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Computational modelling for description of rubber-like 
materials with permanent deformation under cyclic loading
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Abstract. When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to
their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent
deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading
for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-
elasticity theory is that material behaviour in the primary loading path is described by a common elastic
strain energy function, and in unloading, reloading or secondary unloading paths by a different strain
energy function. The switch between strain energy functions is controlled by the incorporation of a
damage variable into the strain energy function. An extra term is added to describe the permanent
deformation. The finite element implementation of the proposed model is presented in this paper. All
parameters in the proposed model and elastic law can be easily estimated based on experimental data. The
numerical analyses show that the results are in good agreement with experimental data.
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1. Introduction 

Rubber-like materials exhibit a strongly non-linear behaviour characterised by large strains and a

non-linear stress-strain response. When a rubber specimen is subjected to cyclic loading, stress-

softening phenomena are also observed (Mullins 1947, Mullins & Tobin 1957, Harwood et al. 1967,

Beatty & Krishnaswamy 2000, Krishnaswamy & Beatty 2000, Guo 2006, Guo & Sluys 2006,

Govindjee & Simó 1992a, 1992b). This stress-softening phenomenon was observed in a thorough

experimental study of carbon-black filled rubber vulcanizates by Mullins (1947) and has

subsequently become widely known as the Mullins effect. Moreover, another important

phenomenon for carbon-filled rubber is that after loading and subsequent unloading rubber

specimens, in general, do not return to their initial state, but exhibit a residual deformation.

Different approaches have been developed to deal with this phenomenon by many researchers.

Representative works include Lion (1996), Septanika (1998), Miehe and Keck (2000), Drozdov and

Dorfmann (2001), Besdo and Ihlemann 2003 and Dorfmann and Ogden 2004. Both experimental

data and constitutive models can be found in the above-cited works.
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Ogden & Roxburgh (1999) have proposed a theory of pseudo-elasticity to describe the damage-

induced stress-softening effect in rubber-like solids. Furthermore, Dorfmann and Ogden (2003)

apply this theory to the hysteretic cycles associated with partial unloading and reloading following

loading after appropriate pre-conditioning aimed at eliminating the Mullins effect. Recently,

Dorfmann and Ogden (2000) used pseudo-elasticity to capture Mullins effect and residual strain

effects with the inclusion of two variables in the energy function. But, this constitutive model cannot

describe the evolution of rubber softening and permanent deformation and has too many adjustable

parameters and functions, which can, to some degree, only be determined arbitrarily (2005).

In this paper, attention is restricted to the development of constitutive models for the

computational analysis of the static behaviour including strong non-linearity, Mullins effect and

residual strain due to a strain history. Firstly, the theory of pseudo-elasticity is used to construct the

constitutive equation for describing the inelastic effects of carbon black filled rubber under cyclic

loading. The constitutive elastic laws and necessary derivation of finite element implementation are

also presented in this section. Numerical analyses show the characteristics of the proposed model.

2. Experimental observation 

It is necessary to repeat the main experimental observations of non-linearity, the Mullins effect

and permanent deformation in order to construct a phenomenological model allowing the

representation of these phenomena (Mullins 1947, Lion 1996, 1997, Dorfmann and Ogden 2004).

Dorfmann and Ogden (2004) carried out experimental results at constant temperature under cyclic

loading-unloading uniaxial tension. The specimens have the shape of a dumbbell and contain

different amounts of carbon black. One set of results is illustrated in Fig. 1. Fig. 1(a) gives

experimental results with 20 phr (by volume) of Carbon Black filler with maximum stretch λ = 3.0.

Fig. 1(b) shows the experimental results with the same Carbon Black filler but with maximum

stretches of λ = 1.5, λ = 2.0 and λ = 2.5. The nominal stress was determined as the ratio of axial

force to the undeformed cross-sectional area of a specimen (2 mm × 4 mm) in the stress free state.

These experiments are characterized by:

• Most of the Mullins effect for both unfilled and CB-filled rubber occurs during the first loading

cycle. After several loading-unloading cycles (e.g. six cycles), the stress-strain responses are

essentially repeatable and additional stress is negligible.

• The magnitude of stress softening during the first few loading-unloading cycles depends on the

value of the maximum strain achieved.

• In general a CB-filled rubber after loading and subsequent unloading does not return to its initial

state corresponding to the natural stress-free configuration. The main part of the residual

deformation is generated during the first loading-unloading cycle. After several loading-

unloading cycles, the residual deformation appears to reach a fixed value.

• The accumulated residual deformation depends on the value of the maximum strain during the

previous loading cycle. The magnitude of the accumulated residual deformation does not depend

linearly on the maximum strain.

• All these phenomena depend on the proportion of carbon black in the compound. In particular,

both the stress softening effect and residual deformation increase with increasing filler content.

Experimental results reveal that both the Mullins effect and residual deformation depend on the

maximum value of strain during the previous loading history.
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3. Constitutive model

We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for

incompressible, isotropic material with stress softening and residual strain. Similar to the ideal

stress-softening case treated in our former paper (Guo & Sluys 2006), the essence of the pseudo-

elasticity theory is that material behaviour in the primary loading path is described by a common

elastic strain energy function W(F), and in unloading, reloading or secondary unloading paths by a

different strain energy function. An extra term is added to describe permanent deformation. The

pseudo-elastic energy function has the following form 

W (F, η) = η W0 (F) + f (η) Wr (F, Fm) + φ (η) (1)

where F is the deformation gradient tensor for an undamaged elastic materials, Fm is the

deformation gradient tensor at the maximum deformation in the loading history, W0 (F) is the strain

energy function for an undamaged elastic materials and Wr (F) is strain energy related to pemanent

deformation. The second term in the right hand of Eq. (1) is related to the phenomenon of residual

strains, which depend on the strain history. φ (η) is referred to as a dissipation function.

From the point of initiation of unloading on, the damage variable η is active. It is taken to be

dependent on the deformation gradient (the damage evolves with deformation) and following Ogden

and Roxburgh (1999) this dependence can be expressed as

(2)

The second Piola-Kirchhoff stress is then given by

(3)

∂W F η,( )
∂η

----------------------- W0 F( ) f′ η( )Wr F Fm,( ) φ′ η( ) 0=+ +=

τ 2
∂W F η,( )

∂C
----------------------- 2

∂W F η,( )
∂C

----------------------- 2
∂W F η,( )

∂η
-----------------------

∂η
∂C
-------+= =

Fig. 1 Nominal stress-stretch curves of periodic uniaxial extension tests of a particle-reinforced specimen with
20 phr of carbon black (a) with maximum stretch λ = 3.0 and (b) with maximum stretches of λ = 1.5,
λ = 2.0 and λ = 2.5
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In which C is the right Cauchy-Green stretch tensor. Considering the constraint of Eq. (2), Eq. (3) becomes

(4)

Eq. (1) is intended to simulate different branches of loading, unloading, reloading and secondary

unloading (Fig. 2) by means of a different expression of η.

3.1 Primary loading branch 

The form of the pseudo-elastic energy function Eq. (1) should be reduced to the standard forms of

energy function W0 when we use it to describe the mechanical behaviour of isotropic materials on

the primary loading path (curve ABDE in Fig. 2). The following constraints in Eq. (1) are necessary

η = 1, f (1) = 0, φ (1) = 0     on primary loading path (5)

Therefore, for primary loading from the natural (stress free) configuration, the energy function Eq.

(1) becomes

W (F, 1) = W0 (F) (6)

The second Piola-Kirchhoff stress can be calculated by differentiation of the energy function (Eq.

(6)) with respect to the right Cauchy-Green stretch tensor 

(7)

The incremental stress-strain relation is obtained by differentiation of Eq. (7) with respect to the

right Cauchy-Green stretch tensor, yielding

(8)

3.2 Unloading branch 

When unloading (curve BA’ in Fig. 2) is initiated from any point on the primary loading path, the

τ 2
∂W F η,( )

∂C
-----------------------=

τ0 2
∂W F 1,( )

∂C
----------------------- 2

∂W0 F( )
∂C

-------------------= =

D 4
∂2

W0

∂C
2

------------=

Fig. 2 A schematic uniaxial stress-stretch response with stress softening and permanent deformation
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variable η becomes active and the constraints in Eq. (5) no longer hold. We take a specific form of

the pseudo-elastic energy function of Eq. (1) to represent unloading behaviour. Substituting Eq. (1)

into Eq. (4), the second Piola-Kirchhoff stress can be obtained

(9)

In which τ0 represent stress without influence of damage (stress softening) and τr represent stress

influenced by permanent deformation. The first term on the right hand side of Eq. (9) is the main

effect of stress softening, therefore it is clear that we should have 0 < η ≤ 1 on the unloading path

and associate unloading with decreasing η. 

When unloading reaches to the stress-free state, residual strain occurs. This is equivalent to the

stress becoming negative when the strain (supposed as tensile strain) returns to zero. The first term

in Eq. (9) disappears and η is defined as ηm when the strain is zero. The constant ηm is the

minimum value of damage parameter. If we take

(10)

then, τr is related to the residual stress in the original configuration

(11)

The residual strain depends on the maximum value of strain during the previous loading history,

so that, τr should be a function of maximum value of strain and depending only on maximum strain

in the history and does not change with the current state of deformation F or C. Therefore 

(12)

The magnitude of the accumulated residual strain does not depend linearly on the maximum

strain. Obviously, the residual stress has a similar character. If the maximum value of strain is a

tensile strain, the corresponding residual stress will be negative, and if the maximum value of strain

is a compression strain, the corresponding residual stress will be positive. For convenience of

implementation in the finite element method, here we use Wr(C, Cr) instead of Wr(F, Fr) and define

(13)

where K1 is a material parameter and Ciim are the components of the Right Cauchy-Green stretch

tensor at state of maximum strain during the previous loading history. Then τr becomes

(14)

When unloading initiates from the loading path of simple tension the value of C11m is larger than

τ 2η
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1 and C22m as well as C33m are smaller than 1. Based on Eq. (14) the residual stress τr11 is negative

and τr22 as well as τr33 are positive. These results are consistent to the physical phenomenon of

simple tension with permanent deformation. 

Eqs. (5), (9) and (10) show that function f (η) leads to a residual stress separate from the total

stress. Simplifying this separation, we assume f (η) to be directly proportional to η and takes the

form, 

(15)

This definition ensures f (1) 0 on the loading path, in which η = 1, and f (ηm) 1 when the strain

returns to origin. The damage parameter η can be defined in terms of the deformation gradient.

Considering that η should satisfy 0 < η ≤ 1 and decreases when unloading evolves, η is defined as

(16)

where m and r are positive parameters (material constants) and erf( ) is the error function. W0(F) is

the strain energy corresponding to the same deformation F for an undamaged elastic material. W00 is

the strain energy at the origin in the stress free state. For most forms of strain energy functions, the

value of W00 is zero. Wmax is the value of strain energy at the point on the primary loading path

from which unloading is initiated (η = 1). Obviously, the strain energy Wmax is the current maximum

value of the energy achieved on the loading path. In accordance with the properties of W0(F), Wm

increases along the primary loading path. We emphasize that, in general, the value of η derived

from Eq. (16) will depend on the values of the deformation attained on the primary loading path

and the specific formulation of W0(F). 

When the material returns to the origin from primary loading and no deformation remains, η

attains its minimum value ηm.

(17)

Differentiation of Eq. (9) and consideration of Eq. (11) yield the incremental stress-strain relation

 (18)

in which
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with
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during the unloading evolution. We assume that at a specific value of W0(F), written as Wmr, the

material is again subjected to loading. The corresponding value of η is ηmr, which is kept constant

during the reloading process (curve A’CD in Fig. 2). The form of the pseudo-energy function for

reloading still remains the form of Eq. (1), but η is changed to ηr according to

(21)

where the variable ηr will increase from ηmr on. The value for ηmr could be equal to ηm or larger

than ηm depending on the starting point of reloading. When reloading reaches to the point, at which

unloading is initiated, the relevant value of W0(C) is equal to the value of Wmax, which is the

maximum energy in the strain history. But, the value of ηr may not return to the value 1 and the

reloading path may not rejoin the primary loading path in this point. This is consistent with

experimental results. Finally, ηr can reach the value 1 and return to the undamaged path if reloading

continues after energy exceeds Wmax by a certain amount. To fulfil these requirements, a suitable

expression of a monotonic increasing function to be used for ηr

(22)

where c1 and m1 are material constants. This equation satisfies that ηr is equal to ηmr when

reloading commences and ηr may return to value 1 when the value of W0(C) becomes large enough.

The second Piola-Kirchhoff stress can be obtained from Eqs. (4) and (21)

(23)

in which

(24)

Differentiation of Eq. (23) and consideration of Eq. (11) yield the incremental stress-strain relation

(25)

where
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 (27)

3.4 Secondary unloading branch 
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material response on the reloading path returns to the primary loading path (D is joint point in Fig. 2)

corresponding to ηr = 1. The other possibility is that the material response on the reloading path

remains in a damaged state and parameter ηr is smaller than 1. In both cases, ηmu is assumed to be

equal to ηr and Wmu be the value of energy at the starting point (point C in Fig. 2) of the

(secondary) unloading process. ηu replaces η in the pseudo-elastic energy function of Eq. (8.1) to

describe secondary unloading,

W (F, ηu) = ηu W0 (F) + f (ηu) Wr (F, Fm) + φ (ηu) (28)

where the variable ηu will decrease from ηmu, which may be either equal to 1 or less than 1 and

related to unloading or secondary unloading, respectively. We select the variable ηu so that 

(29)

If ηmu = 1, reloading returns to the primary loading path, consequently, secondary unloading

becomes unloading and Eq. (29) returns to the form of Eq. (16). The second Piola-Kirchhoff stress

can be calculated from Eqs. (4) and (28)

(30)

in which f (η) becomes

(31)

The incremental stress-strain relation
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(33)

3.5 Summary of the formula 

The formula describing the evolution of cyclic loading can be summarized as follows. The

pseudo-elastic energy function reads
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with

(37)

The second Piola-Kirchhoff stress 

(38)

The incremental stress-strain relation

(39)

4. Numerical analysis

For the numerical analyses, the elastic strain energy proposed by Gao’s (1997) has been used: 

(40)

where a and n are positive material parameters, I1, and I
−1 are strain invariants (Guo & Sluys 2006b).

Substitution of Eq. (40) into Eq. (38) and Eq. (39) yields the necessary implementation formula of

the stress-strain relation τ (C, η) and the incremental stress-strain relation D. For a detailed

description of the algorithmic aspects the readers is refered to former publications (Guo 2006, Guo

& Sluys 2006a, 2006b).

We now apply this model to simulate the combination of stress-softening and residual strain

accumulation in particle-reinforced rubber and compare the numerical results with experimental data

of Fig. 1, which have been carried out by Dorfmann and Ogden (2004).
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Table 1 Estimated values of material parameters for Pseudo-elastic model

Experiment Material parameters Values

Cyclic uniaxial tension

a 0.0457

n 1.72

r 3.2

m 0.38

K1 0.013

r1 0.35

m1 1.2
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In the numerical calculation, primary loading is fully determined by the strain energy in Eq. (40).

The model parameters a and n are estimated based on experimental data of primary loading in Fig.

1a. The model parameter K1 is obtained by extending the unloading path until the strain returns to

zero, where Eqs. (12) and (17) are activated. Then, the parameters r and m may be determined

based on the unloading data and the parameters r1 and m1 are based on reloading data. These values

of parameters are summarized in Table 1.

Fig. 3 Comparison of stress-stretch curves between numerical and experimental data of uniaxial tension: (a)
primary loading and unloading, (b) reloading and secondary unloading. ( ■ ) experimental data, (○ )
numerical results

Fig. 4 Numerical simulation of uniaxial tension under cyclic loading with maximum stretch λ = 3.0: nominal
stress-stretch curves
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A Comparison between numerical simulation and experimental data with 20 phr (by volume) of

Carbon Black filler with maximum stretch λ = 3.0 is shown in Fig. 3, in which the comparison

results of primary loading and unloading and the comparison results of reloading and secondary

unloading are given in Fig. 3(a) and 3(b), respectively. The numerical results are in good agreement

with the experimental data. Fig. 4 illustrates the whole evolution of the cyclic loading process. 

Fig. 5 demonstrates the numerical calculation with 20 phr (by volume) of Carbon Black filler with

different values of maximum stretch λ = 1.5, λ = 2.0 and λ = 2.5. The values of all parameters used

in this simulation were the same as the values listed in Table 1, because the specimens used in the

two different experiments were made of the same material. In these numerical simulations, the

evolution of stress softening, the permanent deformation and all turning points, on which the

loading curve changes from the loading path to the unloading path or from the unloading path to

the loading path, were well reproduced compared to experimental data (Fig. 1b). 

5. Conclusions

Combination of the pseudo-elastic concept and Gao’s model was used to construct a specific

model for the description of Mullins effect with permanent deformation. The incorporation of a

damage variable and an extra term in the strain-energy function leads to a modified elastic strain

energy function to account for different evolutions of primary loading, unloading, reloading or

secondary unloading processes. The new damage variable totally involves five model parameters

and could be estimated separately according to the different branches of evolution curves. Model

parameters are estimated based on experimental data of uniaxial tension with certain maximum

stretch under cyclic loading. The numerical results are in good agreement with the experimental

data. The values of these parameters are also used to simulate uniaxial tension of a different

Fig. 5 Numerical simulation of uniaxial tension under cyclic loading with maximum stretches of λ = 1.5, λ =
2.0 and λ = 2.5: nominal stress-stretch curves
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specimen made of the same material but with different maximum stretches under cyclic loading. In

these numerical simulations, the evolution of stress softening, the permanent deformation and all

turning points, on which the loading curve changes from the loading path to the unloading path or

from the unloading path to the loading path, were well reproduced compared to experimental data. 
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