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Abstract. The complex variable reproducing kernel particle method (CVRKPM) and the FEM are
coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only
conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual
methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid
approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled
method are presented in detail. Three numerical examples of the two-dimensional potential problems are
presented to demonstrate the effectiveness of the new method.
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1. Introduction

Partial differential equations arise in connection with various physical and geometrical problems

in which the functions involved depend on two or more independent variables, usually on time t and

on one or several space variables. The potential problem is one of the most important partial

differential equations in engineering mathematics, because it occurs in connection with gravitational

fields, electrostatics fields, steady-state heat conduction, incompressible fluid flow, and many other

areas (Selvadurai 2000). Mathematically, the problem is a function that satisfies a given partial

differential equation and particular boundary conditions. In physical term, this problem is

independent of time and involves only the space coordinates, as in Poisson’s equation or the

Laplace equation with Dirichlet, Neuman, or mixed conditions. Due to the complex material

properties, boundary conditions, boundary shapes, etc., analytical solutions are usually difficult to

obtain except for problems with simple geometry and boundary conditions. As a result, various

numerical models are usually required. It is noted that numerical methods such as the finite element
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method (FEM) has been well established over the past a few decades and has been successfully

applied to potential problems. However, it also has limit, the spatial domain where the partial

differential governing equations are defined is often discretized into meshes. In the general, the

creation of suitable meshes is very essential for acquiring accurate results. However, mesh

generation process consumes a lot of time and labor for some problems especially for discontinuous

and high gradient problems.

To avoid the disadvantages of FEM, meshless methods, which only require a set of nodes

scattered within the problem domain to constructed the approximate functions and easy to prepare

initial date, have developed rapidly as new computational techniques in structural mechanics and

engineering analysis (Belytschko et al. 1996). Meshless methods have some advantages in solving

certain science and engineering problems that are not well suited to the use of traditional

computational methods, especially for problems of extremely large deformation, dynamic fracturing,

and explosion (Liew et al. 2002a, Liew et al. 2002b). Those meshless methods that have been

developed include the element-free Galerkin (EFG) method (Belytschko et al. 1994), the

reproducing kernel particle (RKP) method (Liu et al. 1995), the the radial basis function (RBF) (Liu

et al. 2005), the finite point method (FPM) (Onarte 1996), the meshless local Petrov-Galerkin

(MLPG) method (Atluri and Zhu 1998), the meshless point collocation method (PCM) (Aluru

2000), the radial point interpolation method (Liew and Chen 2004a, Liew and Chen 2004b), the

moving least-squares differential quadrature meshfree method (Liew et al. 2003, Liew and Huang

2003, Liew et al. (2004), the wavelet particle method (WPM) (Liu and Chen 1995), the mesh-free

kp-Ritz method (Zhao et al. 2004, Zhao et al. 2007, Liew et al. 2004), the complex variable

meshless method (Liew et al. 2007, Liew and Cheng 2009), and the meshless methods with

boundary integral equations (Zhu et al. 1998, Sun et al. 2006, Kothnur et al. 1999, Liew et al.

2005,  Liew et al. 2006).

The RKPM was originally introduced to improve the accuracy of the smoothed particle

hydrodynamics method (SPH) (Liu et al. 1995), which was the earliest meshless method. In the

RKPM, the kernel function is modified by introducing a correction function to satisfy the

reproducing conditions, so the resulting modified kernel function reproduces polynomials exactly to

a specific order and fulfills the completeness requirement. The RKPM not only shares the features

of all meshless methods but also has some unique features, such as time or space localization, hp-

like adaptivity, and multiresolution analysis (Liu et al. 1996). All of these make the RKPM a novel

approach for structural dynamics (Liu et al. 1995, Liew et al. 2002), large deformation problems

(Chen et al. 1996, Liu and Jun 1998), and fluid mechanics (Liu et al. 1997).

Although the RKPM has many advantages compared with other numerical methods, it has a great

computational cost because of the large number of nodes selected in the domain of the problem.

Hence, the complex variable reproducing kernel particle method (CVRKPM) was developed on the

basis of the RKPM, and was then applied to two-dimensional elasticity and transient heat

conduction problems (Chen and Cheng 2008a, Chen and Cheng 2008b). The advantages of the

CVRKPM are that the correction function of a 2-D problem is formed with a 1-D basis function

when the shape function is formed. As the unknown coefficients of the correction function in the

complex variable reproducing kernel particle approximation are fewer than in the reproducing

kernel particle approximation, we need fewer nodes with domains of influence that cover an

arbitrary point in the domain, and thus require fewer nodes in the whole domain. Hence, under the

same quantity of nodes used to discretize the problem domain, the CVRKPM is more precise than

the RKPM.
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Although the CVRKPM has some advantages, it still presents technical difficulties. The two most

important difficulties are:

(1) The shape functions of the CVRKPM lack the Kronecker delta function property, which

makes it difficult to impose the essential boundary conditions of the problem. 

(2) When compared with the traditional FEM, the CVRKPM has a higher computational cost for

the construction of shape functions and also for the formation of a global equation system.

This makes the CVRKPM too expensive for problems requiring a dense distribution of points

over a large domain area.

It is often desirable and beneficial to combine two established numerical methods to exploit their

advantages while avoiding their disadvantages. In this paper, the CVRKPM and the FEM are

combined as the CVRKP-FE method for analyzing the two-dimensional (2D) potential problems.

The coupled CVRKP-FE method is promising as it reduces the computational time of the

CVRKPM and simplifies the imposition of the essential boundary conditions. This coupled method

employs interface elements, within which the shape functions are comprised of CVRKPM and FEM

shape functions. Both the FE interpolations and the CVRKP approximation satisfy consistency,

which means that the modified interface shape functions satisfy consistency, thus ensuring

convergence of the method. The formulations of the CVRKP-FE method are given together with

some numerical examples to demonstrate the applicability of the present method.

2. Combination techniques

Consider a two-dimensional potential problem. The problem domain consists of two sub-domains,

 and , joined by an interface boundary, . Numerical method 1 is used in  and numerical

method 2 is used in , as shown in Fig. 1. In the coupling method, the field variable compatibility

and the force equilibrium conditions on  must be satisfied (Gu and Liu 2005). Thus,

1) The nodal variables  and  at  for  and  should be equal, i.e.

(1)

Ω1 Ω2 ΓI Ω1

Ω2

ΓI

uI

1( )
uI

2( ) ΓI Ω1 Ω2

uI

1( )
uI

2( )
uI= =

Fig. 1 Two sub-domains and the interface boundary in the coupled method 
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2) The summation of forces  and  at  for  and  should be zero, i.e.

(2)

If shape functions along the interface boundary  in both domain  and domain  satisfy the

Kronecker delta function properties, these two numerical methods can be combined directly along

that boundary. However, because the CVRKP shape functions lack the delta function property, uh in

the CVRKP approximation differs from the nodal variable value u at point x. It is thus impossible

to couple the CVRKPM and the FEM directly along . Techniques are needed to satisfy the

combination conditions in Eqs. (1) and (2). Among these techniques, the hybrid approximation

function is the more widely used (Belytschko and Organ 1995).

3. Using hybrid field variable approximation

The coupling between the FEM and the CVRKPM is accomplished by introducing interface

elements between the FEM and CVRKPM domains. A detailed illustration of the interface domain

is shown in Fig. 2.  is a layer of sub-domain along interface boundary  within the meshless

domain .  is the interface domain and it is divided into several interface elements (finite

elements). In these interface elements, a hybrid field variable approximation is defined to satisfy

field variable continuity across the interface boundaries. Before these interface elements are

described in detail, the separate FE and CVRKP field variable approximations will be defined.

3.1 FE field variable interpolation function

The standard FE interpolation function for the field variable u in an isoparametric element is

ΓI

1( ) ΓI

2( ) ΓI Ω1 Ω2

FI

1( )
FI

2( )
0= =

ΓI Ω1 Ω2

ΓI

ΩI ΓI

ΩM ΩI

Fig. 2 Sub-domains used for FE-CVRKP coupling
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     (3)

where  is the number of element nodes. For example, if the 4-node element used here,  are

the standard bilinear shape functions

 (4)

In the above expressions,  is a mapping from the physical domain to the

parent domain (only the inverse mapping is usually defined), and  are the nodal coordinates

in the parent domain .

3.2 CVRKPM field variable approximation

Similar to the reproducing kernel particle methods, complex variable reproducing kernel particle

approximation is a class of operators that reproduces the function itself through integration over the

entire domain (Liu et al. 1995). Consider a random function  that is defined in the problem

domain  with the boundary . The reproducing kernel approximation of function  at point z,

denoted , is given by 

,     (5)

Suppose that the domain  is discretized by a set of nodes , where  is the

location of node I and  is the total number of nodes in the whole domain. It is assumed that only

the nodes surrounding one point z have an effect on . The sub-domain that encompasses these

surrounding nodes is called the support domain of point z. By the use of a simple trapezoidal rule,

the estimated value of  can be obtained through the following weighted linear combination

(6)

where n is the total number of nodes in the support domain of point z,  is the weight

function which has a compact support domain,  is the volume of node I and represents the

integration weight, and  is the correction function. In this study, the cubic spline

function is chosen as the weight function. The correction function  is expressed as a

linear combination of polynomial basis functions

(7)

where N is the highest order of polynomial basis functions,  are the basis functions, and

 are the corresponding coefficients, which are obtained via the reproducing conditions as follows

(8)
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in which

(9)

Let

(10)

The corresponding compact matrix form 

(11)

From Eq. (11), we have

 (12)

From Eq. (6), the expression of the trial function  can be written as

(13)

Therefore, we have

(14)

 (15)

where  is defined as the shape function of the CVRKPM, and

(16)

(17)

Because the field variable u of potential problems is scalar, the CVRKP approximations are

defined in a form similar to Eq. (3)

(18)

and

 (19)
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where

 (20)

 (21)

3.3 Interface field variable approximation

To illustrate the coupling procedure, again consider the domain in Fig. 2 along with the additional

detail shown in Fig. 3. In , the potential u at a point is approximated using the CVRKP

approximants in (18), and in , the finite element interpolants in (3) are employed in each

element . In , the interface region, the following expression is used (Belytschko and Organ

1995, Dolbow and Belytschko 1999)

 (22)

where  is the potential approximation of a point in ,  and  are approximations for

 in  given by the FE and CVRKP approximations, respectively, and  is a blending

function that is constructed with the use of a linear ramp function .  is defined using the

finite element shape functions (Belytschko and Organ 1995), i.e.

     (23)

where k is the number of nodes located on the meshless boundary  for an interface element. In

other words, the linear ramp function is equal to the sum of the FE shape functions that are

associated with the interface element nodes on the meshless boundary . According to the

property of the FE shape function,  will be unity on meshless boundary  and vanish on

boundary  ( ), i.e.
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Fig. 3 Interface element used for FE-CVRKP coupling
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(24)

The smooth blending function and its derivatives are given by

 (25)

Note that

(26)

hence, the approximation (22) reduces to  (18) on  and  (3) on , thus ensuring the

continuity. At the same time, it also provides for continuous derivatives along the meshless

boundary .

The interface shape functions can be developed by substituting the potential approximations (18)

and (3) into (22), i.e.

   (27)

where the hybrid shape functions of the interface element are

(28a)

(28b)

Eq. (28a) applies to the shape functions associated with the interface element nodes and Eq. (28b)

applies to those associated with nodes outside the particular interface element.

The derivatives of the interface shape function are
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     (31)

This provides for continuous derivatives along the meshless boundary .
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4. CVRKP-FE method for 2D potential problems

4.1 2D Potential Formulations

Consider a Poisson’s equation for a problem governing the potential u in a 2D domain 

bounded by contour  (see Fig. 4)

, in Ω  (32)

where  is a given source function of x and y, and Ω is the domain of the body. In the general

case, boundary  can have mixed boundary conditions. On one part of boundary , the potential

u is prescribed, and on the remaining part, , the secondary variables, flux , are

prescribed, i.e.

,      (33)

     (34)

where the boundary , and n is the unit outward normal to the boundary. For

example, in a steady-state heat transfer problem, which is a tropical Poisson’s problem, u is the

temperature, q is the heat flux function, and  is internal heat generation.

One of the aims for coupling the CVRKPM and FEM is to simplify the imposition of the

essential boundary conditions, so the essential boundary should be included in the FEM domain. As

both the FEM and the CVRKPM are discretized by the Galerkin approximations, the weak forms

can be used directly in the coupled method without any modifications. The Galerkin weak form is

 (35)

where

Ω
Γ

∇ u x( )⋅ Q x( )+ 0=
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Γ Γu

Γq q ∂u ∂n⁄=( )
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Ω

 

∫ Lu( )dΩ⋅ δu Q⋅ Ω δu q⋅ Γd
Γq

 

∫–d
Ω

 

∫– 0=

Fig. 4 Two-dimensional potential problem
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(36)

The weak form in Eq. (35) is used in the Galerkin procedure to develop the discrete equations.

In the weak form, approximate u and Lu by

(37)
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Substituting Eq. (37) and Eq. (38) into Eq. (35), we have

(46)

The nodal test function values  are arbitrary, resulting in

 (47)

where

(48)

(49)

5. Numerical experiments

In this section, numerical results for selected example problems are presented to illustrate the

applicability of the present CVRKP-FE method.

5.1 Convergence analysis and error estimation

The convergence study of the proposed method on the 2D potential problems is carried out by

analyzing the final potential function values under different discretization schemes and different

scaling factors dmax for the nodes of the study field.

For the purpose of error estimation and convergence studies, the Sobolev norms  are

calculated. In the following numerical examples, the Sobolev norms for  and  are

considered for the present potential problem. These norms are defined as

(50)

and

(51)

The relative errors are defined as

     (52)
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a rectangular domain. The governing equation and the boundary conditions are
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     (54)

     (55)

     (56)

and

     (57)

The analytical solution of this problem is

(58)

It is known that the choice of scaling factors dmax has influence on the support domain of nodes

within the meshless domain , and further influence the performance of the present coupled

method. Therefore, the influences of scaling factors dmax on the numerical results are studied firstly,

where different regular nodal distributions are used. The relation of between the relative error norm

values and scaling factors dmax is plotted in Fig. 5. From the numerical result, we observed that it is

a good choice to take . With the above analysis,  is taken in the following

examples. Moreover, the relative error norm values decrease with the increase of number of nodes

under certain dmax.

Regular nodes distribution of ,  and  are used to study the

convergence of the present coupled method. The size h in the figure is defined as the distance in x1
direction between two neighboring nodes with the same the x2 coordinate. The relative errors and

the convergence rates for norms  and  for the present coupled method, the CVRKP method

and the FEM with mesh refinement are shown in Fig. 6 and in Fig. 7, respectively. From these two

figures, it can be seen that the present method has high rates of convergence for norms  and

, and gives reasonably accurate results for the unknown variable and its derivatives. It can be

also observed the convergence rates for both the present coupled method and the MLPG method are

almost similar if the best scaling factors dmax are used, and the present coupled method has the

u 0 x2,( ) x2

2
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u 8 x2,( ) 64 x+ 2

2
= 3– x2 3< <

u x1 3,( ) x1

2
9+= 0 x1 8< <
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u x1 x2,( ) x1

2
x2

2
+=
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dmax 1.3= dmax 1.3=

399 21 19×( ) 255 17 15×( ) 63 9 7×( )

 0  1

 0
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Fig. 5 Influence of different parameter dmax on the relative error
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better convergence than the FEM.

Fig. 8 shows the analytical solution and the numerical solution under different number of nodes

with . It is observed that the results obtained by the present coupled method agree well

with the analytical solution even fewer nodes are used.

Figs. 9 and 10 plot the analytical solution and numerical solutions using the present coupled

method, CVRKP method and FEM along x2 and x1 axes, respectively. It can be observed that the

proposed coupled method takes less computation time compared with the CVRKP method.

5.2. Numerical studies

Three example problems are presented to demonstrate the applicability of the CVRKP-FE method

dmax 1.3=

Fig. 6 Relative errors and convergence rates for norm  0

Fig. 7 Relative errors and convergence rates for norm  1
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Fig. 8 Results obtained by the CVRKP-FE method with different number of nodes

Fig. 9 Comparison of the potential distributions at x1 = 2 along x2 coordinate

Fig. 10 Comparison of the potential distributions at x2 = 1 along x1 coordinate
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for two-dimensional potential problems. The results that are obtained for these examples are

compared with the CVRKPM and existing analytical solutions that have been published in the

literature.

In the numerical examples presented in this section, a regular or irregular arrangement of nodes

and the background mesh of cells are used for the numerical integrations to calculate the system

equation. A  Gaussian quadrature over the elements is used for integration. The linear basis

and cubic spline weight function are used in the CVRKP approximation. In addition, based on the

results of the previous numerical examples, we take the .

5.2.1 Poisson’s equation with Dirichlet problems on a torus

The first example considered is a 2D Poisson equation with Dirichlet boundary conditions on the

torus, as shown in Fig. 11. The Poisson equation is

(59)

with the boundary conditions

(60)

(61)

The analytical solution of this problem is

(62)

The following parameters are used for the numerical simulation:  and . Fig. 11

shows the finite element mesh and the distributions of particles. The nodes are arranged regularly in

4 4×

dmax 1.3=

∂2
u

∂x1

2
--------

∂2
u

∂x2

2
-------- 4–+ 0    a r b    0 θ 2π< <,< <,=

u a θ,( ) 0=

u b θ,( ) 0=

u r θ,( ) r
2

a
2

–( ) b
2

a
2

–( ) rlog alog–

blog alog–
----------------------------⎝ ⎠
⎛ ⎞–=

a 1= b 1=

Fig. 11 Node and mesh arrangement on a torus domain. The shaded elements are those adjacent to the
interface of the FE domain (outside) and the CVRKPM domain (inside)
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the  direction and irregularly in the r direction.

The analytical and numerical solutions using both the CVRKPM and CVRKP-FE method along

the r axis at any angle are plotted in Fig. 12. The results of the CVRKP-FE method agree well with

the analytical solution. However, the CVRKP-FE method takes around half the time to calculate

than those of the CVRKPM.

5.2.2 Laplace equation with mixed boundary conditions on a cube

The second example considered is a 2D Laplace equation with mixed boundary conditions.

Supposing a steady temperature field on a rectangular domain, the governing equation is

,     (63)

with the boundary conditions

     (64)

     (65)

     (66)

and

     (67)

The analytical solution of this temperature field is

(68)

θ

∇2
T

∂2
T

∂x1

2
--------

∂2
T

∂x2

2
--------+ 0= = x1 0 5,[ ]∈ x2 0 10,[ ]∈,

T x1 0,( ) 0= 0 x1 5< <

T 0 x2,( ) 0= 0 x2 10< <

T x1 10,( ) 100 πx1 10⁄( )sin= 0 x1 5< <

∂T 5 x2,( )
∂x1

---------------------- 0= 0 x2 10< <

u x1 x2,( )
100 πx1 10⁄( )sin πx2 10⁄( )sinh

π( )sinh
---------------------------------------------------------------------------=

Fig. 12 Results obtained with the analytical, CVRKPM and CVRKPM-FEM solutions along the r direction at
any angle
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The regular node arrangement when the CVRKPM and CVRKP-FE method are used is shown in

Fig. 13. Figs 14 and 15 plot the analytical solution and the numerical solution using the CVRKPM

and CVRKP-FE method along the x and y axes, respectively. It is evident that these results are in

total agreement with the analytical solution. Moreover, it is again shown that a lesser computational

time is needed for the CVRKP-FE method than that of the CVRKPM.

Fig. 13 Regular node arrangement; elements along the four essential boundaries are used to modify the shape
functions for example 2

Fig. 14 Temperature distribution along the x axis at y = 5
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5.3 Laplace equation with Dirichlet problems on a half-torus domain

The third example considered is a 2D Laplace equation with Dirichlet boundary conditions, as

shown in Fig. 16. The Laplace equation is

,     (69)

with the boundary conditions

     (70)

     (71)

and

∇2
u

∂2
u

∂x1

2
--------

∂2
u

∂x2

2
--------+ 0= = r 1 2,[ ]∈ θ 0 π,[ ]∈,

u 1 θ,( ) θ( )sin= 1 θ π< <

u 2 θ,( ) 0= 1 θ π< <

Fig. 15 Temperature distribution along the y axis at x = 2.5

Fig. 16 Nodal arrangement of the coupled CVRKP-FE Method for example 3
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     (72)

     (73)

The analytical solution of this problem is

(74)

The distribution of 279 nodes on a half-torus domain with 9 nodes in the r direction and 31 nodes

in the  direction is considered, as shown in Fig. 16.

Figs 17 and 18 compare the results calculated using the analytical solution, the CVRKPM and the

u r 0,( ) 0= 1 r 2< <

u r π,( ) 0= 1 r 2< <

u r θ,( ) 3

4
---

1

r
---

r

4
---–× θ( )sin×=

θ

Fig. 17 Values calculated with the analytical, CVRKPM, and CVRKP-FE Method solutions along the r
direction where θ = π / 2

Fig. 18 Compression of the analytical, CVRKPM, and CVRKP-FE Method solutions along the angle axis at
r = 2.8117
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CVRKP-FE method. The results obtained with the CVRKP-FE method agree well with the

analytical solution for the entire domain. Compared with the CVRKPM, the CVRKP-FE method

again has high computational efficiency.

6. Conclusions

This paper has discussed the coupling of the complex variable reproducing kernel particle method

(CVRKPM) and the finite element method (FEM) for the two-dimensional potential problems. To

establish the coupling, interface elements are defined with shape functions composed of the FE and

CVRKP shape functions. The discrete equations and corresponding computation formula of the

coupled method are then derived. Several numerical example problems are presented to verify the

accuracy of the numerical formulations, with the results indicating that the coupled method can

effectively reduce the computational cost of the solution with no adverse effect on accuracy. The

computational cost is lower because the difficulty of imposing essential boundary conditions for the

CVRKPM can be overcome by modeling the portion of the domain with essential boundaries using

the FEM, which uses the shape function with the Kronecker delta function property. Hence, the

boundary conditions are treated directly, as is usual with the FEM. A comparison of the results of

the coupled method and the corresponding analytical solutions demonstrates that the method is both

feasible and effective. It should be noted that the proposed method that can also couple other mesh-

free methods (Zhang and Liew 2010, Hu et al. 2009, Liew et al. 2004) with the finite element

method. 
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