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Abstract.    Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and 
all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary 
materials which are periodically arranged as a 20-layered medium instead of infinite layered system for 
phononic system. The layered medium with finite dimension is subjected to a uniformly distributed 
sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient 
wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical 
solutions are presented in the transform domain and the numerical Laplace inversion (Durbin’s formula) is 
performed to obtain the transient response in time domain. The numerical results show that when a 
sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly 
decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of 
band gap, the attenuation of the stress response is not obvious as that in the band gap. 
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1. Introduction 
 

Wave propagation in multilayered media has long been an interesting subject due to its 
significance and a large number of applications in aerospace, electronic engineering, mechanical 
engineering, oceanography, and earthquake engineering. For example, the coated-layer materials 
are very important in electronic engineering, and to avoid the delamination of the interface due to 
dynamic loadings is an important topic. Many studies in earthquake engineering focus on 
calculating the response of multilayered medium subjected to a sudden disturbance which is 
located either on the surface or inside the medium. 
The transient response induced by a dynamic load applied on the surface of a half space was 
analyzed by Lamb (1904) by integral transform technique followed by the analytical evaluation of 
the inversion integrals. The wave propagation in a generalized thermo elastic plate embedded in an 
elastic medium was studied based on the generalized two dimensional theory of thermo elasticity 
by Ponnusamy and Selvamani (2012). The  propagation  of  waves  in  a  micropolar  
transversely  isotropic   half  space  in  the  theory  of thermoelasticity  without  energy   
dissipation  were  discussed by Kumar and Gupta (2010). Theory and analysis of elastic wave in 
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a stratified medium were studied in some details in the books by Ewing (1957) and Brekhovskikh 
(1980). A transfer matrix formalism to determine the unknown coefficients from the continuity 
conditions at the interfaces of multilayered media was introduced by Thomson (1950), and 
improved by Haskell (1953). In earth geophysics and earthquake engineering, this matrix method 
was widely used to determine the dispersion relation of surface waves in a layered half-space case. 

Pekeris et al. (1965) proposed a transient wave solution for one layer overlaying the half-space. 
The propagation of transient waves was represented by a series, with each term indicating a wave 
propagating in the medium. The series expansion required the evaluation of a 4 4  determinant 
for the plate and a 6 6  determinant for the two-layered medium. Ma and Huang (1996) derived 
the transfer relation as the general representations of the responses between each layer, instead of 
the displacement-traction vector, to investigate the transient wave propagating in a multilayered 
medium. The theoretical, numerical and experimental results of transient responses in a layered 
medium subjected to in-plane loadings were presented by Ma and Lee (1999). The dynamic 
response of a layered medium subjected to anti-plane loadings was presented by Ma et al. (2001). 

In addition to the analytical treatment, there was a different computational approach based on 
the numerical inversion of Laplace transforms. Narayanan and Beskos (1982) systematically 
proposed eight algorithms of numerical inversion of the Laplace transform which were compared 
with each other, with respect to their accuracy and computational efficiency. They found that the 
most accurate algorithm, but requiring more computational time, was the method proposed by 
Durbin (1974). Manolis and Beskos (1981) compared the algorithms proposed by Durbin and 
Papoulis (1957) for the numerical Laplace inversion. They found that Durbin’s algorithm was 
more time consuming than Papoulis’ but the accuracy was very high even for long-time 
calculation. More details about Durbin’s method and its applications to beam dynamic response 
were investigated by Manolis and Beskos (1980), Beskos and Narayanan (1983) and Providakis 
and Beskos (1986). 

Analytical solutions of transient wave propagation in multilayered medium have been 
presented in the literature for 1-D, 2-D (Su et al. 2002), or 3-D (Ma and Lee 2006) problems. For 
one-dimensional problem of plane wave propagation in the direction normal to the layered 
medium, Sun et al. (1968) have presented continuum theory instead of “effective modulus theory” 
for determining dispersion relation. Black et al. (1960) proposed a characteristics method for wave 
propagation in a two-layered medium. Lundergan and Drumheller (1971) numerically simulated 
the response in a multilayered system with varying thickness, and their results were in excellent 
agreement with experiment. Harmonic waves in composites with isotropic layers were studied by 
Stern et al. (1971), Hegemier and Nayfeh (1973). Transient plane waves propagating in a 
periodical layered elastic medium were examined by Ting and Mukunoki (1979, 1980), and Tang 
and Ting (1985). Recently, Chen et al. (2004) developed an analytical solution based on Floquet’s 
theory to solve the problem of plate impact in layered heterogeneous material systems, and the 
comparison between analytical results and experiment data was very good. It is worthy to note that 
all the numerical calculations presented in above mentioned papers were limited to a layered 
half-space case, or fewer layers with early-time response. Lin and Ma (2011) proposed an 
analytical-numerical method to analyze the transient wave propagation, matrix-form solution and 
numerical Laplace inversion method make it feasible to calculate the long-time response for 
complex structures. 

When the binary materials periodically arranged as an infinite layered system, this system is 
called “phononic systems”. The significant effect of phononic systems laid on the existence of  
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Fig. 1 Configuration and coordinate system of an n-layered medium subjected to uniform loadings 

 
 
absolute band gap within which sound and vibrations are all forbidden. Many theoretical methods 
have been used to study the band gap phenomenon, such as, the transfer-matrix method (Munjal 
1993, Sigalas and Soukoulis 1995), the multiple scattering theory (Liu et al. 2000, Psarobas and 
Sigalas 2002), the plane wave expansion method (Kushwaha and Djafari-Rouhani 1998, Wu et al. 
2001, Wang et al. 2004), and the finite difference time domain method (Sigalas and Garcia 2000, 
Tanaka et al. 2000). However, above mentioned theoretical methods were based on the 
steady-state analysis. In this article, the transient responses of a multilayered medium with finite 
dimension subjected to a uniformly distributed loading applied on the top surface are analyzed 
based on the Laplace transform method. The interface and boundary conditions are used to 
construct the system of equations for determining the global field vector that is a stack of the field 
vectors in each layer. By using numerical Laplace inversion from Durbin’s method, an 
analytical-numerical solution is obtained. The solution makes it possible to efficiently and 
accurately calculate the long-time transient responses for the multilayered medium. The technique 
of multilayered matrix-form solution and numerical Laplace inversion method presented in this 
study will be used to study the transient responses for phononic systems. 
 
 
2. Transient elastic wave propagation in multilayered media 
 

Consider an initially undisturbed multilayered medium consisting of n layers as shown in Fig. 1. 
Each layer is assumed to be elastic, homogeneous, isotropic, and perfectly bonded along the 
interface. The thickness and material constants of each layer are different. The stratified medium is 
subjected to uniformly distributed loadings applied on the top surface at 0t  . The quantities 
related to ith layer are suffixed by a superscript (i), and n stratified layers contain n+2 media 
including upper and lower half-spaces. In other words, (0) implies the upper half-space and (n+1) 
indicates the lower half-space. 

We consider plane wave propagation in the x  direction in which the only non-vanishing 
component of the displacement is in the x  direction, and the 1-D longitudinal wave equation can 
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be expressed as follows 

2 2
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where  ,u x t  is the longitudinal displacement and LS  is the slowness of the longitudinal 

wave given by 
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in which LC ,  ,  ,  , E  and   are the longitudinal wave velocity, mass density, 

Lamé constant, shear modulus, Young’s modulus and Poisson’s ratio, respectively. The boundary 
conditions on the top and bottom layers of the multilayered medium can be written as 
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where  f t  is the traction function and 0  is a constant stress. The displacement and 

traction continuity conditions at the interface between two adjacent layers, i.e., i th layer and 

 1i  th layer, are expressed as follows 
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where the superscripts i  in parentheses indicate the field quantities in the ith layer. For 

instance, ( )i� and ( 1)i�  denote the displacement or stress fields in the ith layer and the (i+1)th 
layer, respectively. The boundary value problem and continuity conditions described above are 
solved by applying Laplace transform over time t  with transform parameter p . The transform 

pair of the Laplace transform for a function  ,u x t are given by 
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Apply the Laplace transform on Eq. (1), the general solution of displacement field in the 
transform domain can be presented as 

 ˆ ; ( ) ( ) ,L LpS x pS xu x p u p e u p e 
                        (7) 

and the stress field is obtained follows Hooke’s law 

 ˆ ; ( ) ( ) .L LpS x pS x
xx L Lx p C pu p e C pu p e   

                  (8) 

Hence, we can rewrite these field quantities in transform domain as the displacement-traction 
matrix 
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where 

11( ; ) ,LpS xM x p e                              (10) 

12 ( ; ) ,LpS xM x p e                             (11) 

21( ; ) ,LpS x
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22 ( ; ) ,LpS x
LM x p C pe                           (13) 

are phase-related receiver elements. In order to avoid complicated mathematical expressions, 
boundary and interface continuity conditions can be represented as follows 
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In compact notation, the previous equation is written as 

ˆ,Mc t                                  (15) 

where 

 (1) (1) (2) (2) ( ) ( ) ,
Tn nu u u u u u     c                  (16) 
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and 

  0
ˆˆ 0 0 ,

T

f pt                        (17) 

the coefficient matrix M  is a 2 2n n  matrix. Subsequently, Eq. (15) can be solved directly 
by 

1ˆ.c M t                                 (18) 

Once the global field vector c  is obtained, the response functions in each layer can be 
determined. Furthermore, we can relate the response vector b  to the global field vector c  with 
a phase-related receiver matrix cvR  by arranging the response functions in each layer into this 

response vector 

( ; ) ( ; ) ,x p x p cvb R c                           (19) 

where the phase-related receiver matrix is given by 
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(20) 

It is noted that b  is the response vector, which represents the solutions of displacement and 
normal stress in each layer of the multilayered medium in the transform domain. With the 
transformed solution at hand, the inverse transform is performed to obtain the transient solution in 
time domain. We use numerical inversion of the Laplace transform from the well-known Durbin’s 
method, which is a combination of finite Fourier sine and cosine transforms, and will be briefly 
described in the next section. 
 
 
3. Numerical laplace inversion 
 

In the procedure for executing the traditional inversion of Laplace transformation by analytical 
approach, branch cuts or residues are usually needed in the complex plane of p . If boundary 
conditions become complicated, traditional analytical Laplace inversion is too difficult to be used. 
Hence, in order to reduce the difficulty, numerical inversion methods were proposed by different 
researchers in the literature, i.e., Durbin (1974), Papoulis (1957), Narayanan and Beskos (1982). In 
this paper, the method proposed by Durbin, which is an accurate and efficient method for 
numerically inverting Laplace-transformed functions is used. In Durbin’s method, the inverse 
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Laplace transformation of a function  f̂ p  is expressed as the following series 
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Note that the infinite series involved can only be summed up to N terms, and the transform 

parameter p is composed of real part   and imaginary part 
2k

T


 

2
p ik

T

      for k =0, 1, 2, 3, …, N,                  (22) 

in which T is the total time interval of interest, and the number of equidistant points, N, is a 
finite positive integer. It is suggested that 5T   to 10 can be used for good results. The 
matrix-form solution, i.e., Eq. (19), is substituted into Durbin’s formula Eq. (21) to obtain the 
transient response in time domain. 
 
Table 1 Material constants of Pb and Epoxy used in 20-layered medium 

Material 
Density 

3( / )kg m  

Longitudinal Wave 
Velocity ( / )m s  Impedance 

Thickness in Each 
Layer ( )cm  

Pb 11600 2050 23780000 2 
Epoxy 1180 2535 2991300 1 

 

 
Fig. 2 One-dimensional binary materials (Pb-Epoxy) periodically arranged as a 20-layered medium 
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Fig. 3 The band structure of Pb-Epoxy phononic system 
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Fig. 4 Transient stress response at the midpoint of the first layer ( Hz 25000 ) 
 
 
4. Numerical results of the transient responses and discussion 
 

Consider a one-dimensional binary materials (Pb and Epoxy) are periodically arranged as a 
20-layered medium as shown in Fig. 2. The material constants are indicated in Table 1. The 
thickness of Pb and Epoxy is 2 cm and 1 cm, respectively. A dynamic sinusoidal loading is applied 
on the top surface of the 20-layered medium. The function of sinusoidal loading is expressed as 
follows 

   sinf t t ,                              (23) 

where   is the circular frequency. This function expressed in the transform domain is 
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  2 2
ˆ .f p

p







                            (24) 

Substitute Eq. (24) into the response vector, i.e., Eqs. (17)-(19), the response vector b  is a 
40 1  vector, the phase-related receiver matrix cvR  is a 40 40  matrix, and the global field 

vector c  is a 40 1  vector. Therefore, the matrix-form formulation indicated in Eq. (19) can be 
worked out, the displacement and stress fields in the transform domain can be determined 
subsequently. The numerical Laplace inversion (Durbin’s method) can be performed to obtain the 
transient response. For the numerical calculation, 5T   and 10000N   are used in the 
Durbin’s method. 

The band structure of Pb-Epoxy phononic system obtained by plane wave expansion method is 
shown in Fig. 3. The band gap exists for frequencies between 16000 Hz and 44000 Hz. Next, we 
will calculate and discuss the transient responses for three kinds of source frequency, i.e., 10000 
Hz, 25000 Hz, and 50000 Hz, for different receivers. We begin with the frequency Hz 25000  
which is in the band gap. At the midpoint of the first layer (Pb), the stress response for the 
 
 

Fig. 5 Frequency spectrum at the midpoint of the first layer 
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Fig. 6 Transient stress response at the midpoint of the 10th layer ( Hz 25000 ) 
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Fig. 7 Frequency spectrum at the midpoint of the 10th layer 
 

 (1)

1
/

L
t S h

0
/




Fig. 8 Transient stress response at the midpoint of the 20th (last) layer ( Hz 25000 ) 
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Fig. 10 Stress responses for the 1st, 5th, 10th, 15th, and 20th layer when a sinusoidal loading 

( Hz 25000 ) applied on the upper surface 
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Fig. 11 Transient stress response at the midpoint of the 5th layer ( Hz 50000 ) 
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Fig. 12 Transient stress response at the midpoint of the 10th layer ( Hz 50000 ) 
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Fig. 13 Transient stress response at the midpoint of the 15th layer ( Hz 50000 ) 
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Fig. 14 Transient stress response at the midpoint of the 20th layer ( Hz 50000 ) 
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Fig. 15 Transient stress response at the midpoint of the first layer ( Hz 10000 ) 
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Fig. 16 Transient stress response at the midpoint of the 20th layer ( Hz 10000 ) 
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Theoretical analysis of transient wave propagation in the band gap of phononic system 

20-layered medium is shown in Fig. 4. The source wave generated from the upper surface arrives 

at the normalized time  (1)
1 0.5Lt S h  , and the transient response for stress oscillates between 

0 1    and 1  after  (1)
1 0.5Lt S h  . Figure 5 shows the frequency spectrum for Fig. 4 and 

indicates that the dominated frequency is 25000 Hz which is the same as the source function. In 
Fig. 6, when the receiver is located at the midpoint of the 10th layer (Epoxy), the magnitude of the 
stress is significantly reduced and oscillates between 0 0.2    and -0.2. The frequency 

spectrum is indicated in Fig. 7 which shows the dominated frequency is below 20000 Hz. In Fig. 8, 
transient response at the midpoint of the 20th layer (Epoxy) is observed with extremely small 
magnitude. The FFT is applied on the transient response (Fig. 8) to obtain the frequency spectrum, 
and the result is shown in Fig. 9. As shown in Fig. 9, source frequency 25000 Hz disappear which 
indicates that the source frequency 25000 Hz can not propagate inside the periodic medium. Stress 
responses for the midpoint of 1st, 5th, 10th, 15th and 20th are expressed in Fig. 10. It is concluded 
that when a sinusoidal loading with frequency within the band gap applied on the upper surface of 
the medium, stress response will decay significantly as the receiver is away from the source. 

For the source frequency Hz 50000 (out of band gap), transient stress responses at the 
midpoint of the 5th, 10th, 15th and 20th are shown in Figs. 11-14, respectively. It is observed from 

Figs. 11-14 that stress responses are divergent within normalized time  (1)
1 100Lt S h  . For the 

source frequency Hz 10000 (out of band gap), transient stress responses at the midpoint of the 
1st and 20th are shown in Figs. 15-16, respectively. It is observed that the magnitude of the stress 
response is reduced to 00.2 . 

 
 
5. Conclusions 
 

In this study, we analyze the band gap phenomenon of phononic system from the viewpoint of 
transient wave-propagation. The transient response induced by wave propagation in a multilayered 
medium is determined by the Laplace transform technique. The analytical solution in the transform 
domain is obtained and the transient response in time domain is constructed by an numerical 
Laplace inversion method (Durbin’s formula). A one-dimensional phononic system is simulated by 
a 20-layered binary medium. When a sinusoidal loading with frequency within the band gap 
applied on the upper surface of the medium, stress response will decay significantly if the receiver 
is away from the source. For source frequency Hz 25000 (within the band gap), the magnitude 
of stress response at the last layer is almost vanished. However, for source frequency (10000 Hz or 
50000 Hz) is out of the band gap, the magnitude of stress responses at the last layer of the 
20-layered medium will not be small. 
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