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Abstract.  This article considers the problems of cylindrical bending of functionally graded plates in which 
material properties vary through the thickness. The variation of the material properties follows two 
power-law distributions in terms of the volume fractions of constituents. In addition, this paper considers 
orthotropic materials rather than isotropic materials. The traction-free condition on the top surface is 
replaced with the condition of uniform load applied on the top surface. Numerical results are presented to 
show the effect of the material distribution on the deflections and stresses. Results show that, all other 
parameters remaining the same, the studied quantities (stress, deflection) of P-FGM and E-FGM plates are 
always proportional to those of homogeneous isotropic plates. Therefore, one can predict the behaviour of 
P-FGM and E-FGM plates knowing that of similar homogeneous plates. 
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1. Introduction 
 

In conventional laminated composite materials, there is a high chance that debonding will occur 
at some extreme loading conditions. On the other hand, gradually varying the volume fraction of 
the constituents can resolve this problem. Functionally graded materials (FGMs) are composite 
materials which exhibit a progressive change in composition, structure, and properties as a 
function of spatial direction within the material. They are widely used in mechanical, aerospace, 
nuclear, and civil engineering. Understanding static and dynamic behaviour of FG structures is of 
increasing importance. There has been considerable research (Wetherhold et al. 1996, Benatta et al. 
2008, Fekrar et al. 2014, Khalfi et al. 2014) on the behavior of structure made of FGMs. These 
studies are limited to functionally graded materials in which the power-law function is used to 
describe the volume fractions. However, in the case of adding an FGM of a single power-law 
function to the multi-layered composite, stress concentrations appear on one of the interfaces 
where the material is continuous but changes rapidly (Lee and Erdogan 1994, Bao and Wang 
1995). Therefore, Chung and Chi (2001) and Sallai et al. (2009) defined the volume fraction using 
two power-law functions (simply called P-FGM and E-FGM) to ensure smooth distribution of 
stresses among all the interfaces. 

The static bending problem is one of the basic and also most studied problems in the analysis of 
FGM plates. Kadoli et al. (2008) studied the static behaviour of functionally graded metal-ceramic 
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(FGM) beams under ambient temperature using displacement field based on higher order shear 
deformation theory. Thai and Vo (2012) examined the bending and free vibration of FG beams 
using various higher-order shear deformation beam theories. Mantari and Guedes Soares (2012) 
studied the bending analysis of thick exponentially graded plates using a new trigonometric higher 
order shear deformation theory. Taj and Choi (2013) investigated a simple first-order shear 
deformation theory for the bending and free vibration analysis of functionally graded plates. Thai 
et al. (2013) conducted static analysis of FG plates using higher order shear deformation theory. 
Transverse shear stresses are represented as quadratic through the thickness and hence it requires 
no shear correction factor. Tounsi et al. (2013) presented a refined trigonometric shear 
deformation theory for thermoelastic bending of functionally graded sandwich plates. Bouderba et 
al (2013) discussed the thermo-mechanical bending response of FGM thick plates resting on 
Winkler– Pasternak elastic foundations. Ould Larbi et al. (2013) developed an efficient shear 
deformation beam theory based on neutral surface position for bending and free vibration of FG 
beams. Ait Amar Meziane et al. (2014) examined the buckling and free vibration of exponentially 
graded sandwich plates under various boundary conditions. Bousahla et al. (2014) proposed a 
novel higher order shear and normal deformation theory based on neutral surface position for 
bending analysis of FG thick plates. Belabed et al. (2014) presented an efficient and simple higher 
order shear and normal deformation theory for FG plates. Zidi et al. (2014) studied the bending 
analysis of FG plates under hygro-thermo-mechanical loading using a four variable refined plate 
theory. Hadji et al., (2014) developed a higher order shear deformation theory for static and free 
vibration of FG beam. Hebali et al. (2014) presented the new quasi-3D hyperbolic shear 
deformation theory for the static and free vibration analysis of functionally graded plates. Zhang 
(2013) studied the nonlinear bending analysis of FGM beams based on physical neutral surface 
and high order shear deformation theory. 

Recently, Merazi et al. (2015) used a new hyperbolic shear deformation plate theory for static 
analysis of FGM plate based on neutral surface position. Junga and Han (2015) studied the Static 
and eigenvalue problems of Sigmoid Functionally Graded Materials (S-FGM) micro-scale plates 
using the modified couple stress theory. Hamidi et al. (2015) presented a sinusoidal plate theory 
with 5-unknowns and stretching effect for thermomechanical bending of functionally graded 
sandwich plates. Mahi et al. (2015) developed a new hyperbolic shear deformation theory for 
bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated 
composite plates. Bourada et al. (2015) proposed a new simple shear and normal deformations 
theory for FG beams. Ait Yahia et al. (2015) studied the wave propagation in FG plates with 
porosities using various higher-order shear deformation plate theories. Meradjah et al. (2015) 
presented a new higher order shear and normal deformation theory for FG beams. 

In this paper, the elasticity solutions are presented for P-FGM and E-FGM plates in cylindrical 
bending. Results show that, all other parameters remaining the same, the studied quantities (stress, 
deflection) of P-FGM and E-FGM plates are always proportional to those of homogeneous 
isotropic plates. Then, FGM beams behave like homogeneous beams which mean that no special 
techniques or software needs to be developed for their analysis. 

 
 

2. Theoretical formulations 
 
2.1 Properties of the FGM constituent materials 
 
The functionally graded material (FGM) can be produced by continuously varying the 
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constituents of multi-phase materials in a predetermined profile. The most distinct features of an 
FGM are the non-uniform microstructures with continuously graded macro properties. An FGM 
can be defined by the variation in the volume fractions. Most researchers use the power-law 
function or exponential function to describe the volume fractions. However, only a few studies 
used sigmoid function to describe the volume fractions. Therefore, FGM plates with sigmoid 
function will be considered in this paper in detail. 

Consider an elastic rectangular FGM plate of uniform thickness h, which is made of a ceramic 
and metal, is considered in this study. The material properties, Young’s modulus and the Poisson’s 
ratio, on the upper and lower surfaces are different but are preassigned according to the 
performance demands. However, the Young’s modulus and the Poisson’s ratio of the plates vary 
continuously only in the thickness direction (y-axis) i.e., E = E(y), υ = υ(y). Delale and Erdogan 
(1983) indicated that the effect of Poisson’s ratio on the deformation is much less than that of 
Young’s modulus. Thus, Poisson’s ratio of the beams is assumed to be constant. However, the 
Young’s modules in the thickness direction of the FGM plates vary with power-law functions 
(P-FGM) or with exponential functions (E-FGM). 

 
2.1.1 The material properties of P-FGM plates 
The volume fraction of the P-FGM is assumed to obey a power law function 
 

p

h

y
yg )

2

1
()(   (1)

 

where p is the material parameter that dictates the material variation profile through the thickness 
and h is the thickness of the plate. Once the local volume fraction g(y) has been defined, the 
material properties of a P-FGM can be determined by the rule of mixture 
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where E1 and E2 are the Young modules of the lowest (y = h/2) and top surfaces (y = - h/2) of the 
FGM plate, respectively. The variation of Young’s modulus in the thickness direction of the 
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Fig. 1 The variation of Young’s modulus in a P-FGM plate 
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Fig. 2 The variation of Young’s modulus in a E-FGM plate 
 
 
P-FGM plate is depicted in Fig. 1, which shows that the Young’s modulus changes rapidly near 
the lowest surface for p > 1, and increases quickly near the top surface for p < 1. 

 
2.1.2 The material properties of E-FGM plates 
Many researchers used the exponential function to describe the material properties of FGM as 
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The material distribution in the thickness direction of the EFGM plates is plotted in Fig. 2. 
 
2.2 Fundamental equations for cylindrical bending of FGM plates 
 
Consider an FGM plate of thickness h and length l, which is made of a ceramic at the upper 

surface and a metal at the lower surface, is considered in this study. The x – z plane coincident 
with the mid-plane of the plate, occupying the region of 0 ≤ x ≤ l, –h/2 ≤ y ≤ h/2, –∞ ≤ z ≤ ∞. 
Denote u and w as the displacement components in the x and z directions, respectively, σxx, τxz and 
σzz as the stress components respectively. The plate is subjected to uniform load on the top surface 
so that it is in a state of cylindrical bending, for which all displacements and stresses are 
independent of the coordinate y. 

In the absence of body forces, the equations of equilibrium are 
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The strain components are given as 
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u and v denote the displacement components. 
The corresponding elastic constitutive law for the FGM plate expressed as 
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where Qij are the stiffness of the FGM plate and are given as 
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We seek the following solutions of Eqs. (5), (6) and (7) 
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where A = A(y), B = B(y), C = C(y), D = D(y), F = F(y) and G = G(y) are undetermined functions. 
u  and v  are the mid-plane displacements. 

Substituting Eq. (9) into Eqs. (6) and (7) gives 
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Substitute Eq. (10) into Eq. (5), and set 
 

   ,0' 1'66 AQ  (11a)
 

   ,0' 1'66 AQ  (11b)
 

    ,0' ' 1' 221266  CQAQAQ  (11c)
 

   ,' ' ' 166661211 kQGFQGQQ   (11d)
 

   ,' ' ' 266661211 kQCBQCQAQ   (11e)
 

,3, ku xxx   (11f)
 

.4, kv xxxx   (11g)
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where the prime denotes the derivative with respect to y, and ki (i = 1, 2, 3, 4) are arbitrary 
constants. Therefore, Eq. (5) can be simplified as 
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By virtue of Eqs. (11f), (11g) and (12), we obtain 
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where Ci (i = 1, 2, 3, 4, 5, 6) are integral constants which can be completely determined from the 
boundary conditions at cylindrical edges. 

Now consider the boundary conditions on the top and bottom surfaces of the plate. We have 
0xy  at ,2/hy   qy   at 2/hy   and 0y  at ,2/hy   where q is a constant. 

By substituting the expressions of y  and xy  into the above boundary conditions at 
,2/hy   we obtain. 

,01)2/(' hA  (17a)
 

,0)2/('  )2/()2/( 2212  hGhQhQ  (17b)
 

,0)2/()2/('  hGhF  (17c)
 

,0)2/()2/('  hChB  (17d)
 

,0)2/(' C )2/()2/()2/( 2212  hhQhAhQ  (17e)
 

  ,)2/(')2/()2/()2/()2/( 224312 qhDhQhBkhFkhQ   (17f)
 

  ,0)2/(')2/()2/()2/()2/( 224312  hDhQhBkhFkhQ  (17g)
 

Given that u  and v  are the mid-plane displacements, namely, )0,()( xuxu  , ).0,()( xvxv   
We can deduce from Eq. (9) that 
 

0)0( A ,  0)0( B ,  0)0( C ,  0)0( D ,  0)0( F ,  0)0( G . (18)
 

Integrating Eqs. (11a)-(11e) and (13) and making use of Eqs. (17)-(18) and (14), functions A(y), 
B(y), C(y), D(y), F(y), G(y) and the constant ki (i = 1, 2, 3, 4) can be completely determined 
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2.3 Resultant force, bending moment, shear force and cylindrical boundary conditions 
 
By virtue of Eq. (10) and A(y) = –y, the expressions for the resultant force Nx, bending moment 

Mx and shear force Qx, can be determined accordingly 
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There are four different boundary conditions at the cylindrical edges to be considered here. 

These include simply supported (S), clamped-1 (C1), clamped-2 (C2), and free (F) conditions, 
namely 

S : ;0u   ;0v   ;0xM  (23)

 

C1 : ;0u   ;0v   ;0, xv  (24)

 

C2 : ;0u   ;0v   ;00, zzu  (25)

 
F : ;0xN   ;0xM   ;0xQ  (26)
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3. Numerical results and discussion 
 
3.1 Effect reinforcement 
 
For convenience, the following dimensionless quantities are introduced 
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Based on the derived formulation, a computer program is developed to study the behavior of 
FGM plates in cylindrical bending. The analysis is performed for pure materials and different 
values of material parameter, p, for aluminium–alumina FGM. The Young’s modulus and 
Poisson’s ratio (Sallai et al. 2009) for aluminium are: 70 GPa and 0.3 and for alumina: 380 GPa 
and 0.3, respectively. Delale and Erdogan (1983) indicated that the effect of Poisson’s ratio on the 
deformation is much less than that of Young’s modulus. Thus, Poisson’s ratio of the plates is 
assumed to be constant (Delale and Erdogan 1983, Saidi et al. 2013 Houari et al. 2013, El Meiche 
et al. 2011, Bourada et al. 2012, Bouchafa et al. 2015, Benachour et al. 2011) and is chosen to be 
0.3. Consider an PFGM and EFGM rectangular plate subject to a uniform load on the top surface 
with an infinite extent in the z-direction. We assume q = 1×106 N/m2, l = 1 m and h/l = 0.15. In all 
cases, the lower surface of the plate is assumed to be metal (aluminium) rich and the upper surface 
is assumed to be pure ceramic (alumina). 

Figs. 3, 5 and 7 shows the distributions of dimensionless normal stress x  along the thickness 

direction of the PFGM and EFGM plate for different p and 
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Figs. 4, 6 and 8 depicts the distributions of dimensionless shear stress yx  along the thickness 

direction of the PFGM and EFGM plate for different values p and 
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Tables 1 and 2 gives the dimensionless deflection W  of the FGM rectangular plate for seven 

different kinds of boundary conditions and three different values for p and 
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 at .2/lx   It is 

found that the deflection decreases as p and 

2

1
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E
 increases, regardless of the boundary conditions. 

This is simply because the whole rigidity of the FGM plate increases with p and .
2

1

E

E
 In addition, 

the dimensionless deflections of the C2-F and C1-C1 plates are the largest and smallest among the 
plates, respectively, with the seven different boundary conditions. 
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Fig. 3 Dimensionless normal stress of P-FGM plate en x = L/2 (\b(s-s)) 
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Fig. 4 Dimensionless shear stress of P-FGM plate en x = l/4 (\b(s-s)) 
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Fig. 5 Dimensionless normal stress of E-FGM plate en x = l/2 (\b(s-s)) 
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Fig. 6 Dimensionless shear stress of E-FGM plate en x = l/4 (\b(s-s)) 
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Fig. 7 Dimensionless normal stress of E-FGM plate en x = l/2 (\b(s-s)) for different ratio of E1/E2
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Fig. 8 Dimensionless shear stress of E-FGM plate en x = l/4 (\b(s-s)) for different ratio of E1/E2 
 
 
 

Table 1 Dimensionless deflection W of the PFGM rectangular plate for seven different kinds of boundary 
conditions and three different values for p at x = l/2 

Boundary conditions P = 0 P = 0.5 P = 5 

S-S 324.47 358.12 176.168 

C1-C1 60.74 25.08 13.16 

C2-C2 82.494 58.46 23.31 

C1-S 125.90 71.31 38.72 

C2-S 147.41 93.52 58.55 

C1-F 1811.08 2143.08 1129.13 

C2-F 1893.98 2227.26 1205.15 
 
 
 

Table 2 Dimensionless deflection W of the EFGM rectangular plate for seven different kinds of boundary 

conditions and three different values for 

2

1

E

E
 at x = l / 2 

Boundary conditions 1
2

1 
E

E
 2

2

1 
E

E
 10

2

1 
E

E
 

S-S 324.47 223.72 79.21 

C1-C1 60.74 43.18 19.90 

C2-C2 82.494 55.51 23.99 

C1-S 125.90 56.28 24.30 

C2-S 147.41 70.30 25.62 

C1-F 1811.08 1303.73 607.77 

C2-F 1893.98 1350.48 624.32 
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4. Conclusions 
 

The elasticity solutions for functionally graded plates in cylindrical bending are obtained by 
extending the FGM plate theory suggested by Mian and Spencer. The material coefficients can 
vary arbitrarily with the thickness-coordinate. The numerical results show that boundary 
conditions and material in homogeneity have obvious effects on the response of the FGM 
rectangular plates in cylindrical bending. Especially, it is easy to cause stress concentration near 
the location of the maximum stiffness when the material in homogeneity change greatly. Therefore, 
the mechanical behavior of FGM rectangular plates in cylindrical bending can be optimized by 
properly adjusting the factors mentioned above in engineering applications. 

Because no simplifying hypotheses about the stress and displacement fields are introduced, the 
proposed elasticity solution can serve as a benchmark for accessing validity of various 
approximate plate theories or numerical methods that may be used in the analysis of such plates. 
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