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Abstract. Damage detection methods using structural dynamic responses have received much attention
in the past decades. For bridge and offshore structures, these methods are usually based on beam models.
To ensure the successful application of these methods, it is necessary to examine the sensitivity of modal
properties to structural damages. To this end, an analytic solution is presented of the modal properties of
simply-supported Euler-Bernoulli beams that contain a general damage with no additional assumptions.
The damage can be a reduction in the bending stiffness or a loss of mass within a beam segment. This
solution enables us to thoroughly discuss the sensitivities of different modal properties to various
damages. It is observed that the lower natural frequencies and mode shapes do not change so much when
a section of the beam is damaged, while the mode of rotation angle and curvature modes show abrupt
change near the damaged region. Although similar observations have been reported previously, the
analytical solution presented herein for clarifying the mechanism involved is considered a contribution to
the literature. It is helpful for developing new damage detection methods for structures of the beam type.
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1. Introduction

The aging of important structures, such as bridges, dams and offshore platforms etc., is a hot topic in

the civil engineering community and the general public. In order to detect damage occurrences in a

timely manner, sensors are often installed in these structures to monitor changes in structural

properties. Because structural dynamic properties, such as natural frequencies and mode shapes, can be

easily acquired, they are often used as parameters for determining the existence, location and severity

of damages (Rizos et al. 1990, Salawu 1997, Sinha et al. 2002, Owolabi et al. 2003, Patil and Maiti

2005). However, some researchers reported that lower natural frequencies and mode shapes are not

sensitive to damages (Farrar and Jauregui 1998, Zou et al. 2000, Carden and Fanning 2004), due to

the fact that the modal data are global properties of a system, while damage is a local phenomenon.

Considering that a better understanding of the relationship between the modal properties and damage

is of fundamental importance, some researchers have tried to find the fundamental principles behind.

Thomson (1949) presented an analytical solution for slender bars with discontinuities in stiffness. In

his model, the slotted bar was replaced by a uniform bar with modified loads at the location of notch.
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Taking a cracked beam as two beams connected by a rotational spring, Chondros and Dimarogonas

(1980) and Rizos et al. (1990) presented analytical solutions for the dynamic properties of beams with

a transverse surface crack. In their models, the spring constant was obtained from the local flexibility,

a function of crack depth (Dimarogonas and Paipetis 1983). Owing to its simplicity, this model is

widely accepted by researchers in this field (Dimarogonas 1996, Zheng and Fan 2001, Wang and Qiao

2007). Assuming an exponential stress distribution near the crack, Christides and Barr (1984) studied

the dynamic behavior of cracked Euler-Bernoulli beams by the variational principle. This work laid

down the foundation of continuous cracked beam theory (Dimarogonas 1996). Various adaptations are

developed by the modified energy approach (Sinha et al. 2002, Mazanoglu et al. 2009). Using the

finite element method, Yuen (1985) systematically studied the changes in modal shapes due to the

presence of a damage in a cantilever beam. In his model, the damage is introduced by reducing the

Young’s modulus of some elements. He observed that the rotation of mode shapes or slop of

displacement mode shapes are indications for the damage location and severity. Such an observation

was also confirmed by Abdo and Hori (2002).

The above researches either using the modified loads to consider a slot in a beam, or the local

flexibility to represent cracks existing in a beam, or assuming a stress distribution near the crack, or

just using numerical tools such as the finite element method. Although the accuracy of these

theories has been proved in part by numerical or experimental means, it is still of some value if a

new solution can be developed using the hypotheses of beam theory, but free of any additional

assumption. This can be useful to the damage detection of bridge and offshore structures, as they

are commonly analyzed by beam models. For this purpose, a new analytical solution will be

presented of the modal properties of simply-supported plane Euler-Bernoulli beams with a single

general damage in this paper. The damage can be a reduction in bending stiffness or a loss of mass

within a beam segment. Based on this solution, a relationship between the modal properties and

damage is established for the transverse vibration of the beam. From the examples studied, we

observe that: (1) the natural frequencies and mode shapes do not change so much if one section of

the beam is damaged; (2) the mode of rotation angle (MRA) shows abrupt change near the

damaged location, but relevant indices may incorrectly report damages in the presence of

measurement errors; (3) curvature modes are more sensitive to damages than the MRA because they

contain more local information. These observations should be useful for developing efficient

damage detection method for beam structures.

2. Analytical solution of simply-supported plane Euler-Bernoulli beams with a sin-

gle damage

Fig. 1 shows a simply-supported plane beam of length L with a single damage in the segment

. The bending stiffnesses of the undamaged and damaged parts are (EI)1 and (EI)2,

respectively. The masses per unit length of the undamaged and damaged parts are M1 and M2,

respectively. The analytical solution of the natural frequencies and mode shapes of this damaged

beam is presented in the following.

2.1 Natural frequencies

Using the Euler-Bernoulli beam theory and ignoring the inertial moment caused by angular

acceleration, the governing equations for the transverse free vibration of the beam are (Humar 1990):

l1 x l2≤<
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     ,     (1)

     (2)

where y is the transverse displacement and t denotes time.

Eqs. (1) and (2) can be solved by separation of variables. Assume

(3)

where ω is the circular frequency and ϕ is the initial phase. The mode shape Y(x) satisfies:

     ,     (4)

     (5)

where

(6)

(7)

The general solution of Eqs. (4) and (5) is:

     (8)

     (9)

     (10)

M1

∂2
y

∂t
2

-------- EI( )1

∂4
y

∂x
4

--------+ 0= 0 x l1≤ ≤ l2 x L≤<

M2

∂2
y

∂t
2

-------- EI( )2

∂4
y

∂x
4

--------+ 0= l1 x l2≤<

y x t,( ) Y x( ) ω t ϕ+( )sin=

d
4
Y

dx
4

-------- K1

 4
Y– 0= 0 x l1≤ ≤ l2 x L≤<

d
4
Y

dx
4

-------- K2

 4
Y– 0= l1 x l2≤<

K1

M1ω
2

EI( )1

-------------4=

K2

M2ω
2

EI( )2

-------------4=

Y1 x( ) A1 K1xsin B1 K1cos x C1 hK1xsin D1 hK1cos x+ + += 0 x l1≤ ≤

Y2 x( ) A2 K2xsin B2 K2cos x C2 hK2xsin D2 hK2cos x+ + += l1 x l2≤<

Y3 x( ) A3 K1xsin B3 K1cos x C3 hK1xsin D3 hK1cos x+ + += l2 x L≤<

Fig. 1 Simply-supported beam with a single damage
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The constants Ai, Bi, Ci, Di, with i = 1, 2, 3, can be determined from the boundary and continuity

conditions as follows:

At x = 0, the boundary conditions for the simple beam are

(11)

(12)

From Eqs. (11) and (12), one can get B1 = D1 = 0.

At x = L, the boundary conditions are

(13)

(14)

A superposition of Eq. (13) with Eq. (14) gives

(15)

Subtracting Eq. (14) from Eq. (13) gives

(16)

The deflection, rotation angle, bending moment and shear force should be continuous at the

position x = l1. Because B1 = D1 = 0, the continuity conditions can be written as

(17)

(18)

(19)

(20)

Similarly, at x = l2, the continuity conditions are

(21)

Y1 0( ) 0= B1 D1+ 0=⇒

EI( )1Y1

′′

0( ) 0= B– 1 D1+ 0=⇒

Y3 L( ) 0= A3 K1Lsin B3 K1Lcos C3 hK1Lsin D3 hK1Lcos+ + + 0=⇒

EI( )1Y3

′′

L( ) 0= A3 K1Lsin B3– K1Lcos C3 hK1Lsin D3 hK1Lcos+ + 0=–⇒

C3 hK1Lsin D3 hK1Lcos+ 0=

A3 K1Lsin B3 K1Lcos+ 0=

Y1 l1( ) Y2 l1( )=  ⇒

A1 K1l1sin C1 hK1l1sin+ A2 K2l1sin B2 K2cos l1 C2 hK2l1sin D2 hK2cos l1+ + +=

Y1

′

l1( ) Y2

′

l1( )=  ⇒

K1

K2

------ A1 K1cos l1 C1 hcos K1l1+( ) A2 K2cos l1 B2– K2sin l1 C2 hK2cos l1 D2 hsin K2l1+ +=

EI( )1Y1

′′

l1( ) EI( )2Y2

′′

l1( )  ⇒=

EI( )1

EI( )2

-------------
K1

K2

------⎝ ⎠
⎛ ⎞

2

A– 1 K1sin l1 C1 hsin K1l1+( ) A– 2 K2sin l1 B2– K2cos l1 C2 hK2sin l1 D2 hcos K2l1+ +=

EI( )1Y1

′′′

l1( ) EI( )2Y2

′′′

l1( )  ⇒=

EI( )1

EI( )2

-------------
K1

K2

------⎝ ⎠
⎛ ⎞

3

A– 1 K1cos l1 C1 hcos K1l1+( ) A– 2 K2cos l1 B2– K2sin l1 C2 hK2cos l1 D2 hsin K2l1+ +=

Y2 l2( ) Y3 l2( )=  ⇒ A2 K2sin l2 B2 K2cos l2 C2 hK2sin l2 D2 hcos K2l2+ + +

A= 3 K1l2sin B3 K1cos l2 C3 hK1l2sin D3 hK1cos l2+ + +
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(22)

(23)

(24)

Eq. (15) through Eq. (24) can be rewritten in matrix form as

(25a)

where  and sub-matrices aij (i, j = 1, 2,

3) are

(25b)

(25c)

(25d)

(25e)

(25f)

A2 K2cos l2 B2– K2sin l2 C2 hK2cos l2 D2 hsin K2l2+ +

Y2

′

l2( ) Y3

′

l2( )=  
K1

K2

------ A3 K1cos l2 B3– K1sin l2 C3 hK1cos l2 D3 hsin K1l2+ +( )=⇒

EI( )2Y2

′′

l2( ) EI( )1Y3

′′

l2( )  ⇒= A– 2 K2sin l2 B2– K2cos l2 C2 hK2sin l2 D2 hcos K2l2+ +

EI( )1

EI( )2

-------------
K1

K2

------⎝ ⎠
⎛ ⎞

2

A– 3 K1sin l2 B3– K1cos l2 C3 hK1sin l2 D3 hcos K1l2+ +( )=

EI( )2Y2

′′′

l2( ) EI( )1Y3

′′′

l2( )  ⇒= A– 2 K2cos l2 B2 K2sin l2 C2 hK2cos l2 D2 hsin K2l2+ + +

EI( )1

EI( )2

-------------
K1

K2

------⎝ ⎠
⎛ ⎞

3

A– 3 K1cos l2 B3 K1sin l2 C3 hK1cos l2 D3 hsin K1l2+ + +( )=

a11 a12 a13

a21 a22 a23

a31 a32 a33

b1

b2

b3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

0=

b1 A1 C1( )T= b2 A2 B2 C2 D2( )T= b3 A3 B3 C3 D3( )T=, ,

a11

K1sin l1 hK1sin l1

r K1cos l1 r hK1cos l1

=

a12

K2sin l1– K2cos l1– hK2sin l1– hK2cos l1–

K2cos l1– K2sin l1 hK2cos l1– hK2sin l1–
=

a13

0 0 0 0

0 0 0 0
=

a21

sr
2

K1sin l1– sr
2

hK1sin l1

sr
3

– K1cos l1 sr
3

hK1cos l1

0 0

0 0

=

a22

K2sin l1 K2cos l1 hK2sin l1– hK2cos l1–

K2cos l1 K2sin– l1 hK2cos l1– hK2sin l1–

K2sin l2 K2cos l2 hK2sin l2 hK2cos l2

K2cos l2 K2sin– l2 hK2cos l2 hK2sin l2

=
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(25g)

(25h)

(25i)

(25j)

In Eq. (25b) through Eq. (25j)

(25k)

(25l)

For Eq. (25) to have nontrivial solutions, the determinant of its coefficient matrix should equal

zero. Denote

(26)

(27)

and define

(28)

(29)

a23

0 0 0 0

0 0 0 0

K1sin– l2 K1cos l2– hK1sin l2– hK1cos l2–

r K1cos l2– r K1sin l2 r hK1cos l2– r hK1sin l2–

=

a31

0 0

0 0

0 0

0 0

=

a32

K2sin– l2 K2cos l2– hK2sin l2 hK2cos l2

K2cos l2– K2sin l2 hK2cos l2 hK2sin l2

0 0 0 0

0 0 0 0

=

a33

sr
2

K1sin l2 sr
2

K1cos l2 sr
2

– hK1sin l2 sr
2

– hK1cos l2

sr
3

K1cos l2 sr
3

– K1sin l2 sr
3

– hK1cos l2 sr
3

– hK1sin l2

K1Lsin K1cos L 0 0

0 0 hK1sin L hK1cos L

=

s
EI( )1

EI( )2

-------------=

r
K1

K2

------
EI( )2M1

EI( )1M2

--------------------4= =

Rl

l1

L
---=

Rd

l2 l– 1

L
-----------=

a K2l1 K1L K1l2 K1l1 K2l2–+ +– K1L 2Rl 1 1
1

r
---–⎝ ⎠

⎛ ⎞Rd+–= =

b K2l1 K1L K1– l2 K1l1 K2l2–+ + K1L 1 1
1

r
---+⎝ ⎠

⎛ ⎞– Rd= =
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(30)

(31)

(32)

(33)

The determinant of the coefficient matrix of Eq. (25) can be obtained as

(34)

For a given damage, i.e., fixed values of Rl, Rd, s and r, Eq. (34) is a transcendental equation with

only one unknown K1L. This equation can be easily solved by numerical methods. After obtaining a

solution of K1L, the nth natural frequency can be calculated according to Eqs. (6) and (7)

(35)

For the case where there is no damage, the above equations degenerate to the well-known solution

of free vibration for simply-supported beams (see Appendix for details).

2.2 Mode shapes

When Eq. (34) is satisfied, an infinite number of solutions can be obtained from Eq. (25). To

obtain the nth mode shape, we can use A3 to represent all nonzero constants as follows:

c K– 2l1 K1L K1– l2 K1l1 K2l2+ + + K1L 1 1
1

r
---–⎝ ⎠

⎛ ⎞– Rd= =

d K– 2l1 K1L K1l2 K1l1 K2l2+ + +– K1L 2Rl 1 1
1

r
---+⎝ ⎠

⎛ ⎞Rd+–= =

e K– 1l2 K1l1 K1L+ + K1L 1 Rd–( )= =

f K1l2 K1l1 K1– L+ K1L 2Rl 1 R+ d–( )= =

1 r
2
s+( )

4

4r
2
s

2
1 r

2
+( )

2

–[ ] a hasinsin d hdsinsin+( ) 1 r
2
s+( )

2

2rs 1 r
2

+( )–[ ]
2

b hbsinsin–

1 r
2
s+( )

2

2rs 1 r
2

+( )+[ ]
2

c hcsinsin– 4 r
4
s
2

1–( )
2

e hesinsin f hfsinsin ecos hfcos fcos hecos–+–( )+

2rs r
2

1–( ) 1 r
2
s+( )

2

2rs 1 r
2

+( )–[ ]{ a hbsinsin bsin hasin hdsin–( ) dsin hbsin–+[ ]  + +

1 r
2
s+( )

2

2rs 1 r
2

+( )+[ ] a hcsinsin csin hasin hdsin–( ) dsin hcsin–+[ ] }

 r
4
s

2
1–( )

2

4r
2
s 1 r

4
s–( ) s 1–( )+[ ] a hdsinsin d hasinsin+( ) r

2
s 1–( )

4

4r
2
s

2
1 r

2
–( )

2

–[ ]–+

b hcsinsin c hbsinsin+( )

 r
2
s 1–( )

2

1 r
2
s+( )

2

2rs 1 r
2

+( )–[ ]{ acos  hcos b bcos– hcos a hcos d+( ) dcos  hcos b+[ ]  + +

1 r
2
s+( )

2

2rs 1 r
2

+( )+[ ] acos  hcos c ccos– hcos a hcos d+( ) dcos  hccos+[ ] }

 4rs r
2

1–( ) r
2
s 1–( )

2

bcos hccos ccos hcos b–( ) 0=+

fd
K1L( )n

2

2πL
2

----------------
EI( )1

M1

-------------=      n 1 2 3 …, , ,=,
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(36)

(37)

(38)

(39)

(40)

 (41)

(42)

(43)

(44)

where

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

A1 A3

sr
2

1+( )
2

∆1 sr
2

1–( )
2

∆5 s
2
r

4
1–( ) ∆2 ∆6+( )Θ+ +

4sr
2

K1l1sin
---------------------------------------------------------------------------------------------------------------------------=

C1 A3

s
2
r

4

1–( ) ∆1 ∆5+( ) sr
2

1–( )
2

∆2 sr
2

1+( )
2

∆6+ Θ+

4sr
2

hK1l1sin
---------------------------------------------------------------------------------------------------------------------------------=

A2

A3

2
----- sr

2
1+( ) Φ1 K2l2sin rΦ3 K2cos l2+( ) sr

2
1–( ) Φ2 K2l2sin rΦ4 K2cos l2+( )Θ–[ ]=

B2

A3

2
----- sr

2
1+( ) Φ1 K2cos l2 r– Φ3 K2sin l2( ) sr

2
1–( ) Φ2 K2cos l2 r– Φ4 K2sin l2( )Θ–[ ]=

C2

A3

2
----- sr

2
1–( ) Φ1 hK2l2sin r– Φ3 hK2cos l2( ) sr

2
1+( ) Φ2 hK2l2sin r– Φ4 hK2cos l2( )Θ–[ ]=

D2

A3

2
----- sr

2
1–( )– Φ1 hK2cos l2 r– Φ3 hK2l2sin( ) sr

2
1+( ) Φ2 hK2cos l2 r– Φ4 hK2l2sin( )Θ+[ ]=

B3 A3– tgK1L=

C3 A3Θ=

D3 A3Θ– hK1Ltan=

Φ1 K1l2sin tgK1L K1cos l2–=

Φ2 hK1l2sin hK1Ltan hK1cos l2–=

Φ3 K1cos l2 tgK1L K1l2sin+=

Φ4 hK1cos l2 hK1Ltan hK1l2sin–=

∆1 Φ1 K2sin l2 rΦ3 K2cos l2+( ) K2l1sin Φ1 K2cos l2 rΦ3 K2sin l2–( ) K2cos l1+=

∆2 Φ2 K2sin l2 rΦ4 K2cos l2+( )– K2l1sin Φ2 K2cos l2 rΦ4 K2sin l2–( )– K2cos l1=

∆3 Φ1 K2sin l2 rΦ3 K2cos l2+( ) K2cos l1 Φ1 K2cos l2 rΦ3 K2sin l2–( )– K2sin l1=

∆4 Φ2 K2sin l2 rΦ4 K2cos l2+( )– K2cos l1 Φ2 K2cos l2 rΦ4 K2sin l2–( ) K2sin l1+=

∆5 Φ1 hK2sin l2 r– Φ3 hK2cos l2( ) hK2l1sin Φ1 hK2cos l2 rΦ3 hK2sin l2–( )– hK2cos l1=

∆6 Φ2 hK2sin l2 r– Φ4 hK2cos l2( )– hK2l1sin Φ2 hK2cos l2 rΦ4 hK2sin l2–( ) hK2cos l1+=

∆7 Φ1 hK2sin l2 r– Φ3 hK2cos l2( ) hK2cos l1 Φ1 hK2cos l2 rΦ3 hK2sin l2–( )– hK2sin l1=

∆8 Φ2 hK2sin l2 r– Φ4 hK2cos l2( )– hK2cos l1 Φ2 hK2cos l2 rΦ4 hK2sin l2–( ) hK2cos l1+=

Θ
s

2
r

4
1–( ) ∆1 ∆5+( ) ∆3 ∆7+( )

hK1l1tan

r
---------------------–

sr
2

1–( )
2

∆4

hK1l1tan

r
--------------------- ∆2–⎝ ⎠

⎛ ⎞ sr
2

1+( )
2

∆8

hK1l1tan

r
--------------------- ∆6–⎝ ⎠

⎛ ⎞+

-------------------------------------------------------------------------------------------------------------------------------------------------=
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3. Influence of damage on modal properties

In this section, we shall check the validity of the above analytical solution for the natural

frequencies and mode shapes by comparing it with the finite element results. The influence of

damages on the two modal properties will be evaluated simultaneously. Then, based on the

analytical solution, some examples will be adopted to study the sensitivity of the MRA and

curvature modes to damage, and the influence of measurement errors.

3.1 Influence on natural frequencies

For the purpose of validating the analytical solution, we adopt a simply-supported beam with a

square cross-section. Suppose the beam length is L = 100 m, the dimension of the beam cross-

section is 1 × 1 m, Young’s modulus E = 2.1 × 1011 Pa and the beam density is ρ = 7000 kg/m3. The

damage is defined as a transverse double-sided slot of width l2 − l1 and height 1 − h, located a

distance l1 from the left support (see Fig. 2). 

For this damaged beam, , . Thus, Eq. (34) becomes

(58)

According to Eq. (28) through Eq. (33), the variables in the above equation can be written as:

s
EI( )1

EI( )2

-------------
1

h
3

-----= = r
EI( )2M1

EI( )1M2

--------------------4 h= =

1
1

h
2

-----+⎝ ⎠
⎛ ⎞ 4 4

h
5

----- 1 h+( )2
– a hasinsin d hdsinsin+( ) 1

1

h
2

-----+⎝ ⎠
⎛ ⎞ 2

2
h

h
3

------- 1 h+( )–
2

b hbsinsin–

1
1

h
2

-----+⎝ ⎠
⎛ ⎞

2

2
h

h
3

------- 1 h+( )+
2

c hcsinsin– 4
1

h
4

----- 1–⎝ ⎠
⎛ ⎞

2

e hesinsin f hfsinsin ecos hfcos fcos hecos–+–( )[ ]+ +

2
h

h
3

------- h 1–( ) 1
1

h
2

-----+⎝ ⎠
⎛ ⎞ 2

2
h

h
3

------- 1 h+( )–
⎩
⎨
⎧

a hbsinsin bsin hasin hdsin–( ) dsin hbsin–+[ ]  + +

1
1

h
2

-----+⎝ ⎠
⎛ ⎞ 2

2
h

h
3

------- 1 h+( )+ a hcsinsin csin hasin hdsin–( ) dsin hcsin–+[ ]
⎭
⎬
⎫

 
1

h
4

----- 1–⎝ ⎠
⎛ ⎞ 2 4

h
2

----- 1
1

h
---–⎝ ⎠

⎛ ⎞ 1

h
3

----- 1–⎝ ⎠
⎛ ⎞+ a hdsinsin d hasinsin+( )

1

h
2

----- 1–⎝ ⎠
⎛ ⎞ 4 4

h
5

-----– 1 h–( )2
–+

b hcsinsin c hbsinsin+( )

 
1

h
2

----- 1–⎝ ⎠
⎛ ⎞ 2

1
1

h
2

-----+⎝ ⎠
⎛ ⎞ 2

2–
h

h
3

------- 1 h+( )
⎩
⎨
⎧

acos  hcos b bcos– hcos a hcos d+( ) dcos  hcos b+[ ]  + +

1
1

h
2

-----+⎝ ⎠
⎛ ⎞ 2

2
h

h
3

------- 1 h+( )+ acos  hcos c ccos– hcos a hcos d+( ) dcos  hccos+[ ] }
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(59)

(60)

(61)

(62)

(63)

 (64)

It is clear that for a given damage, i.e., fixed values of Rl, Rd and h, Eq. (58) is a transcendental

equation with only one unknown K1L. This equation can be easily solved by plotting the curve and

locating the zero point.

After obtaining a solution of K1L, the natural frequency can be calculated according to Eq. (35):

,     n = 1, 2, 3,… (65)

a K1L 2Rl 1 1
1

h
-------–⎝ ⎠
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1 1
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e
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2π100
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7000 12×
------------------------

K1L( )n
2

2π 40
----------------- HZ( )= = =

Fig. 2 Damaged segment with transverse double-sided slot in width
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The natural frequencies of the intact beam are (Humar 1990)

,     n = 1, 2, 3,… (66)

To check the validity of the analytical solution, the results obtained from Eq. (65) will be

compared with those from the ANSYS software. Letting Rl = 0.3, Rd = 0.05 and h = 0.5 m, we use

200 two-node plane beam elements of length 0.05 m in the finite element model.

Table 1 shows the natural frequencies of the first ten modes. The analytical and FEM solutions

agree well with each other. In addition, we observe that the natural frequencies do decrease due to

damage. However, despite that the damage is large (for a real structure, the slot can be easily

identified by naked eyes), the natural frequencies decrease by less than 3%. This minor difference

can easily be masked by measurement errors in the modal test of practical structures, such as

bridges or offshore platforms.

If we fix Rl = 0.3 and change only Rd and h, we can calculate the K1L value for the first mode as

in Table 2. It is observed that: (1) with a fixed Rl, the value of K1L decreases with h; (2) for h

greater than 0.5 m, the value of K1L decreases with Rd; and (3) for h less than 0.5 m, the value of

K1L first decreases upon the increase of Rd, and then increases when Rd is sufficiently large. This is

due to the fact that the natural frequency depends on the structural stiffness and mass, and that the

stiffness is proportional to h3, while the mass is proportional to h and Rd. The implication from

Table 2 is that noticeable changes in the natural frequency can be observed only if the damage is

sufficiently large.

From the above discussion, it is clear that the natural frequencies do not change so much when a

damage exists on the beam. If the damage changes the support condition, it can noticeably change

the natural frequencies (Chondros and Dimarogonas 1980), but such a case is not covered by the

present analytical solution. Moreover, the damage considered in this example is not an ideal crack

but a notch, thereby excluding simulation of the singularity effect. However, this does not necessarily

mean that small internal damages can substantially change the natural frequency, because even for

ideal cracks, the change of natural frequency is regarded proportional to the square of the crack

depth ratio, which is insignificant for most practical damage identification needs (Dimarogonas 1996). 

3.2 Influence on mode shapes

After obtaining the value for K1L, mode shapes can be calculated according to Eqs. (8) through

f
nπ( )2

2πL
2

-------------
EI( )1

M1

-------------
nπ( )2

2π100
2

------------------
2.1 10

11×
7000 12×
------------------------

nπ( )2

2π 40
----------------- HZ( )= = =

Table 1 Comparison of natural frequencies (in Hertz)

Mode 1 2 3 4 5

Intact 0.248 0.993 2.235 3.974 6.209

Damaged FEM 0.243 0.967 2.229 3.928 6.036

Theory 0.243 0.967 2.230 3.930 6.042

Mode 6 7 8 9 10

Intact 8.941 12.170 15.895 20.118 24.836

Damaged FEM 8.860 12.103 15.477 19.786 24.731

Theory 8.873 12.127 15.518 19.852 24.831
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(10) and Eqs. (36) through (44). For the same simply-supported beam as in Section 3.1, with Rl =

0.3, Rd = 0.05 and h = 0.5 m, we shall compare the analytical mode shapes obtained with the finite

element results (with 200 two-node plane beam elements) and mode shapes of the intact beam

( , Humar 1990) in Fig. 3, in which all the mode shapes areY x( ) nπ

L
------x⎝ ⎠
⎛ ⎞sin 0 x L n,≤ ≤ 1 2 …, ,=,=

Table 2 K1L of the first mode for different damages (Rl = 0.3)

Rd

h
0.005 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05 1.139 0.962 0.558 0.495 0.483 0.496 0.522 0.543 0.547

0.1 1.865 1.594 0.933 0.824 0.797 0.806 0.838 0.862 0.867

0.2 2.697 2.449 1.543 1.355 1.295 1.289 1.309 1.328 1.332

0.3 2.980 2.849 2.029 1.789 1.697 1.669 1.674 1.684 1.686

0.4 3.073 3.009 2.401 2.146 2.034 1.987 1.978 1.981 1.982

0.5 3.109 3.078 2.672 2.440 2.319 2.261 2.240 2.236 2.236

0.6 3.125 3.110 2.857 2.671 2.559 2.496 2.469 2.463 2.462

0.7 3.133 3.125 2.980 2.848 2.756 2.700 2.672 2.663 2.661

0.8 3.138 3.133 3.060 2.979 2.917 2.873 2.850 2.842 2.841

0.9 3.140 3.138 3.110 3.074 3.044 3.019 3.007 3.001 2.999

1.0 π π π π π π π π π

Fig. 3 Comparison of mode shapes
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normalized to unity. As can be seen, the mode shapes from the analytical solution are almost the

same as those from the finite element analysis, and that the mode shapes of the damaged beam

differ slightly from the intact ones.

In modal testing, the measurement error εi of the ith mode shape is defined as

     (67)

where  and  are the normalized true and measured values of the ith mode shape at point j,

respectively, and N is the total number of measurement points. We can use Eq. (67) to indicate the

difference between the damaged and intact mode shapes, as listed in Table 3 for the first ten modes.

Because all the differences are less than 1%, it is generally difficult in practice to judge whether

these are due to damage or measurement errors.

Another method for comparing two sets of mode shapes is the Modal Assurance Criterion (MAC)

proposed by Allemang and Brown (1982). To compare the damaged and intact mode shapes, the

MAC can be defined as

     (68)

where  and  are the normalized values of the ith damaged and intact mode shape at point j,

respectively. For Rl = 0.3, Rd = 0.05 and h = 0.5 m, all the MAC values are greater than 0.98 (see

Table 4). Therefore, it is not feasible to use the MAC values as a method for distinguishing between

the damaged and intact mode shapes.

To locate the damage in a beam, Lieven and Ewins (1988) proposed the Coordinate Modal

Assurance Criterion (COMAC), defined as

     (69)
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Table 3 Difference between damaged and intact mode shapes (%)

Mode 1 2 3 4 5 6 7 8 9 10

FEM 0.020 0.040 0.021 0.200 0.423 0.258 0.211 0.102 0.849 0.018

Theory 0.020 0.040 0.021 0.200 0.421 0.256 0.210 0.101 0.840 0.025



166 Zhihai Xiang and Yao Zhang

In Fig. 4, the COMAC values computed for the analytical and finite element mode shapes are

plotted for Rl = 0.3, Rd = 0.05 and h = 0.5 m. Clearly, this figure offers no new message for locating

the damage.

From the above discussion, we can see that the mode shapes do not change so much when a

damage exists on the beam. However, if the support condition was changed by a damage, a

noticeable change in the mode shapes can be observed (Chondros and Dimarogonas 1980). Such a

case was not covered by the present analytical solution.

3.3 Influence on the MRA

In Sections 3.1 and 3.2, we concluded that the natural frequencies and mode shapes are not very

sensitive to damages not associated with the support conditions. Such an observation is consistent

with the experiences of many researchers, who believe that a change of the local stiffness or mass

due to damages do not have much effect on the global behaviors of the structure. Therefore, to find

properties that are sensitive to damages, we should investigate some parameters that are

representative of the local information.

One way to obtain local information is to take the derivative of the mode shapes over the spatial

coordinate x. We realize that the first derivative of Eq. (8) through Eq. (10) explicitly contains

damage information, because the parameters K1 and K2 will be extracted from the trigonometric

functions by differentiation and the ratio of K1 over K2, denoted as r (refer to Eq. (25l)) relates

directly to the severity of damage.

Fig. 4 COMAC values of damaged mode shapes

Table 4 MAC values: damaged and intact mode shapes (Rl = 0.3, Rd = 0.05, h = 0.5 m)

Mode 1 2 3 4 5

FEM 0.999804 0.999601 0.999791 0.997997 0.995780

Theory 0.999804 0.999601 0.999792 0.998000 0.995790

Mode 6 7 8 9 10

FEM 0.997426 0.997891 0.989835 0.991532 0.999824

Theory 0.997438 0.997906 0.989907 0.991622 0.999748
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For the same simply-supported beam as in Section 3.1, we compare the normalized MRA of the

damaged beam (with Rl = 0.3, Rd = 0.05 and h = 0.5 m) and the intact beam. Both the analytical and

finite element (200 two-node plane beam elements) results are plotted in Fig. 5, from which we can

clearly observe the discontinuity on the curve of the damaged beam at the point of damage.

By replacing the mode shape with the MRA in Eq. (68), one can obtain the corresponding MAC

values, as listed in Table 5 for the first ten modes. As can be seen, all the values are very high and

not indicative of the existence of damage. Evidently, the MAC value is not a good index of damage

because it is a global parameter.

Fig. 6(a) depicts the normalized COMAC value of the MRA calculated at 201 points. The pulse

of the curve clearly indicates the location of damage. In addition, to check the sensitivity of the

MRA to damage, the normalized COMAC values with 16 and 11 points are plotted in Fig. 6(b) and

6(c), respectively. We observe that even with fewer points, it can still point out correctly the damage

location. Of interest is that for the case of 16 points (see Fig. 6(b)), where no point is located at the

Fig. 5 Comparison of the MRA

Table 5 MAC values: damaged and intact MRA (Rl = 0.3, Rd = 0.05, h = 0.5 m)

Mode 1 2 3 4 5

FEM 0.998822 0.997688 0.999449 0.995425 0.990273

Theory 0.998822 0.997688 0.999449 0.995430 0.990287

Mode 6 7 8 9 10

FEM 0.995657 0.996530 0.981448 0.987683 0.999752

Theory 0.995671 0.996549 0.981544 0.987749 0.998484
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damaged segment, the curve can still approximately show the existence of the damage location

through its pulse.

However, noise free measurements never exist in practical engineering. Using an equation similar

to Eq. (67), the absolute measurement error at mode i can be estimated as

(70)

Thus the COMAC value of the polluted MRA can be expressed as:

∆i
εi

N
----=

Fig. 6 COMAC values of damaged MRA free of noise (Rl = 0.3, Rd = 0.05, h = 0.5 m)
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     (71)

Supposing the measurement error is 5% for all modes, the corresponding COMAC values are

depicted in Fig. 7. It is clear that the damage location can hardly be identified from these curves.
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Fig. 7 COMAC values of polluted damaged MRA (Rl = 0.3, Rd = 0.05, h = 0.5 m)
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To further check the sensitivity of the MRA to damage, the analytical solution of a simply-

supported beam with smaller damage (Rl = 0.3, Rd = 0.05 and h = 0.9 m) is illustrated in the

following. Fig. 8 shows the COMAC values free of measurement errors. We observe that although

the COMAC value is very high, the damage location can be directly identified from the curve if

some points are located in the damaged region. The curves in Fig. 9 are COMAC values plus a

pollution of 5% measurement errors; it is clear that the damage information is masked by the noise.

Fig. 8 COMAC values of damaged MRA free of noise (Rl = 0.3, Rd = 0.05, h = 0.9 m)
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3.4 Influence on curvature modes

Curvature modes are reported to be more sensitive to damages (Pandey et al. 1991). As a matter

of fact, curvature modes are the second derivatives of the mode shapes. By taking the second

derivatives to Eq. (8) through Eq. (10), the squares of K1 and K2 will be extracted from the

Fig. 9 COMAC values of polluted damaged MRA (Rl = 0.3, Rd = 0.05, h = 0.9 m)
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trigonometric functions. The ratio of the square of K1 to that of K2 is r2, which is more sensitive to

damage than the parameter r itself. Therefore, curvature modes can be more sensitive to damages

than the MRA. Such a conclusion is confirmed in the result of Fig. 10.

4. Conclusions

This paper presents an analytical solution for the modal properties of simply-supported plane

Euler-Bernoulli beams with a single damage. Based on this solution, we discuss extensively the

sensitivities of the natural frequencies, mode shapes, MRA and curvature modes to damage. We

observe that the natural frequencies and mode shapes are not very sensitive to internal damages

while the MRA and especially the curvature modes are more sensitive to damages. These

observations are consistent with the experiences of many researchers. The merit of this paper is to

provide an analytical proof for all these observations. Based on this work, it is concluded that

successful damage detection methods should be based on damage-sensitive dynamic properties

which can properly reveal some local information.

Because curvature modes involve the second derivative of mode shapes, they serve as a better

choice for damage detection than the MRA. In practice, however, the MRA can be easily obtained

by using high precision dynamic inclinometers, while the curvature modes are often calculated from

Fig. 10 Comparison of the curvature modes
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the mode shapes by central difference approximation, which usually requires the installation of more

sensors on the structure. No matter which dynamic property is adopted, further work is still needed

to filter out measurement errors so as to enhance the reliability of damage detection (Li et al. 2008).
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Appendix

When there is no damage (K1 = K2 = K and s = r = 1) Eq. (34) becomes

(A1)

Because , it requires , this leads to the well-known solution for

natural frequencies of simply-supported beams without damage (Humar 1990)

,     (A2)

In this case, the mode shapes degenerate to those in the intact state. The proof follows

Adding Eqs. (17) and (19) gives

(A3)

Subtracting Eq. (19) from Eq. (17) gives

(A4)

Adding Eqs. (18) and (20) gives

(A5)

Subtracting Eq. (20) from Eq. (18) gives

(A6)

Eq. (A3) through Eq. (A6) can be written in matrix form as

(A7)

Because the determinant of the coefficient matrix of Eq. (A7) equals one, it has only the zero

solution, i.e., A1 = A2, C1 = C2, B2 = 0 and D2 = 0.

Similarly, subtracting Eq. (23) from Eq. (21) gives:

(A8)

KL( )sin h KL( )sin 0=

h KL( )sin 0≠ KL( )sin 0=

ωn
nπ( )2

L
2

-------------
EI

M
------= n 1 2 3 …, , ,=

C1 C2–( ) hKl1sin D2 hcos Kl1– 0=

A1 A2–( ) Kl1sin B2 Kl1cos– 0=

C1 C2–( ) hcos Kl1 D2 hKl1sin– 0=

A1 A2–( ) Kl1cos B2 Kl1sin+ 0=

Kl1sin Kl1cos– 0 0

Kl1cos Kl1sin 0 0

0 0 hKl1sin hcos Kl1–

0 0 hcos Kl1 hKl1sin–

A1 A2–

B2

C1 C2–

D2⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

0=

C2 C3–( ) hKl2sin D2 D3–( ) hcos Kl2+ 0=



Changes of modal properties of simply-supported plane beams due to damages 175

Adding Eqs. (21) and (23) gives

(A9)

Adding Eqs. (22) and (24) gives

(A10)

Subtracting Eq. (24) from Eq. (22) gives

(A11)

Eq. (A8) through Eq. (A11) can be written in matrix form as

(A12)

Because the determinant of the coefficient matrix of Eq. (A12) equals one, it has only the zero

solution, i.e., A2 = A3, B2 = B3, C2 = C3 and D2 = D3.
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0 0 hKlsin hcos Kl
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