
Interaction and Multiscale Mechanics, Vol. 1, No. 3 (2008) 381-396 381

Wind-induced aerostatic instability of cable-supported 
bridges by a two-stage geometric nonlinear analysis
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Abstract. The aerostatic instability of cable-supported bridges is studied, with emphasis placed on
modeling of the geometric nonlinear effects of various components of cable-supported bridges. Two-node
catenary cable elements, which are more rational than truss elements, are adopted for simulating cables
with large or small sags. Aerostatic loads are expressed in terms of the mean drag, lift and pitching
moment coefficients. The geometric nonlinear analysis is performed with the dead loads and wind loads
applied in two stages. The critical wind velocity for aerostatic instability is obtained as the condition
when the pitching angle of the bridge deck becomes unbounded. Unlike those existing in the literature,
each intermediate step of the incremental-iterative procedure is clearly given and interpreted. As such, the
solutions obtained for the bridges are believed to be more rational than existing ones. Comparisons and
discussions are given for the examples studied.

Keywords: catenary cable; critical wind load; geometric nonlinear analysis; aerostatic instability; cable-
supported bridge.

1. Introduction

The collapse of the Tacoma Narrows Bridge in 1940 evoked intensive research on the wind-

induced instability of cable-supported bridges. The historical development and theories for the wind-

induced effects on the stability of cable-supported bridges were well covered in the books by Simiu

and Scanlan (1986), and Xiang (2005), wherein the wind-structure interaction is recognized as a key

factor to the instability of long-span cable-supported bridges. The wind-induced instability can be

categorized into the aerostatic instability (e.g., torsional divergence, torsional-flexural buckling) and

aerodynamic instability (e.g., vortex shedding, galloping, flutter, buffeting). For each category of

instability, a critical wind velocity can be solved of the bridge, which should not be exceeded during

the service life of a properly designed bridge. 
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Three components of static wind loads may occur on a bridge, i.e., the drag force, lift force and

pitching moment, all of which are functions of the wind angle of attack. Whenever the critical wind

speed is reached, static instability may occur in the form of torsional divergence or lateral-torsional

buckling. The torsional divergence is characterized by a monotonic increase of the twist angle of the

bridge deck to failure, and the lateral-torsional buckling by a combined flexural deformation and

twist of the bridge deck, accompanied by a drop in the effective stiffness of the structure to zero. 

The torsional divergence under the pitching moment has been studied by Simiu and Scanlan

(1986). The lateral-torsional buckling was demonstrated by Hirai et al. (1967) to have occurred on a

suspension bridge under the static wind loads in a wind tunnel test. By taking into account the

effects of wind loads and geometric nonlinearity, a finite element approach was presented by

Boonyapinyo et al. (1994) to calculate the critical wind velocity for the lateral-torsional buckling of

cable-stayed bridges, using the beam element derived by Yang and McGuire (1986), in which the

warping effect of the member cross sections was neglected. Further research along these lines

includes those by Xiang et al. (2005), Cheng et al. (2000), and Zhang (2006).

This paper is focused on an accurate modeling of the geometric nonlinear effects of various

components of cable-supported bridges and on an explicit expression of all the intermediate steps,

along with physical meanings given, involved in the incremental-iterative analysis. The cables will

be modeled by the two-node catenary cable elements, rather than the truss elements, which can be

uniquely determined for given values of pretension force and unstressed length. The girders and

pylons will be modeled by the beam elements with the instability effect of all kinds of actions taken

into account. 

To account for the effect of dead loads and wind loads, a two-stage geometric nonlinear analysis

is performed. In the first stage of analysis, the dead loads are allowed to increase from zero to the

full values. The effect of instability associated with the internal force distribution under the dead

loads is represented by a geometric stiffness matrix. In the second stage of analysis, the dead loads

are kept constant (so is the corresponding geometric stiffness matrix), while the wind loads are

allowed to increase in an incremental manner. Again, the instability associated with the internal

force distribution corresponding to the wind loads is represented by another geometric stiffness

matrix. Considering the fact that the geometric stiffness matrix is a linear function of the member

actions, the gross instability effects on the bridge due to both types of loadings can be represented

by superposing the aforementioned two geometric stiffness matrices. 

The generalized displacement control (GDC) method proposed by Yang and Shieh (1990) is

adopted to solve the critical wind velocity for aerostatic instability, by which each term involved in

the incremental-iterative procedure is physically explained. The critical wind velocity for aerostatic

instability is obtained as the condition of divergence or when the pitching angle of the bridge deck

becomes unbounded. The reliability of the analysis programs developed will be demonstrated in the

analysis of the Kao-Ping-Hsi Bridge with a main span of 330 m, located in southern Taiwan, and

another cable-stay bridge with a main span of 1000 m. Comparison will be made with existing

results with discussions given.

2. Beam, truss and two-node catenary cable elements

Both the beam and truss elements adopted are those derived by Yang and Kuo (1994) considering

the instability effects of all kinds of member actions. The stiffness matrix [k] of the 12-degree-of-
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freedom beam element is composed of two components, i.e., [k] = [ke] + [kg], where [ke] is the

elastic stiffness matrix and [kg] the geometric stiffness matrix, including the contribution of induced

moment matrix given in Yang and Kuo (1994).

The truss element is only used for comparison with the two-node catenary cable element. As

conventional, the equivalent modulus of elasticity used for the straight two-node truss element is

(1)

where E denotes the elastic modulus, A the cross-sectional area, l the horizontal projected length, wc

the weight per unit length, and T the tension force of the cable. For cables under the self weight only,

the sag can be quite large. For cables subjected to large pretension, in addition to the self-weight, the

sag may be quite small. The aforementioned equivalent truss element approach is not suitable for

simulating cables in the natural shape, i.e., with zero pretension. For instance, by letting the pretension T

equal to 0, one finds that the equivalent modulus Eeq also equals zero, which is physically not justified. 

The two-node catenary cable element shown in Fig. 1 is adopted, by which both the self weight

and pretension effects are taken into account. It is good for simulating cables with both large and

small pretensions, or with small and large sags, respectively (Yang and Tsay 2007). This is an

improvement over the equivalent truss element conventionally used in the analysis of cable-

supported structures. The stiffness matrix [kc] of the cable element can be obtained directly as the

inverse of the flexibility matrix as follows:

(2)

where

(3)

The coefficients fij in the flexibility matrix [F] are obtained as the differentials of the horizontal

and vertical projection lengths l, h of the cable, which are functions of the horizontal and vertical

tension components H and V, i.e., l = f (H, V), h = g (H, V), namely,

Eeq

E

1
wclAE

12T
 3

----------------+

-------------------------=

kc[ ]
6 6×

k[ ] k[ ]–

k[ ]– k[ ]
=

k[ ] F[ ]3 3×

1–

 f11 f12 0

 f21 f22 0

0 0 f33

1–

= =

Fig. 1 Three-dimensional catenary cable element
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(4a)

(4b)

(4c)

(4d)

(4e)

Here, q = W / L0, H is the horizontal component of the tension (which is constant everywhere

since no axial loads are applied on the cable), V is the vertical reaction of the support, W the self

weight of the cable, and L0 the unstressed length of the cable (which is uniquely determined for a

given pretension, as will be presented below).

3. Unstressed length of centenary cable 

Unlike the truss element that requires the input of pretension force for structural analysis, the

catenary cable element requires the input of the unstressed length L0 of the cable instead. However,

the unstressed length L0 of each cable can be only determined by a trial-and-error procedure, as

outlined below, prior to execution of structural analysis. First of all, the reaction forces H, V existing

at the ends of each cable are obtained as the components of the pretension force T. The unstressed

length L0 can be related to the horizontal projection l of the cable as (Yang and Tsay 2007):

(5)

We shall use this equation to compute the unstressed length L0 of the cable. Here, the modulus of

elasticity E, cross-sectional area A, and self weight q of the cable are all assumed to be known.

Given the nodal coordinates of the two ends of the cable, both the horizontal projection l and the

distance between the two end points can be computed. The latter will be used as the first trial value

for the unstressed length L0. By substituting this trial value into Eq. (5), an improved horizontal

projection length l* can be computed. Let ∆l denote the difference between the given and computed

projection lengths, i.e.,

∆l = l − l* (6)

If the difference ∆l is less than a preset tolerance, then the unstressed length L0 used is the

solution desired. Otherwise, depending on whether ∆l is positive or negative, a new trial value of
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unstressed length L0 larger or smaller than the previous trial value should be used, and the

procedure should be repeated. Based on the above procedure, the unstressed length L0 can be

obtained for a cable with given pretension force T.

4. Dead load analysis

An aerostatic nonlinear analysis of cable-supported bridges consists of two stages. In the first

stage, the bridge is subjected only to the dead loads, and in the second stage it is subjected to the

wind loads. In this study, both stages will be solved in an incremental-iterative manner using the

method proposed by Yang and Shieh (1990). 

In order to consider the effect of geometry change, the dead loads will be assumed to be applied

in an incremental way. The following are the equations of equilibrium for the bridge under the dead

loads written specifically for the jth iteration of the ith increment:

(7)

where  is the stiffness matrix of the system,  the reference dead loads,  the load

increment parameter,  the unbalanced forces, and  the displacement increments

generated during the jth iterative step. The stiffness matrix [K] in Eq. (7) is composed of two parts,

the elastic stiffness matrix [Ke] and the geometric stiffness matrix [Kg], i.e., [K] = [Ke] + [Kg]. The

elastic stiffness matrix [Ke] is assembled by looping over all the beam elements (for the girder and

pylons) and cable elements, while the geometric stiffness matrix [Kg], which is a linear function of

the member actions, is assembled by looping over all the beam elements only, since the cable

elements are always in tension and have nothing to do with geometric instability. 

The unbalanced forces  are computed as the differences between the applied loads 

and resistant forces  existing at the end of the last iterative step,

(8)

where for j = 1, , , and , with l

indicating the last iteration of the last (i – 1) increment. For convenience, the structural equations in

Eq. (7) can be decomposed into two parts,

(9a)

(9b)

along with the displacement increments  given as 

(10)

By the generalized displacement control (GDC) method (Yang and Shieh 1990), the load

increment  for the first iteration (i.e. for j = 1) of the ith incremental step is

(11)
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generalized stiffness parameter (GSP) is defined as

(12)

For the remaining iterations, i.e., for ,

(13)

The accumulated or total load parameter up to the jth iteration of the ith incremental step is

(14)

where for j = 1, . Main features of the GDC method are as follows: First, the load

increments are adjusted as a function of the structural stiffness, as indicated by Eq. (11). Second,

iterations are not performed at constant loads, i.e., the load parameter  is allowed to vary

according to Eq. (13), to circumvent the numerical difficulty associated with iterations around the

limit points. The GSP is a parameter related to the change in stiffness of the structure. It starts with

GSP = 1 for the first increment (i = 1) and becomes negative only for the increments “immediately

after” the limit points, while for the other increments, it is always positive. Such a feature serves as

a good indicator for reversing the loading direction when passing a limit point. 

The element displacements  can be computed once the structural displacement increments

 are made available. With this, the element force increments  can be computed by the

concept of natural deformations. By superimposing the initial element forces  existing prior

to the jth iteration with the force increments , the total element forces  acting at the end

of the jth iteration can be computed as

(15)

where the initial nodal forces  are directly included since they are treated as forces acting

along the axes of the deformed configuration. This is based on the rigid body rule, which requires

the initial forces acting on a body in equilibrium to rotate following the rigid rotation of the body

with no change in magnitude, so as to preserve the equilibrium of the body in the deformed

configuration (Yang and Chiou 1987, Yang et al. 2007). 

Meanwhile, one can proceed to update the geometry, i.e., the nodal coordinates, element axes and

lengths, of the structure using the displacement increments . Based on the updated geometry

and element forces  of the structure, the total resistant forces  acting at each node of the

structure for the jth iteration can be computed. It follows that the unbalanced forces  existing

at the end of the jth iteration are 

(16)

If the unbalanced forces  are greater than preset tolerance using proper definitions, then

another iteration starting with the solution of Eq. (9) by setting j = j + 1 should be repeated. In this
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connection, the elastic stiffness matrix [Ke] should be updated to reflect the change in element

lengths, and the geometric stiffness matrix [Kg] should be updated to reflect the change in element

forces . Once the convergent solution is obtained for the current incremental step, one can set

i = i + 1 and proceed to the next incremental step beginning with Eq. (9).

5. Wind load analysis

The static wind loads are displacement-dependent in that they will cause deformations on the

bridge, and will also be affected by the change in the angle of inclination of the bridge deck due to

deformations. The static wind loads, i.e., drag D, lift L, and pitching moment M, per unit length of

the span of the bridge can be related to the coefficients CD, CL, CM, respectively, as functions of the

wind angle of attack, that is, 

(17a)

(17b)

(17c)

where ρ is the air density, U the mean wind velocity, B the bridge deck width, and Hd the projected

height of the bridge deck against the wind flow (see Fig. 2). Conventionally, the coefficients CD, CL,

CM obtained from the wind tunnel test have been expressed in the local wind axes. The wind forces

can be transformed to the global axes of the bridge as follows (Boonyapinyo et al. 1994): 

(18a)

(18b)

(18c)

fj
 i{ }

D
1

2
---ρU

2
HdCD=

L
1

2
---ρU

2
BCL=

M
1

2
---ρU

2
B

2
CM=

Fy
1

2
---ρUr

2
BCy=

Fz
1

2
---ρUr

2
HdCz=

Mx
1

2
---ρUr

2
B

2
Cx=

Fig. 2 Aerostatic wind loads acting on the deck and related axes



388 Y. B. Yang and Jiunn-Yin Tsay

where

(19a)

(19b)

(19c)

and

(20) 

The wind loads Fy, Fz, Mx and the coefficients Cy, Cz, Ct should be interpreted as those defined in

the global axes, Ur is the relative wind velocity in the global axes, α0 is the initial angle of attack,

i.e., the angle between the wind direction and the bridge deck line after the dead load analysis, as

shown in Fig. 2, and α is the effective wind angle of attack, which is equal to α0 plus the torsional

displacement θ of the deck. 

After the first stage of analysis, the internal resistant forces, denoted as , corresponding to

the dead loads, denoted as , was developed on the bridge. The effect of instability caused by

such internal forces  on the bridge is represented by the geometric stiffness matrix ,

where the subscript D signifies the dead loads. In the second stage of analysis involving the wind

loads, the geometric stiffness matrix  caused by the dead loads is regarded as the initial

stiffness matrix. The wind loads will induce additional displacements and internal forces on the

bridge. The additional displacements will cause further change in geometry of the bridge, for which

the elastic stiffness matrix [Ke] has to be updated accordingly. The additional internal forces will

add potential of instability to the bridge, which can be represented by including another geometric

stiffness matrix  as a function of the additional internal forces.

One particular problem with the wind loads analysis is that for a given wind velocity U, the wind

loads Fx, Fz Mx calculated from Eq. (18) are functions of the coefficients Cy, Cz, Ct, which in turn

are functions of the effective angle α of attack of the wind. The effective angle α of attack is

known only when the deformed shape of the bridge under the specified wind loads is known. Such

a problem can be resolved by the incremental-iterative procedure described below. First, we shall

assume a wind velocity increment ∆U for each increment and set the effective angle α of attack

equal to the initial angle α0 for starting. In the iterative process, this angle is updated to reflect the

change in the twist angle of the bridge deck, so are the wind loads. 

As for the wind load analysis, we shall use m to denote an incremental step, and n an iterative

step within the incremental step. Let us increase the wind velocity U by an amount ∆U at each

incremental step. The total wind velocity at the mth incremental step is

(21)

Given the wind velocity U for the mth increment, the per-unit-length wind loads Fx, Fz Mx can be

calculated from Eq. (18) using the updated, deformed shape of the bridge obtained from the last

(n − 1) iteration. Let us use  to denote the total wind loads at the nth iteration of the mth

increment, based on the effective angle α of attack available. The wind load increment  for

the mth incremental step can be expressed as
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Accordingly, the governing equation for the nth iteration of the mth increment for the bridge

under the wind loads is

(23)

where  denotes the displacement increments generated at the nth iteration and  the

unbalanced forces. The structural stiffness matrix [K] in Eq. (23) should be computed as

(24)

where all quantities are those existing at the beginning of the nth iteration,  is the geometric

stiffness matrix associated with the dead loads, which is kept constant throughout the wind load

analysis. 

The elastic stiffness matrix  should be updated at each iteration to reflect the change in

geometry of the bridge, i.e., the change in length of each element. The geometric stiffness matrix

 is a linear function of the internal forces  caused by the wind loads. It should be

noted that the instability effects caused by the dead loads and wind loads are treated by different

geometric stiffness matrices, simply because they are linear functions of the member actions and

therefore their gross effect can be obtained simply by superposition of the separate effects (Yang

and Kuo 1994, Yang et al. 2007). 

The unbalanced forces  in Eq. (23) are computed as the difference between the total

applied loads  and the total resistant forces  of the bridge, that is,

 (25)

Here, the total applied loads  are composed of two parts,
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where  denotes the total dead loads and  the total wind loads increment. The total

internal forces  are

(27)
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caused by the wind loads. The following are the initial conditions for the terms appearing in Eqs.

(25)-(27): 
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increment can be decomposed into two parts as

(29a)

(29b)

together with the displacement increments  caused by the wind loads given as

(30)

Using the displacement increments , the element displacement increments  can be

computed. In accordance, the element force increments  can also be computed by the

concept of natural deformations. By superimposing the initial element forces  existing prior

to the nth iteration with the force increments , the total element forces  acting at the

end of the nth iteration can be computed as

(31)

Here,  are the internal forces caused by the dead loads, which remain constant throughout

the second stage of analysis, both  and initial nodal forces  are directly included in the

superposition according to the rigid body rule (Yang and Chiou 1987). 

Meanwhile, one can proceed to update the geometry, i.e., nodal coordinates, element axes and

lengths, of the structure using the displacement increments . As the effective angle α of

attack has been made available for the bridge deck, the wind coefficients Cy , Cz , and Ct can be

determined and the total wind loads  existing at the end of the nth iteration can be computed

accordingly. 

Based on the updated geometry and updated element forces  of the structure, the total

resistant forces  acting at each node of the structure can be computed for the end of the nth

iteration. It follows that the unbalanced forces  existing at the end of the nth iteration are 

(32)

If the unbalanced forces  are greater than preset tolerance by proper definitions, then

another iteration starting with the solution of Eq. (23) with n = n + 1 should be repeated. In this

connection, the elastic stiffness matrix [Ke] should be updated to reflect the change in element

lengths, and the geometric stiffness matrix  should be updated to reflect the variation of the total

element forces caused by the winds, which are equal to , according to Eq. (31).

After an incremental step is completed, the wind speed U will be increased by the amount ∆U

and the whole procedure of iteration as described above should be repeated for the next incremental

step by setting m = m + 1. The critical wind speed Ucr is determined as the condition of divergence

or when the pitching angle of the bridge deck approaches infinity or becomes unbounded in the

sense of divergence.

6. Numerical examples
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instability analysis program developed for the cable-supported structures in this study. The results

obtained will be compared with those existing in the literature. The following investigation is

conducted primarily for the Kao-Ping-Hsi Bridge located in southern Taiwan, an asymmetric cable-

stayed bridge with single inversed-Y pylon, single plane cable system, a deck width of 34.5 m and

depth of 3 m, a steel main span of 330 m, and a concrete side span of 180 m (see Fig. 3). The

wind-tunnel test of the section model and full bridge model with a scale of 1:80 and 1:150,

respectively, were conducted by the boundary-layer wind tunnel of the Danish Maritime Institute

(DMI 1993a,b), from which the mean static loads and aerodynamic derivatives have been

determined accordingly. 

The entire structure is modeled by a three-dimensional finite element model with a total of 116

nodes, 115 beam elements for the girder, pylon, and pier, and 28 catenary cable elements for the

stay cables. The fish-bone structure of the girder is also simulated in the finite element model. The

material and section properties of the major components of the bridge are listed in Table 1.

Example 1 – The first example is to compare the first five natural frequencies computed for the

Kao-Ping-Hsi Bridge with those obtained experimentally by the DMI (1993a,b) and Cheng et al.

(2002). As can be seen from Table 2, the natural frequencies computed for this model using the

stiffness and mass matrices are close to the site measurement (Cheng et al. 2002), but are higher

Fig. 3 Layout of Kao-Ping-Hsi Bridge (unit: m)

Table 1 Material and section properties of Kao-Ping-Hsi Bridge

Property E (KN/m2) A (m2) Iy / Iz / J (m4) m (kg/m3) Im (kg-m2/m3)

Main span 2.1 × 108 81.742 170.4/2.947/9.785 14150 142915

Side span 2.8 × 107 21.597 1533./32.608/98.1 3190 32219

Pylon 2.8 × 107 15.126 ~ 34.937 Varied 2550 Varied

Cable 1.85 × 108 80.012 ~ 0.0546 0 8830 0

Table 2 Results and comparison for Kao-Ping-Hsi Bridge (unit: Hz)

Frequency f1 f2 f3 f4 f5

Present study 0.261 0.511 0.648 0.674 0.757

DMI (1993a,b) 0.231 0.451 0.563~0.584 0.572 0.698

Cheng (2002) 0.275 0.520 0.640 0.650 0.740
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than those from the wind tunnel test. The natural frequencies presented herein are essential to

computation of the aerostatic critical wind velocity for the Kao-Ping-Hsi Bridge to be shown in

Example 3.

Example 2 – The second example is to demonstrate the convergence characteristics of the present

procedure in the aerostatic instability analysis. One simply supported girder with a span of 330 m is

studied with the same material and section properties as those of the Kao-Ping-Hsi Bridge. The

aerostatic coefficients of the lift (CD), drag (CL) and pitching moment (CM) have been determined

for the incoming wind with the flow angle varying from −10o to −10o by an increment of 1o in the

DMI report (1993a) (Fig. 4). The iteration number versus the norm of the unbalanced forces at

different wind speeds, i.e., from 10 to 50 m/s, has been plotted in Fig. 5. As can be seen, for the

bridge subjected to winds at different speeds, rather accurate results can be obtained using an

iteration number of three to four, as the norm of the unbalanced forces almost reduces to zero for

each of the wind speeds considered. This is an indication of the efficient and convergent

characteristics of the procedure proposed herein for evaluation of the aerostatic instability of cable-

supported bridges. 

Example 3 – The third example is to study the aerostatic critical wind speed for the Kao-Ping-Hsi

Bridge described above. An indication of the onset of aerostatic instability was identified by the

DMI (1993a) as either the condition of divergence or when the root mean square (r.m.s.) pitching

Fig. 4 Aerostatic coefficients CD, CL, CM

Fig. 5 Iteration number versus norm of unbalanced forces at different wind speeds
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angle of the bridge deck becomes greater than 2o. In the present analysis, the wind speed has been

increased from 10 to 170 m/s by an increment of 10 m/s. The maximum and r.m.s. pitching angles

versus the wind speed solved for the bridge using the incremental-iterative procedure presented

above have been plotted for the bridge in Fig. 6. From this figure, the critical wind speed for

aerostatic instability can be identified as 149 m/s, since the r.m.s. pitching angle of the bridge deck

exceeds 2o at that wind speed. Such a result is close to the critical wind speed of 140 m/s predicted

by the DMI based on the same criterion (i.e., r.m.s. pitching angle of greater than 2o). In the

meantime, the maximum torsional action of the girder also reveals the same characteristics of

divergence under the critical wind speed in Fig. 7. 

Example 4 – The fourth example is to investigate the effect of cable modeling on aerostatic

instability of cable-supported bridges using the conventional equivalent truss elements and the two-

node catenary cable elements. The three-span cable-stayed bridge (with span lengths of 450 + 1000

Fig. 6 Maximum and r.m.s. pitching angles of the deck vs. wind speed

Fig. 7 Maximum torsional action of girder vs. wind speed
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+ 450 m) studied by Boonyapinyo et al. (1994) will be adopted herein (Fig. 8). For this example,

the material and cross-sectional properties of the structural members are available in Hoshino and

Miyata (1990). The entire structure is modeled by a three-dimensional finite element model that has

a total of 127 nodes, 126 beam elements for the girder, pylon and pier, and 48 cable elements for

the stay cables. The aerostatic coefficients are assumed to be identical to those of the Kao-Ping-Hsi

Bridge. 

The pitching angles of the bridge deck solved for the 1000 m bridge using the catenary cable

elements and equivalent truss elements have been plotted with respect to the wind speed in Fig. 9.

The critical wind speed obtained by the model with catenary cable elements is 124 m/s, slightly

higher than the value of 122 m/s for the model using the equivalent truss elements. Evidently, the

model with catenary cable elements shows relatively higher stiffness in resisting the pitching

rotation at the same wind speed in comparison with the one using the equivalent truss element. In

particular, we shall compare the forces existing in the shortest cable No. 13 (with unstressed length

L0 = 125.81 m) and the longest cable No. 23 (with unstressed length L0 = 500.62 m), for which the

unstressed length used for the catenary element is equivalent to the pretension force used for the

equivalent truss element at the deck end. In other words, an initial pretension force of 12,050 kN

(corresponding to unstressed length L0 = 125.81 m) and 25,780 kN (corresponding to unstressed

length L0 = 500.62 m) are applied to cables No. 13 and No. 23, respectively, which equal

approximately 25% of the ultimate strength of the cable. 

As can be seen from Fig. 10, significantly smaller tension forces are obtained for the two cables

using the catenary cable elements than the truss elements for the range of wind speeds considered.

For instance, near the divergent wind speed of 121 m/s, a tension force of 20,236 kN and 14,250 kN

Fig. 8 Three-span cable-stayed bridge with 1000 m span

Fig. 9 Pitching angle of the deck vs. wind speed for models using different cable elements (Tr = Truss
element, Ca = Catenary cable element)
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is computed for cable No. 13 using the equivalent truss elements and catenary cable elements,

respectively. Meanwhile, a tension force of 30,131 kN and 25,350 kN is obtained for cable No. 23

using the equivalent truss elements and catenary cable elements, respectively. 

7. Concluding remarks

The aerostatic instability of cable-supported bridges has been investigated by taking into account

the effects of geometric nonlinearity and wind-structure interaction. The cables are modeled by the

two-node catenary cable elements, by which the sag effect can be accurately taken into account, and

the girders and pylons by the beam elements, by which the instability effect associated with all

kinds of member actions are duly considered. The geometric nonlinear analysis is performed with

the dead loads and wind loads applied in two stages. The critical wind velocity for aerostatic

instability is obtained as the condition of divergence or when the pitching angle of the bridge deck

becomes greater than a preset value. Each intermediate step of the incremental-iterative procedure is

clearly given and interpreted. Due to the rigorous procedure adopted herein, the solutions obtained

for the bridges are believed to be more rational than existing ones.

The present programs have been adopted in the solutions of two cable-stayed bridges on the

assessment of aerostatic instability. Through comparison with previous results, the applicability of

the programs in simulating cable-supported bridges is confirmed. With regard to the use of catenary

cable elements, it was demonstrated that slightly higher critical wind speeds are obtained for the

bridge studied, while substantially smaller tension forces are observed for the bridge cables for the

range of wind speeds considered, compared with the use of equivalent truss elements.
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