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Analysis of wave motion in micropolar transversely isotropic
thermoelastic half space without energy dissipation
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Abstract. The propagation of waves in a micropolar transversely isotropic half space in the theory of
thermoelasticity without energy dissipation are discussed. After developing the solution, the phase
velocities and attenuation quality factor has been obtained. The expressions for amplitudes of stresses,
displacements, microrotation and temperature distribution have been derived and computed numerically.
The numerical results have been plotted graphically.

Keywords: micropolar; transversely isotropic; amplitude ratios; without energy dissipation.

1. Introduction

Micropolar elasticity theory introduced by Eringen (1968) incorporates the local deformations and
rotations of the material points of a body. The theory provides a model that can support body and
surface couples and display a high frequency optical branch of the wave spectrum. For engineering
applications, it can model composites with rigid chopped fibres, elastic solids with rigid granular
inclusions, and other industrial materials such as liquid crystals (Eringen 1968, 1992, Maugin and
Mild 1986). Several investigations revealing interesting phenomenon that characterize the micropolar
theory and some of its generalizations are contained in (Eringen 1999, 2001, Janusz 2003).

The classical theory of heat conduction predicts that if a material conducting heat is subjected to a
thermal disturbance, the effects of the disturbance will be felt instantaneously at distances infinitely
far from its source. This prediction is unrealistic from a physical point of view, particularly in
problems like those concerned with sudden heat inputs. This shortcoming of the theory stems from
the fact that the equation governing the temperature distribution (heat transport equation), on which
the theory is based, is a parabolic-type partial differential equation that allows an infinite speed for
thermal signals. During last three decades, nonclassical theories free from this drawback by using
modified version of classical Fourier's law of heat conduction have been formulated which involve
hyperbolic-type heat transport equation and admit finite speed for thermal signals.

The linear theory of micropolar thermoelasticity was developed by extending the theory of
micropolar continua to include thermal effects by Nowacki (1966) and Eringen (1970). Tauchert et
al. (1968) also derived the basic equations of linear theory of micropolar thermoelasticity. Dost and
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Tabarrok (1978) presented the micropolar generalized thermoelasticity by using Green -Lindsay
theory. One can refer to Dhaliwal and Singh (1987) for a review on the micropolar thermoelasticity.
Chandrasekhariah (1986) formulated a theory of micropolar thermoelasticity which includes heat-
flux among the constitutive variables.

Recently, the theory of thermoelasticity without energy dissipation, which provides sufficient
basic modifications to the constitutive equation to permit the treatment of a much wider class of
flow problems, has been proposed by Green and Naghdi (1993) (called the GN theory). The
discussion presented in the above reference includes the derivation of a complete set of governing
equations of the linearized version of the theory for homogeneous and isotropic materials in terms
of displacement and temperature fields and a proof of the uniqueness of the solution of the
corresponding initial mixed boundary value problem. Chandrasekharaiah and Srinath (1996) investigated
one-dimensional wave propagation in the context of the GN theory.

The aim of the present paper is to discuss the propagation of waves in the theory of
thermoelasticity without energy dissipation for micropolar transversely isotropic half space. The
importance of thermal stresses in causing structural damages and changes in functioning of the
structure is well recognized whenever thermal stress environments are involved. The phase
velocities and attenuation quality factors are obtained and plotted numerically. The expressions for
amplitude ratios of components of displacements, microrotation, stresses and temperature
distribution are also obtained. A particular case of interest is also deduced.

2. Basic equations

The basic equations in dynamic theory of the plain strain of a homogeneous and micropolar
transversely isotropic medium following Eringen (1999) and Green and Naghdi (1993) in the theory
of thermoelasticity of without energy dissipation in absence of body forces, body couples and heat
sources are given by

tiy = Pl (1
My ;T €y by = pj%c Lj,k=1,2,3 (2
and heat conduction equation is given by
o
kT, = pC _+To_ﬂi'ui,' 3)
n o o

The constitutive relations can be given as

ti = Ajuen+ Gyu¥u— BT, my = Gyeu+ Yy 4)

Y

where
Ey = U ;T Euy Brs Y, = ¢i,j (%)

In these relations,we have used the following notations
p is the density,
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€, permutation symbol,

u; components of displacement vector,

@, component of microrotation vector,

t; components of the stress tensor,

m;; components of the couple stress tensor,

&; components of micropolar strain tensor,

K; = K0y (i not summed) = (1 + 24)C" are the characterstic constants of the theory,
C" is specific heat at constant strain,

B = B.0; (i not summed) are the thermal elastic coupling tensor.

3. Formulation of the problem

We consider homogeneous, micropolar transversely isotropic medium under the theory of
thermoelasticity without energy dissipation, initially in an undeformed state and at uniform
temperature 7,. We take the origin of coordinate system on the top plane surface and x; axis
pointing normally into the half-space, which is thus represented by x; >0 (Fig. (a)). We consider
plane waves in plane such that all particles on a line parallel to x,-axis are equally displaced.
Therefore, all the field quantities will be independent of x, coordinate. So, we assume the
components of the displacement and microrotation vector for two dimensional problem of the form

U= (u,0,u5), § = (0, 4, 0) (©)

With the aid of Eq. (6), Egs. (1)-(4) reduced to

v
‘x3

Fig. (a) Geometry of the problem
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2
A4y il i +(A13 +A56) il = +Assa a "'K18¢2 ,31 = pa—zl (7)
x1 Ox X3 6x3 0x; axl ot
2
A al = +(A13 +A56) il o "'1‘133a = "'K28¢2 ,B3 = p@_t? ®)
xl Ox 13 6x3 Ox, 5x3 ot
2
Byn— il 74, +Bﬁ6a Z X¢2"‘K18u1 "‘Kz% = p]5_¢252 ©)
ox; oxs 0x; ox, ot
OT, T _ 0T, .0 (,0u  ,0u
T4 2T c—+T—(/3 Ly g, 2 (10)
ox; 8x3 or Ox, Ox;
where
K, = Asg—Ass, Ky = Agg—Ase, X = K, — K,
For simplification we use the following non-dimensional variables
’ X ' u; ' pcl
X; L’ U; L’ ml_] Lﬂl ) ¢l ﬂl 0¢l
A
R (11)
A55 L T() P

where L is a parameter having dimensions of length and c; is the longitudinal wave velocity of the
medium.

4. Solution of the problem

The solution of the considered physical variables can be decomposed in terms of normal modes as

1&(x) + mxy—ct)

(uh us, ¢2’ T) = (17 us, ¢27 T)ule (12)
where & is the wave number, @ = & is the angular frequency and c¢ is phase velocity of the wave, m
is the unknown parameter which signifies the penetration depth of the wave, i, ¢, T are
respectively, the amplitude ratios of displacement w5, microrotation ¢ and temperature 7 to that of
displacement .

Using Egs. (11) and (12) in Egs. (7)-(10), we obtain four homogeneous equations in four
unknowns, which on solving for the non trivial solution yields a biquadratic equation in g(= m?) of
the form

Aq*+Bg’ +Cq’ +Dg+E = 0 (13)

where
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A ==£% B = ENdyd,E —aga, + EXa, + as + as— ag + dydy)]
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(as + as)] - E(dydsas + dydydy + dydsdyy) + Exar(as + aya, — dsdy) ]
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(a5 + as) — dydyaqag | — agayasa, — E'[dyd,o(a, — ag) + dy(dsasag + dedydy) + dsdsded,]
E = a,(E dsagdy — asasag) + ayag(asas— Eodgdyy), ay = @ —d &y ay = —1&d,,
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d, = ‘4_66’ ds = Ay +A56’ d, = ,6'1T0K2’ d, = IE’ dy = K45 L
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dyy = Z2dy, dyy = =, d), = SSJ’ dy3 b %, dy = 2 :
K, B B Ass 55
A B C* 2 02 _ ﬁ
de = =%, d; = 662a & = = 017 =" k=-, B= =
Ass AssL K3 K3 K3 B

The complex coefficients implies that four roots of this equation may be complex. The complex
phase velocities of the quasi-waves, given by ¢, will be varying with the direction of phase
propagation. The complex velocity of a quasi-wave 'j' ie., ¢;=q¢r+ 1gq;, defines the phase
propagation velocity V;= (q‘; + q?)/qR and attenuation quality factor Q;l =-2q,/ qr for the
corresponding wave. Therefore, the four waves propagating in such a medium are attenuating
waves. The same directions of waves propagation and attenuation vectors of these waves make
them homogeneous waves. These waves are called quasi-waves because polarizations may not be
along the dynamic axes. The waves with velocities ¢, ¢», ¢3, ¢4 may be named as quasi-longitudinal
displacement(qLD)wave, quasi thermal wave (qT), quasi transverse microrotational (qTM)wave and
quasi transverse displacement(qTD)wave, that are propagating with the descending phase velocities
V, (i=1,2,3,4), respectively.

5. Boundary condition
We assume that the boundaries of the half space are stress free thermally insulated. Therefore, we

consider following types of boundary conditions:
Mechanical conditions: The mechanical boundary conditions at x; =0 for stress free boundaries
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are given by

ty3 =0, 155, =0, my =0 (14)
where
ou ou
tyy = Ay=—— +Ap— =T (15)
ox, Ox5
ou ou
ty = Ag=—+Ass5— + K, ¢, (16)
ox, 0x;4
0
ms, = B6éa_¢2 (17)
X3
Thermal conditions: The thermal boundary condition at x; =0 is given by
oT
—+hT =0 18
o, (18)

where / is the surface heat transfer coefficient;
h — 0 corresponds to thermally insulated boundaries and
h — o refers to isothermal boundaries.

For the solution for surface waves, it is essential that motion is confined to free surface x; =0 of
the half-space, so that the characteristic roots ¢; must satisfy the radiation conditions Real (¢;) > 0. So,
we take the solution for the displacement, microrotation and temperature distribution of the form
i§(x; —ct+impxy)

4
(ula us, ¢2’ T) = ZAI(17 Vi Sis t[)e

i=1

. A, :
rp = A_II’ S = _ia t[ = &7 i = 1729 374
A, ; A,
2,2 . 2 .
as—m; i&dg m;a, —dsm;§ i&dg m;ay
A= —i&d,, asfmf ? 0 > A = —i&dy asf’"?fz 0
m;a, 0 a8+m?.§2 as 0 a8+mf§2
—dsm,&” as—m;E” ma, —dsm;&” as—m; &7 igd,
Aoy = | —i&dy, —i&d,, 0 » Ay = —iEdy, —iédyy as— m,zfz (19)
ae ma; ag+ m?fz ag m;a, 0

6. Amplitudes of stresses, displacements, microrotation and temperature distribution

In this section the expressions for the amplitudes of the components of displacement,
microrotation, stresses and temperature distribution for plane waves can be obtained as
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2 Ai *—m;xs 1&(x) —ct) 4
I3 = ZLTC’[e :|Ale s =)
1

i=1 i=1

Eb:‘e_mifstAlelf(xl —cn)
1

) Ai i, et 4 Ai —mEx 1&(x) —ct)
sy — Z_dl7|:/4 Sim’.é:e i|A]e 1 ,(ul’u3’ ¢2’T) = Z|:/4—(1,ri,sl', ti)e 3i|A1€ 1
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where

— 1y, B = ey, m £+ syl )
7

7. Particular case

Taking
An=As3=A+2u+K, Ass= Ao =+ K, Ai3= A, Ase =
Bss=Bp=yp xi=x3=K ==
with
—K1:K2:X/2:K

we obtain the corresponding expressions for the isotropic micropolar thermoelastic half space
without energy dissipation.

8. Numerical results and discussion

In order to illustrate the theoretical results obtained in the preceding sections, we now present
some numerical results. For numerical computation, we take the values of relevant parameters for
transversely isotropic micropolar thermoelastic solid as

Ay =15.974 x 10" Nm™, 453 =13.843 x 10" Nm™, 455 =5.357 x 10'* Nm™
Age=5.42 x 10" Nm™, 415=9.59 x 10'°Nm™, 455 =5.89 x 10" Nm™
By =1.779 x 10° N, Bg =2.779 x 10° N, p=1.74kg/m’, C' = 1.04 Cal /K, 5 =0.2m’

For comparison with micropolar isotropic without energy dissipation thermoelastic solid,
following (Eringen 1984), we take the following values of relevant parameters of micropolar
isotropic solid for the case of Magnesium crystal like material as

p=174x10°Kg/m’, 1=9.4x 10'"°N/m?, u=4.0x 10'"°N/m?
y=0779x 10°N, 53 =0.2x10""m’, f=2.58 N/m” deg

Figs. 1 and 2 shows the variation of phase velocities V;, i =1, .. 4, and attenuation quality factors
Q:l,i= 1,..4. In these figures the solid curve represents the case of micropolar transversely
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Fig. 1 Variations in the phase velocity (a) V; (b) V, (c) V3 (d) V, of waves with respect to frequency

isotropic half space in theory of thermoelasticity of without energy dissipation (MTIWOED), while
dotted curve represents the case of micropolar isotropic half space without energy dissipation
(MIWOED). The comparison in the values of MTIWOED and MIWOED, for two value of wave
number (&=.25, .45) have been shown in all the graphs. The curves without center symbol stand
for £= .25, while curves with center symbol stands for &= .45.

It can be seen from Fig. 1(a) that the value of phase velocity V; start with sharp initial increase,
then become constant for some time and then again increases with increase in frequency. The
variation pattern remains same for all the cases, with slight difference in their amplitude. Also, the
value of phase velocity gets decreased due to anisotropy. Fig. 1(b) shows that the value of phase
velocity V,, in the case of MTIWOED and for &=.25, start with slow increase, then sharply
increases over the interval (1.2,3), then sharply decreases and again start increases with further
increase in frequency. While for &= .45, the variation pattern remain same except with difference
that the interval of sharp increase from (1.2,3) to (1,6). Here the amplitudes get increased due to
anisotropy. It is evident form Fig. 1(c) that the value of phase velocity V; for the all the cases,
initially oscillates with very small amplitude, then increases with increase in frequency. The values
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Fig. 2 Variations in the attenuation quality factor (a) Q,™" (b) Q,™' (c) Q;™' (d) Q4" of waves with respect to

frequency

for the case of MTIWOED are higher in magnitude as compared to those of MIWOED. Fig. 1(d)
represents the variation in the value of phase velocity V, with frequency. It can be seen form this
figure that the variation pattern is similar to the case of Fig. 1(c) except with difference that the
initial amplitude of oscillations get very large in the present case.

Fig. 2 represents the variation in the value of attenuation quality factors Q;l, i=1,.4. It is
depicted from Fig. 2(a) that the value of attenuation quality Q[' for the case of MTIWOED and for
both values of wave number, initially decreases, then shows a high jump in its value, to become
constant at the end. For MIWOED the variation pattern is similar with difference in their amplitude
(which is increased in this case). Fig. 2(c) and 2(d) represent the variations of attenuation quality
factor Q;' , Q}' with frequency. It can be seen from these figures that, for the case of MTIWOED
the value of attenuation quality factors show a hump within the interval (0,2) and then flatten out to
become constant at the end. The variation pattern for both Q;l and Q;l remains similar with
difference in the height of hump. It can be seen from Fig. 2(b) that the values of attenuation quality
factor Q;l oscillate and ultimately become constant, for all the cases.

Figs. 3 and 4 show the variations in amplitude of stresses, temperature distribution and
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Fig. 3 Variations stresses (a) normal stress (b) tangential stress (c) tangential couple stress with respect to distance.

components of displacement and microrotation with distance. All numerical computations are
carried out for single fixed value of wave number and for two given values of frequency 1.1494 and
.8210. The computations were carried out within the range 0 <x; < 25. It is depicted from Fig. 3(a)
that the value of normal stress sharply decreases, then increases and decreases with increase in
distance for @ = 1.1494, while for @ = .8210, its value start with sharp increase and then decreases.
For MIWOED the variations for @=1.1494 is similar to the variations for MTIWOED when
@=.8210 and vice versa, with difference in their amplitudes. Figs. 3(b) and 3(c) shows that the
variation of tangential stresses, for both the values of @ start with initial increase within the range
0<x3<2.5 and then decreases with increase in distance from the surface x; =0 in the case of
MTIWOED. However for the case of MIWOED, its value oscillate with large and small amplitude
and then flatten to become constant, when @ = 1.1494 and » = .8210, respectively. The variation in
amplitude get increased with increase in frequency.

Fig. 4 shows the value of amplitude ratios of the components of displacement, microrotation and
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Fig. 4 Variations in the values of (a) normal displacements (b) tangential displacements (c) microrotation (d)
temperature distribution of waves with respect to distance

temperature distribution with distance. It is illustrated from Fig. 4(a) that the value of normal
displacement in the case of MTIWOED and for both the values of frequency decreases to become
constant with distance, while for MIWOED its value oscillates with very large amplitude and then
the amplitude of oscillation decrease to become constant ultimately when @ =1.1494 and for w=
.8210 its value decreases to become constant. Figs. 4(b) and 4(d) depict the variations of amplitude
of tangential displacement and temperature distribution with distance. It can be seen from these
figures that for the case of MTIWOED, their values goes on decreasing and become constant as the
distance from the surface increases. While for MIWOED, their values sharply decreases over the
interval (0,7), then oscillates with small amplitude to become constant when @ =1.1494, while
when @ = .8210 its value slowly decreases to become constant. It is observed from Fig. 4(c) that the
value of microrotation for both the frequencies, decreases to become constant in the case of
MTIWOED, while for the case of MIWOED its value oscillates with very small amplitude to
become constant.
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9. Conclusions

The propagation of waves in micropolar material has many applications in various field of science
and technology, namely, atomic physics, industrial engineering, thermal power plants, submarine
structures, pressure vessel, aerospace, chemical pipes and metallurgy. In this view propagation of
waves in a micropolar transversely isotropic half space with thermoelasticity of without energy
dissipation has been discussed. The phase velocities and attenuation quality factors has been
computed and plotted graphically. The expression for amplitudes of stresses, displacements,
microrotation and temperature distribution have been derived and computed numerically. The values
of phase velocity for the first waves, get decreased due to anisotropy, while for the rest waves, their
values get increased. Similarly, the attenuating quality factor of preceding 2 waves get decreased
due to anisotropy, which is reversed in the case of remaining waves.
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