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Abstract. We review a series of crack problems arising in the general deformations of a linearly elastic
solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of
surface effects are taken into account. The surface mechanics are incorporated using the continuum based
surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid
containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane
(Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in
contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface
elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the
corresponding stress fields exhibit strong dependency on the size of crack.

Keywords: surface elasticity; mode-I, II, III; plane deformations; anti-plane deformations; crack tip
analysis; complete exact solution; Cauchy singular integro-differential equations.

1. Introduction 

The analysis of stresses in the general region of a crack tip is of fundamental importance in the

understanding of failure and in the general deformation analysis of engineering materials. In

macroscopic models, the stresses at the crack tip are found to be infinite (England 1971, Sih 1965)

reflecting the fact that the crack front is usually taken to be perfectly sharp. In fact, an infinitely

sharp crack in a continuum is a mathematical abstraction since, in reality, most crack tips are, in

fact, blunt, with a radius of convergence of the order compatible with the nanoscale. This suggests

that a more accurate analysis of the region in the vicinity of a crack tip can be achieved at the

nanoscale. In the context of a continuum model this means the incorporation of surface effects into

the model of deformation. 

One of the most important and accessible continuum models incorporates the effects of surface

mechanics using the surface elasticity model of Gurtin and Murdoch (Gurtin and Murdoch 1975,

Gurtin et al. 1998). In this model, a surface is regarded as a thin elastic membrane perfectly bonded

to the bulk solid. The additional surface stress contributed by the surface mechanics leads to highly
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unusual and nonstandard boundary conditions on the surface of the bulk solid. Consequently, the

corresponding boundary value problems are not accommodated by existing classical theories and

pose challenges not encountered previously in similar mathematical analyses. Nonetheless, the

Gurtin-Murdoch assumptions have been used successfully in a number of studies in nano-composite

mechanics (see, for example, Tian and Rajapakse (2007), Sharma and Ganti (2004), Duan et al.

(2005), Cammarata (1997), Miller and Sheny (2000)). 

In this summarized paper, we have re-addressed results first presented in Kim et al. (2009), Kim

et al. (2010a), Kim et al. (2010b), since some of details and concepts in there are not sufficiently

clear or heavily omitted which may hinder general readers from understanding of the material.

Especially, we demonstrate that the deformations of an elastic solid containing a single crack can be

decoupled into in-plane and anti-plane parts, even when the surface mechanics is incorporated. It is

also shown that, in the case where in-plane deformations are considered (Mode-I and Mode-II

crack), the surface stress  gives rise to residual stresses in which case the corresponding stress

field can no longer be zero even when all external loads are removed. Throughout the analysis, we

maintain the assumption of a sharp crack and demonstrate how the incorporation of surface elasticity

eliminates the stress singularity at the (infinitely sharp) crack tip. Surface effects are integrated using

the Gurtin-Murdoch surface elasticity model with the crack occupying a finite region of the x-axis. In

results, it is shown that, in contrast to classical fracture mechanics (where surface effects are

neglected), the incorporation of surface elasticity leads to the more accurate description of a finite

stress at the crack tip. We also demonstrate that the corresponding stress distributions derived from

our analysis show clear signs of size dependency and do indeed reduce to classical solutions

(England 1971, Sih 1965 and Muskhelishvili 1953), when the surface effects approach zero.

Throughout the paper, we make use of a number of well-established symbols and conventions.

Thus, unless otherwise stated, Greek and Latin subscripts take the values 1, 3 and 1, 2, 3

respectively, summation over repeated subscripts is understood, (x, z) and (x, y, z) are generic points

in the (x, z)-plane and R³, respectively. Finally, we note that the notation (x, z) and (x, y, z) may also

be replaced by  and , respectively, when the reference is made to , the

standard basis for R³.

2. Surface equation

It is well-known that in the absence of body forces, the equilibrium and constitutive relations

describing the deformation of a linearly elastic, homogeneous and isotropic (bulk) solid are given by

(1)

where λ and µ are the Lame constants of the material  and  the components of the stress (bulk)

and strain tensors, respectively and  denotes the  component of the displacement vector

 in R³. In addition, (),j denotes differentiation with respect to  and  are

the kronecker delta. Although Eq. (1) remains true in the bulk material, equilibrium and constitutive

relations on the surface are now described by the equations (see Gurtin and Murdoch 1975, Gurtin

et al. 1998 and Ru 2010) for detailed derivations)

(2)
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(3)

(4)

Here the index “s” denotes the corresponding quantity resulting from the effects of surface

elasticity,  is surface divergence,  is applied traction on the surface and  denotes the 

component of the unit normal vector  to the surface, where , the standard basis for

R³. The mean curvature of the surface is characterized by  and  is the surface Laplacian of

normal deflection v, when v is a component of a vector vn normal to the surface. Finally,  is the

surface tension.

Remark 1. 

It should be noted here that the expressions of constitutive relations for the surface stresses

depend on the choice of different mathematical and physical assumptions describing the general

behavior of the surface. More precisely, the surface stresses ( ) can be determined by the relations

where  is the surface energy defined on the initial (Lagrangian) surface area. Currently, a number

theories with different versions are available in literatures (see, for example, Gurtin and Murdoch

1975, Gurtin et al. 1998 and Ru 2010, Ogden et al. 1997) within this subject. In the presentment

manuscript, we have adopted the following expression for the surface energy originally suggested in

(Ru 2010)

The above expression is motivated by the well-known von Karman’s large-deflection theory of

elastic thin shells that the normal deflection (out-plane component)  is dominated over other

two tangential (in-plane) displacement components ( ) of the surface, especially

when the initial curvatures vanishes (see more detailed descriptions in (Ru 2010)). 

2.1 Equilibrium conditions on the crack surface: decomposition theory

We consider deformations of a linearly elastic and homogeneous isotropic solid occupying a

region R³ with generators parallel to the z-axis of a rectangular Cartesian coordinate system. We

assume that a cross-section of the crack occupies the region [−a, a], a ∈ R of the x-axis as shown in

the Fig. 1. Within the present setting, the Eqs. (2)-(3) can now be re-written as
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∵ ,

Here the unit normal vector n is defined in such a way that it points from the “−” side to “+” side

(see Fig. 1) and  is a surface gradient defined as . Finally, [*] = (*)in − (*)out denotes

the jump of the corresponding quantity “*” across a surface (here “in” and “out” refer, respectively,

to the inside and outside of the body). Then, it can be readily verified that the above Eqs. (5)-(7) for

three dimensional solid can be decomposed into two independent parts (i.e. in-plane components

 and out-plane component (w)). In the case where an isotropic elastic medium undergoes in-

plane deformations, the displacement vector u with component  admits 

 (8)

and for the anti-plane shear deformation case, the displacement vector u now satisfies 

(9)

Apply Eqs. (8)-(9) on Eqs. (5)-(7) independently, we obtain the following equilibrium conditions

on the crack surface for the in-plane deformation case (Mode-I & Mode-II crack)

(10)

(11)

and for the anti-plane deformation case (Mode-III crack) 

(12)

Clearly, the deformations of an elastic solid with a single crack can be decoupled into in-plane

and anti-plane parts, even when the surface mechanics is incorporated. 

3. Crack problem with surface elasticity

In the above section, we have shown that the corresponding crack problem can be decomposed

into two parts (in-plane and anti-plane deformations) under the condition that the displacement

vector u is independent of variable “z” (either plane-strain or plane-stress assumption) which is

most commonly adopted treatment in solving engineering problems of this kind. We now examine

each problem and see how the surface effects alter the original stress field. 

3.1 A traction-free mode-III crack problem with surface effects
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Then from Eq. (1), the strain components are now given by

(13)

From Eq. (13), the stress components can be written as 

(14)

In addition, the relations between surface and body (bulk) stresses can be derived from Eq. (4) with

successive use of Eqs. (13)-(14) as

(15)

It should be noted here that for a cohere interface, the interfacial strains are equal to those in the

adjoined bulk material, i.e.  and .

Since w (x, y) is a harmonic function, we denote by ψ (x, y) its conjugate harmonic function.

Introducing the complex variable z = x + iy, we can now write

(16)

where Ω(z) is an analytic function of z in the plane  outside the crack (see Fig. 1.).

From Eq. (16), we then have that
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Fig. 1 Schematics of the problem
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(17)

and

 (18)

Now, in view of Eq. (12), the boundary conditions on the upper and bottom crack faces are given

by (see Fig. 2.)

 on the upper face (19)

 on the bottom face (20)

where, subscripts “+” and “−” denotes the upper (y > 0) and lower (y < 0) side of the crack,

respectively.

It is clear from Eqs. (19)-(20) that surface stress  does not contribute the boundary condition

for Mode-III crack case. From Eqs. (15) and (18)-(20), the surface condition on either side of the

crack [−a < x < a], (y = ± 0) can be formulated as follows

 on the upper face (21)

 on the lower face. (22)

In anti-plane deformations (Mode-III crack), it is clear that w = –w– (the right side of Eqs. (21)-(22)).

Therefore, adding Eqs. (21) and (22) yields
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Fig. 2 Equilibrium on upper crack face under anti-plane shear motion
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Since we have assumed uniform remote stress , we necessarily have that

(24)

Consequently, from Eqs. (23)-(24), we derive the following Hilbert-problem in terms of the

derivatives of the unknown function Ω(z) defined by Eq. (15) as

(25)

Next, if we express the unknown  as a Cauchy integral (Muskhelishvili 1953), noting the

requirement that the stresses be bounded at the crack tips, we have that

(26)

(27)

where, 

Finally, from Eqs. (25)-(27), we obtain the following first-order Cauchy singular integro-differential

equation for the unknown 

(28)

The solution of the above equation can be numerically found via Chebychev polynomials and the

collocation method (see more details in Kim et al. (2009), Kim et al. (2010a), Kim et al. (2010b)

and Chakrabarti (1999)). In addition, the numerical method guarantees rapid convergence (see

Fig. 3).
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Fig. 3 Convergence of the method with respect to number of iteration (N)
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3.2 A traction-free plane-strain crack problem (Mode-I & Mode-II) with surface effects 

For the in-plane deformations, the displacement vector u with component  satisfies (see

Eq. (8))

In the absence of body forces, the corresponding governing equations of two-dimensional

elasticity are described by (England 1971)

(29)

(30)

Here  and  are analytic functions of the complex variable  in the cut plane

 outside the crack (see. Fig. 1) and κ is defined as

 (for plane-strain)

where  is Poisson’s ratio taking values in the range 0 < < 1/2. Since the displacements and

stresses are continuous across y = 0, x > |a| (outside the crack), from Eq. (30), following (England

1971), we can define an analytic function also analytic in the whole plane cut along L = −a < x < a by

(31)
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, on the bottom face  (37)

where,  and  on . 

Remark 2. 

It is obvious from Eqs. (36)-(37) and Fig. 4. that, different from the Mode-III crack case, surface

stress  does indeed alter the equilibrium condition. Therefore, the residual stress is induced by

the non-zero surface stress , and the corresponding stress field (residual) can no longer be zero

even when all external loads are removed. The result further suggests that the complete solution of

the present problem is actually composed of two separate stress fields (the residual stress induced

by surface tension and another induced by the external loading). In this study, we limit our attention

only to the stress field induced by the external loading (when the external loading is set to zero, the

solution reduces to the zero solution). The main motivation for doing so is to be able to draw direct

comparison with the analogous results from the linear elastic fracture mechanics. An analysis of the

separate problem concerning the stress field induced by the surface tension can be found in, for

example, author’s reference (Wu 1999, Wu and Wang 2000), where it is stated that, depending on

the particular description of the crack tip adopted, stress singularity may occur (infinite stress at the

crack tip).
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Fig. 4 Equilibrium on upper crack face under in-plane deformations
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Therefore, by applying the relations  on , we have 

(41)

(42)

Consequently, Eqs. (38)-(39) takes the following forms with the use of Eqs. (41)-(42)
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(50)

The above series of equations can be numerically solved using analogous method as adopted in

Mode-III crack analysis, yet more comprehensive style (Kim et al. 2010a). The method ensures fast

convergence for this case as well (within 30 iterations (N), see, for example, the results in Fig. 5).

4. Results and discussions 

In this section, the numerical solution of Eqs. (28, for Mode-III crack) and (47-50, for Mode-I &

II crack) is performed for a range of surface parameters. The listed values are estimated properties

of “GaN” obtained from the work of Sharma in (Sharma and Ganti 2004). GaN is composed of a

mixture of nitrified aluminum (AI), gallium (Ga) and indium (In) and used in the manufacture of a

semiconductor. 

 (51)

In addition, the following surface parameters (dimensionless) are introduced throughout the analysis

, for Mode-I crack (axial tension)

, for Mode-II crack (in-plane shear)

, for Mode-III crack (out-plane shear) (52)
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Fig. 5 Stress convergence in Mode-I case
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The estimated stress distributions (along x-axis) for each case are presented through Figs. 6(a)-8(a).

It can be seen from Figs. 6(a)-8(a) that the obtained solutions in Mode-I, II and III case reduce to

those of the classical case when the surface effects become negligible. Further, we found that, in

plane-strain case (Mode-I and Mode-II), the general solution for the mixed mode problem (Mode-I

+ Mode-II, in this case, tension and in-plane shear are applied on the remote boundary

simultaneously) reduces to those of the Mode-I and Mode-II case, separately, even with the

incorporation of the surface effects (see, the compatible results from the linear elastic fracture

mechanics, (England 1971) and (Muskhelishvili 1953)). Finally, Figs. 6(b)-8(b) display the relation

between crack tip stresses and the surface effects for Mode-I, II and III cases, respectively. The

results clearly indicate that the surface effects can effectively reduce the corresponding stress at the

crack tip. Further, the surface parameters (see, Eq. (52)) are controlled by variations of the crack

Fig. 6 (a) Stress distribution (Mode-I) with respect to surface parameter (Se1), when , (b) Stress
(Mode-I, at the crack tip) versus surface effect, when 

σyy

∞

µ⁄ 0.3=
σyy

∞

µ⁄ 0.3=

Fig. 7 (a) Stress distribution (Mode-II) with respect to surface parameter (S
e2), when , (b) Stress

(Mode-II, at the crack tip) versus surface effect, when 
σxy

∞

µ⁄ 0.3=
σxy

∞

µ⁄ 0.3=
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size, the present results also indicate that the corresponding stresses exhibit strong dependency on

crack size. In fact, size dependency of the stress fields are the dominant phenomena in study of

sufficiently small scale structures such as in micro and nano sized structures (see, for example,

(Tian and Rajapakse 2007) and (Wang and Wang 2006)). 

Remark 3.

We have estimated the thickness of the surface layer surrounding the crack via appropriate

balance equation given by (see Fig. 9.)

Using the values of  and  obtained above yields 

56.62[J / m2] = h × 0.6577 × 168 × 109[N / m2], h = 0.5124 × 10−9[m]

This is indeed consistent with the results in the literature (see, for example Suzuki et al. (2008),

Sugiyama et al. (2010)) that the thickness (h) of the ‘surface layer’ is reported as being in the range

of a half to a few nanometers. Varying the material properties and the distribution of the estimated

σxx

s
σxx

Fig. 8 (a) Stress distribution (Mode-III) with respect to surface parameter (S
e
), when , (b) Stress

(Mode-III, at the crack tip) versus surface effect, when 
σyz

∞

µ⁄ 0.1=
σyz

∞

µ⁄ 0.1=

Fig. 9 Schematic of crack tip region and surrounding surface layer
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stresses as we approach the crack tip, continues to yields results consistent with the results reported

independently in the literature. 

5. Conclusions

In this summarized paper, we have reviewed the general deformations of a linearly elastic solid in

the case where a Mode-I, Mode-II or Mode-III crack is present and, especially, when the surface

effects are incorporated into the system of analysis. Throughout the rigorous derivation, we show

that the deformations of an elastic solid containing a single crack can be decoupled into in-plane

and anti-plane parts, even when the surface mechanics is incorporated. We also demonstrate that, in

the case where in-plane deformations are considered (Mode-I and Mode-II crack), the surface stress

 gives rise to residual stresses in which case the corresponding stress field can no longer be zero

even when all external loads are removed. This also may result in stress singularity at the crack tips

depending on the particular description of the crack tip adopted. As we mentioned previously, in the

present study, we exclude this situation in an attempt to draw direct comparison with the analogous

results from the linear elastic fracture mechanics. In results, it is shown that, in contrast to classical

fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads

to the more accurate situation of a finite stress at the crack tip. It should be noted here that finite

stresses at the crack tip can also be achieved using other ‘means’, for example, by directly

considering molecular interactions near the crack tip (see (Philip 2009) and the references therein),

yet, eventually, they share the same idea: the incorporation of the role of surfaces into analysis. 

Finally, we demonstrate that the corresponding stress distributions derived from our analysis show

clear signs of size dependency and do indeed reduce to classical solutions, when the surface effects

approach zero. Although, in the summary, we deliberately omitted details of numerical analysis of

the system of integro-differential equations, this does not necessarily mean that the corresponding

analysis is not of interest or important. One reason for doing so is that the author would like to put

more attention on formatting governing equation in which the effects of surface mechanics is

incorporated and examining basic rules from the classical mechanics (for example, decomposition

theory) within the current problem setting. Comprehensive details of the corresponding numerical

analysis are available in Kim et al. (2009), Kim et al. (2010a), Kim et al. (2010b).
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