chain rule to yield  
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Fig 6 Flowchart for moving boundary method 

 

 

Accordingly, the volume integrals in the assembly of discrete equations are computed in the 

un-deformed configuration as 

    Xx dd  


x X

det F
                      

(14) 

When the material is completely damaged at a material point, the material loses its strength 

locally, and the associated nodes of that material point also lose contact and a new material 

interface forms. At this moment, the discontinuous meshfree shape functions are constructed based 

on the visibility criterion imposed on the new material interface defined in the un-deformed 

configuration. The overall moving boundary algorithm is described in Fig. 6. 
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Fig.7 An assembly sketch of the SPR process in simulation 

 

 
Fig.8 The geometry of the lower die (DR10 in Fig. 7) 

 

 
Fig.9 Discretization of the coupled meshfree/finite element SRP model (axi-symmetric) 

 

 
Fig.10 (a) Calculated deformation of the joint cross section when the rivet moves  

5 mm into the sheets 

 
Table 1 The material properties of the two aluminum plates are: Young‟s modulus E=70 GPa, Poisson‟s  

ratioρ=0.33 and piecewise linear plasticity as defined in Table 2 

Yield stress (MPa) Plastic strain 

1340.0 0.00 

1713.0 0.15 
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Fig.10 (b) Calculated deformation of the joint cross section when the rivet  

moves 5 mm into the sheets 

 

 
Fig.11 (a) Deformation of the joint cross section when the rivet moves 7 mm 

 into the sheets (final stage) 

 

 
Fig.11(b) Deformation of the joint cross section when the rivet moves  

7 mm into the sheets (final stage) 

 

 

The deformation obtained by the present method at 5mm depth is illustrated in Fig. 10(a). The 

deformed shape obtained from the present method agrees quite well with the experimental data as 

shown in Fig. 10(b). Results also show that the proposed method successfully captures the material 

separation behavior near the piercing areas. 

Finally, an effective plastic strain plot is presented in Fig. 12. A large plastic strain is observed 

near the rivet indicating the existence of large tension-shear mode, which is the dominant 

mechanism that causes the material failure. 
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Fig. 12 Effective plastic strain plot shown in the joint cross section (final stage) 

 

Table 2The material properties of the steel rivet are: Young‟s modulus E=210 GPa, Poisson‟s ratio ρ=0.31  

and piecewise linear plasticity as defined in Table 1 

Yield stress (MPa) Plastic strain 

150.0 0.00 

195.0 0.15 

 

Table 3The continuum damage mechanics model as described in Section 3 was employed for the modeling 

of material failure during the piercing process. The material constants relating to damage mechanics model  

as defined by LS-DYNA keyword *MAT_DAMAGE_1 (material type 104) are given in Table 3 

Isotropic hardening parameterQ1 , C1 (MPa) Damage threshold rd Rupture dcritical 

1200,  0.2 0.2 0.8 

 

 

4. The SPR process simulation 

 
In this section, the accuracy of the present method is examined by comparing the numerical 

simulation with an experimental result. The SPR problem consists of two circular aluminum 

(AA5754) plates under clamped conditions and pierced by a steel rivet pushed down by a rigid 

plate at a speed of 20mm/s as shown in Fig. 7. Both the holder and the die are modeled as rigid 

bodies.  The thickness of either aluminum plate is 2mm. Fig. 8 depicts the geometry of lower die 

which is fixed on the bottom. Fig. 9 is the corresponding numerical discretization of the problem 

using the axisymmetric model. As shown in Fig. 9, each plate is pre-divided into two areas, 

modeled by the mesh-free method (for the piercing area) and the finite element method (the 

remaining area), for the purpose of numerical efficiency. The mesh-free zones in two plates are 

chosen in a way such that they contain all the high gradients in the piercing process. The 

normalized support size is taken to be 1.2 in the mesh-free computation. Relatively dense 

discretization is used around the piercing areas in order to capture high stresses/strains and cracks. 

The frictional contact condition is considered between the rivet and aluminum plates with a 

coefficient of frictionμ = 0.15. The contact between two aluminum plates and die is assumed to be 

frictionless.   
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5. Conclusions 
 

This paper presents a numerical technique for modeling large deformation and material 

separation phenomena in the SPR process. The coupled meshfree/finite element analysis method is 

adopted in this paper for an efficient meshfree simulation as well as to handle large material 

deformation involved in the material piercing. To consider the material failure in piercing process, 

a continuum damage mechanics is utilized in this study. A moving boundary algorithm based on 

the visibility criterion and un-deformed configuration is introduced into the meshfree 

approximation to numerically model the material separation in the ductile material. The numerical 

results are compared with the experimental data. The results have shown that the coupled 

meshfree/finite element model is able to deliver a numerically efficient and stable solution in 

dealing with large deformation. The moving boundary algorithm is also effective in modeling the 

material separation during the piercing process. From the study, it can be concluded that the 

present method provides a robust tool for simulating problems involving excessive material 

distortion and separation such as the SPR processes. 
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