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Abstract.  A new theoretical approach for analysis of stress around a tensioned anchor in rock is presented 
in this paper. The solution has been derived for semi-infinite elastic rock and anchor and for plane strain 
conditions. The method considers both the anchor head bearing plate and its grouted bond length embedded 
in depth. The solution of the tensioned rock anchor problem is obtained by superimposing the solutions of 
two simpler but fundamental problems: A distributed load applied at a finite portion (bearing plate area) of 
the rock surface and a distributed shear stress applied at the anchor-rock interface along the bond length. The 
solution of the first problem already exists and the solution of the shear stress distributed along the bond 
length is found in this study. To acquire a deep understanding of the stress distribution around a tensioned 
anchor in rock, an illustrative example is solved and stress contours are drawn for stress components. In 
order to verify the results obtained by the proposed solution, comparisons are made with finite difference 
method (FDM) results. Very good agreements are observed for the teoretical results in comparison with 
FDM. 
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1. Introduction 
 

A tensioned anchor is a structural element installed in rock or soil to reinforce it or to transfer 
an applied tensile load from a structure to surrounding ground. The earliest reports of anchoring 
tendons into the rock to secure a roof date from 1918 in the Mir Mine of Upper Silesia in Poland 
(Littlejohn 1993). In the field of civil engineering the history of rock anchors dates from 1934 
when Coyne pioneered their use during the raising of the Cheurfas Dam in Algeria (Littlejohn 
1993). Since 1934 there has been a huge increase in the use of anchorages throughout the world, 
and millions of rock anchors have been installed for various engineering purposes. 

Nowadays, rock anchors are employed to solve problems involving direct tension, sliding, 
overturning, and ground prestressing. For example, tensioned rock anchors are used to reinforce 
high slopes and deep urban excavations (Littlejohn et al. 1977, Sagaseta et al. 2001, Akgün and 
Koçkar 2004, Kim et al. 2007, Tonon and Asadollahi 2008, Sabatini et al. 1999), anchoring of 
tension foundations into the ground (Saliman and Schaefer 1968, Hanna 1982, Wyllie 2005, 
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Danziger et al. 2006), stabilization and improvement of overturning resistance in concrete dams 
(Bruce 1997), retaining walls (Sabatini et al. 1999, Bruce 1992), pile testing, bridges, tunnels, 
underground caverns (Littlejohn 1993). 

The basic components of a rock anchor are (see Fig. 1): (i) anchor head; (ii) unbonded length; 
and (iii) bond length (Sabatini et al. 1999). The anchor head is a component that is capable of 
transmitting the tensile load from the anchor to the surface of rock or structure requiring support. 
The purpose of the bond length is to transfer the anchor tensile load to the surrounding ground. 
The unbonded length of the tendon transmits the tensile load from the bond length to the anchor 
head (Littlejohn 1993). The anchor tendon is comprised of steel bar or strand/wire which is 
secured to the rock with cement or epoxy grout (Sabatini et al. 1999). 

Tensioning is the special characteristic of rock anchors by which a particular load is applied to 
the surrounding ground. Tensioned anchors alter the primary state of stress in the ground by 
developing shear stresses along the bond length and by compressive stresses applied through the 
bearing plate (i.e., the anchor head). 

As the tendon is put in tension, the rock anchor provides confinement to the medium between 
its two ends (Bobet and Einstein 2011). Moreover, according to the Mohr-Coulomb failure 
criterion, the confinement induced by rock anchors increases minimum principal stress (σ3) in the 
ground which in turn increases the strength of surrounding rock. Tensioned anchors also 
strengthen jointed rock masses by increasing the frictional resistance along discontinuities 
(Littlejohn 1993). 

The design of rock anchors demands a good understanding of their action mechanism and 
interaction with the surrounding rock. This demands accurate estimation of stresses induced by 
rock anchors in the rock mass. Culver and Jorstad (1967) stated that in mechanically anchored 
rockbolts there are extremely high local stresses in the anchor region which are capable of 
generating fractures in rock. They also pointed out that the knowledge of magnitude and 
distribution of stress is essential in describing the conditions which would initiate large fractures in 
the surrounding rock mass. Generally, accurate estimation the stress around tensioned rock 
anchors provides basic insight into their behavior which eventually leads to improved designs. To 
achieve this goal various methods may be used like experimental observations, numerical analyses 
and analytical solutions. 

Hobst and Zajic (1977) discussed the problem of stress distribution around anchors using 
model tests of a tensioned anchor in sand. They found that there is a zone of compression at the 
proximal end and a zone of tension at the distal end of the anchor. 

Nitzsche and Haas (1976) and Gao and Kang (2008) investigated numerically the effect of 
tensioned rockbolts on the state of stress around roof bolts in underground openings. Yap and 
Rodger (1984) also studied the behavior of vertical rock anchors using finite element method 
(FEM). Although numerical approaches are widely used to simulate various geomechanical 
problems, they suffer two major weaknesses in modelling tensioned anchors. In fact, numerical 
methods are incapable of considering the bearing plate effects and real distribution and magnitude 
of shear stresses mobilized along the tendon-grout-rock interfaces. These shear stresses, as will be 
shown later, can greatly influence the magnitude and distribution of stresses around tensioned rock 
anchors. 

Two important fundamental solutions derived from the theory of elasticity that are especially 
relevant to the study of anchors are: (1) Boussinesq solution (Poulos and Davis 1974), for a point 
load at the surface of an infinite half-space; and (2) Mindlin solution (Mindlin 1936), for a point 
load at the interior of a semi-infinite medium. In this regard, Wijk (1978) and Wu et al. (2010) 
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Fig. 1 Schematic diagram of a tensioned rock anchor 
 
 
used a combination of the abovementioned solutions together with the principle of superposition 
(Timoshenko and Goodier 1970) to obtain analytic solutions for stresses around tensioned 
rockbolts. They assumed that a tensioned rockbolt can be modeled by a pair of equal point loads of 
opposite direction. Moreover, Papanastassopoulou (1983) presented a closed form solution for 
stress field around tensioned bolts in homogeneous and linear elastic rock mass using a pair of 
infinite tangential line loads. 

Culver and Jorstad (1967) and Russell (1968) obtained two-dimensional elastic solutions for 
stresses around mechanically anchored (cone-type) and expansion-type rockbolts, respectively. 
They used models which consist of surface tractions (normal and/or shear) applied at a limited 
borehole surface. Furthermore, Bray in (Brown 1987) discussed the influence of a tensioned 
rockbolt on the stress distribution around a circular opening. 

While limited in their applicability due to some of the assumptions made in their derivation, 
analytic solutions provide the means for a quick quantitative estimate of the interaction between 
the rock mass and the anchor. All analytical solutions proposed so far to obtain the stress field 
around tensioned anchors ignore the existence of bearing plate and bond length in their derivation. 
In fact, to the knowledge of authors, no analytical solution exists that accounts for the contribution 
of bearing plate and shear stress mobilization along the bond length to the change of stresses in the 
surrounding rock. 

This paper presents a theoretical approach for the analysis of tensioned grouted anchors in rock 
considering the presence of bearing plate and bond length at depth. Due to complexities associated 
with the behavior of rock mass, the most common approach which can be adopted to ease the 
problem is to assume that the rock is homogeneous, isotropic with a linear elastic constitutive 
relationship between stress and strain for the rock material. This approach has proven (Windsor 
and Thompson 1993, Brown 1974) to be useful particularly in predicting zones of stress 
concentration and stress relaxation near excavations which are relevant in this study. Thus, for the 
derivation of the solution the following assumptions are made: 

 

(i) Linear elastic behavior of rock mass and rock anchor 
(ii) Semi-infinite rock mass surrounding the anchor. 
(iii) Plane strain condition in the direction perpendicular to the cross-section of the anchor (Fig. 

1) 
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In addition, to highlight stresses induced by the tensioned anchor, the surrounding rock is 
assumed to be weightless with no in-situ stresses. 

An illustrative example is given at the end of this paper to investigate the stress distribution 
around a tensioned rock anchor. To verify the proposed elastic solutions, a number of 
continuum-based numerical analyses are performed with the finite-difference method (FDM) 
program, and results are compared with those of theoretical approach. 

 
 

2. Methodology 
 
In this section the methodology used to obtain a solution for stress distribution around 

tensioned rock anchors is discussed. Fig. 1 shows a schematic of the tensioned rock anchor 
problem that will be solved. It consists of a rock anchor installed at the surface of a semi-infinite 
elastic rock mass. The rock anchor is tensioned and locked-off at the load T. As proposed by 
Windsor (1997), a reinforcing system is comprised of the ground, the reinforcing element (steel 
rod/strands), the internal fixture and the external fixture. For grouted rock anchors, the external 
fixture refers to the bearing plate and nut and the internal fixture is a medium such as cement grout 
or resin which provides a coupling condition at the interface. 

Since rock anchors are considered as springs of constant stiffness with load proportional to 
elongation, a tensioned anchor can be replaced by two loads acting at the positions of external and 
internal fixtures. In literature, some authors replaced external and internal fixtures with point loads 
(see for example: Wijk (1978), Papanastassopoulou (1983), Wu et al. (2010)) and some used 
distributed loads as internal fixture (see for example: Culver and Jorstad (1967), Russell (1968)). 
Since the anchor head is represented by a point load in previous works, the bearing plate influence 
on the stress distribution is ignored. Moreover, in the case of grouted anchors, real distribution of 
shear stresses mobilized along the bond length (internal fixture) should also be considered in the 
analysis. 

In this study, both the anchor bearing plate and its bond (embedment) length are considered for 
analysis of stress. The bearing plate can be modeled by a uniform load as the anchor load is 
distributed by the bearing plate over the rock surface. Furthermore, the tensile load transferred to 
the surrounding rock through the bond length can be simulated by shear stresses mobilized at the 
rock-anchor interface. 

Since all differential equations and boundary conditions are linear in the theory of elasticity 
(Timoshenko and Goodier 1970), the anchor problem can be decomposed into two simpler but 
fundamental problems. Specifically, two fundamental solutions relevant to the problem of 
tensioned anchors are: 

 

(1) A uniform distributed load of magnitude q applied over a finite portion surface of a 
semi-infinite rock (Fig. 2(a)), 

(2) A non-uniform distribution of shear stress applied at the interface of the rock-anchor along 
the bond length (Fig. 2(b)). 

 

Fig. 2 illustrates the geometry of the decomposed tensioned anchor problem. Since this is a 
two-dimensional elastic analysis, it is supposed that the anchor loads are distributed per unit width 
of the semi-infinite medium. The solution of the anchor problem shown in Fig. 1 can be obtained 
by superposition of the solutions of the fundamental problems. In the following sections, the 
solutions of these fundamental problems are found first and then, a comprehensive analysis of 
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(a) Geometry of the problem of a distributed load 
applied at the surface of a semi-infinite rock 

(b) A distributed shear stress τa mobilized along the 
bond length of the rock anchor 

Fig. 2 Problem decomposition 
 
 

stress is also presented. Note that in this paper compression is taken as positive and tension as 
negative. 

 
 

3. Solution of fundamental problems 
 
3.1 A distributed load at the surface of a semi-infinite rock 
 
In this section the effect of anchor load distributed by the bearing plate is considered. In order 

to model the bearing plate in the analysis, a uniform pressure corresponding to the load distributed 
by the bearing plate should be applied at the rock surface. The geometry of the problem of 
distributed load applied at the surface of a semi-infinite medium is illustrated in Fig. 2(a). The 
solution of this problem is available in Sadd (2005). Thereupon, the stresses produced under a 
distributed load, q, over a finite portion (−a < x < a) of the surface of a semi-infinite rock are 
 

 )2sin2(sin)(2
2 1212 


 
q

x                      (1) 

 

 )2sin2(sin)(2
2 1212 


 
q

z                      (2) 

 

 )2cos2cos
2 12 


 
q

xz                           (3) 

 
Where q is the magnitude of the distributed load [FL−2] at the rock surface. Other parameters 
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are defined in Fig. 2(a). Note that θ1 and θ2 are in radians. 
 
3.2 A non-linear distribution of shear stress along the bond length 
 
In examining the behavior of a tensioned rock anchor, it is necessary to determine the 

distribution of shear stress on an anchor element which when used in conjunction with elastic 
theory leads to a mathematically tractable solution. 

In order to obtain a solution for the problem of a distributed shear stress applied to the rock 
along the anchor bond length, a simpler but essential solution has to be introduced first. The 
solution of a point load problem acting at a specific distance from the surface of a semi-infinite 
medium is relevant here. On the other hand, a solution is also needed for modeling the real 
interaction between anchor and rock. In the subsequent sections, the abovementioned solutions are 
presented and the stresses induced by a non-linear distribution of shear stress along the bond 
length are also obtained. 

 
3.2.1 A point load in a semi-infinite rock 

This problem, known as Mindlin’s Problem consists of a concentrated force P applied at a point 
in the interior of a semi-infinite medium (see Fig. 3). A two-dimensional plane-stress solution for 
Mindlin’s problem is developed by Melan in (Poulos and Davis 1974). After some modifications 
for plain strain conditions and particular geometry of the interested problem in Fig. 3, Melan’s 
solution is expressed as follows 
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Fig. 3 A concentrated load of magnitude P applied at the distance c from the surface of a 
semi-infinite rock 

 
 
ν is the Poisson’s ratio of the rock. 
 
3.2.2 Modeling rock-anchor interaction 

When a tensile force is applied to the anchor’s tendon, it is transferred to the grout through 
shear stresses mobilized at the tendon/grout interface. To investigate the influence of these shear 
stresses on the stresses produced around a rock anchor, it is necessary to determine the distribution 
of shear stress mobilized along the anchor’s shaft. 

The transfer of the anchor load, T, to the surrounding rock is a complicated problem and no 
exact solution exists in this regard. Shear-lag approach, which is often used for analysis of stress 
transfer problems in composite materials or materials with inclusions, can be applied to determine 
an approximate solution (McCartney 1989, Hseuh 1995, Narin and Mendels 1996). Several 
authors (see for example, Farmer 1975, Li and Stillborg 1999) applied the shear-lag method to 
obtain an analytical solution for shear stresses developed at the grouted length of rockbolts. The 
solution proposed by Li and Stillborg (1999) is more general than others and has shown good 
agreement with experiments (Bobet 2006). 
 
 

 

 

(a) (b) 

Fig. 4 (a) A ring of concentrated load applied at the perimeter of the tendon; (b) Schematic of a 
small element of the anchor tendon 
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For grouted rock anchors subjected to a tensile stress, attenuation of the shear stress, τa, along 
the bond length before any tendon/grout interface decoupling is expressed as (Li and Stillborg 
1999) 











b
aa d

z
z  2exp..

2
)(                          (7) 

 

where 
 

)1(2
;

)1(2

lnln

2

0

2

g

g
g

r

r
r

g
g

b

g
rb

gr

v

E
G

v

E
G

d

d
G

d

d
GE

GG







































 

 
σa is the axial tensile stress of the anchor at the loading point, z is the distance from the 

proximal end of the bond length, db is the diameter of the tendon, dg is the diameter of the borehole 
(grout cylinder), d0 is the diameter of the anchor influence area, which can be estimated as d0 = 10 
dg (Li and Stillborg 1999), Eb is Young’s modulus of the tendon steel, Er is Young’s modulus of 
the rock, Eg is Young’s modulus of the grout, νr and νg are the Poisson’s ratio of the rock and grout, 
respectively. 

According to Eq. (7), the shear stress is maximum at the proximal end and quickly declines 
along the bond length due to the negative exponent. The shape of the shear stress τa distribution 
suggested by Li and Stillborg (1999) in Eq. (7) is shown in Fig. 2(b). 

As stated earlier, the mobilized shear stress is applied over the circumference of the anchor 
shaft at the tendon/grout interface. As the section of the anchor shaft element is circular, the shear 
stress on the interface can be regarded as a concentrated ring load in vertical direction (Fig. 4(a)). 
The relationship between the force in the tendon inside the bonded zone, dF, and the shear stress at 
the interface can be established by considering a small section of the tendon as shown in Fig. 4(b). 
Regarding Fig. 4, the following expressions can be derived. 
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From Eqs. (7)-(9), the anchor force, dF, can be obtained as below 
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According to the definitions of z in Eq. (7), c0 in Fig. 2(b) and c in Fig. 3, the distance from the 

proximal end of bond length, z, can be redefined as (c − c0). Therefore, integration of Eq. (10) with 
respect to the argument (dθ) from 0 to 2π yields the following equation for a ring of dF 
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The stress components caused by a unit load ring of dF at an arbitrary point, (x.z), in the 

surrounding rock can be obtained using Eqs. (4)-(6) where P is replaced by dF from Eq. (11). 
Integration of the resulting stress components with respect to dc from c0 to c0 + lb leads to the 
stresses caused by the exponential distribution of shear stress applied along the anchor bond length 
(see Appendix A. for details of the derivation of the equations). 
 
 
4. Development of the analytical solution 
 

As stated earlier, the Superposition Principle is used for derivation of the stress formulae. The 
stresses at a particular point, (x,z), are obtained by addition of the stress components found from 
the solution given in Section 3.1 (Eqs. (1)-(3)) and  the solution proposed in Section 3.2 for 
stresses around the anchor bond length. Accordingly, the complete solution of the post–tensioned 
grouted rock anchor with bearing plate is expressed as follows 

 

 

 

 )2sin2(sin)(2
4

43)(
)(exp.

)(82)2)(()(
)(exp.

1212

4
2

2

2
2

2
1

0

6
2

2

4
2

222

4
1

2

0

0

0

0

0
































 








 












 








a

T

dc
r

zx

r

cz

r

cz
ccA

ACT

dc
r

xczcz

r

cxcxxcz

r

xcz
ccA

ABT

b

b

lc

c

lc

c
x

 (12) 

 

 

 

 )2sin2(sin)(2
4

43
)(exp.

)(8)2))[(()(
)(exp.

1212

4
2

2

2
2

2
1

0

6
2

2

4
2

2

4
1

3

0

0

0

0

0































 








 












 








a

T

dc
r

zx

r

cz

r

cz
ccA

ACT

dc
r

xczcz

r

czczcz

r

cz
ccA

ABT

b

b

lc

c

lc

c
z

  (13) 

 

 

 

 )2cos2cos
4

.
)(411

)(exp.

.
)(8)2()(

)(exp.

12

4
2

2
2

2
1

0

6
2

2

4
2

22

4
1

2

0

0

0

0

0


















 







 








 












 








a

T

dc
r

czz

rr
ccA

ACTx

dc
r

czcz

r

cczz

r

cz
ccA

ABTx

b

b

lc

c

lc

c
xz

    (14) 

where 

449



 
 
 
 
 
 

Alan Showkati, Parviz Maarefvand and Hossein Hassani 

)21(4

31

)21(2

1

2

v

v
C

v

v
B

d
A

b
















 

 
As can be seen, due to the shear stress developed along the anchor bond length, expressions for 

stress components have integral terms. Integration can be done either analytically, which is a very 
tedious process, or numerically for a specific problem. 

 
 

5. Illustrative example and verification 
 
5.1 Illustrative example 
 
This section investigates in more detail the expressions proposed for analysis of stress by 

means of an example. This example illustrates the approach proposed for the analysis of rock 
anchor and provides a sound basis to gain a clear perception of the stress distribution around a 
tensioned anchor in rock. The formation and extent of compression and tension zones in the rock 
surrounding the anchor are also discussed in this section. 

Due to the complex integral terms in the equations obtained for stress components (Eqs. 
(12)-(14)), numerical approach has been implemented for evaluating the integrals. The integral 
terms were approximated to within an error of 10−6 using recursive adaptive Lobatto quadrature 
method (Gander and Gautschi 2000). MATLAB software (Mathworks 2010) was utilized to 
perform numerical integrations and calculations of stress components. 

The tensioned rock anchor problem shown in Fig. 1 was solved using the Eqs. (12-14) obtained 
in section 4. The various input parameters used in this analysis are given in Table 1. Contour 
graphs have been used to demonstrate how stresses are distributed around the anchor. Figs. 6 and 7 
depict the distribution of vertical stress, σz, and horizontal stress, σx, around the anchor. In these 
figures, the horizontal axis is extended along the anchor shaft and the vertical axis corresponds to 
the rock surface at which the anchor head is installed. In the area of these plots, the positions of 
bearing plate, unbonded and bond length of the anchor correspond to (z = 0, 0 ≤ x ≤ 0.15), (x = 0, 0 
< z < 1) and (x = 0, 1 ≤ z ≤ 2), respectively. It should be noted that, due to the geometric symmetry, 
only half of the anchor problem was studied. 

The formation of one compressive and two tensile regions for the vertical stress, σz, can be 
distinguished in Fig. 5 As can be seen, the maximum compressive and tensile values of σz are 
produced beneath the bearing plate and near the proximal end of the bond length, respectively. Fig. 
5 shows that the vertical stress is completely compressive in the unbonded region around the 
anchor axis. 

A same region is also observed by Hobst and Zajic (1977) in model tests of a tensioned anchor 
in sand. This compressive region is of a great importance in providing lateral confinement to the 
rock and stabilizing the rock near the surface of excavations. 

Although σz is compressive in the unbonded region, a large tensile stress zone is developed 
around the anchor bond length especially in the vicinity of the proximal end. Since geo-materials 

450



 
 
 
 
 
 

Theoretical determination of stress around a tensioned grouted anchor in rock 

Table 1 Input parameters used in the example 

 Bond length, lb 1 m  

 Unbonded length, c0 1 m  

 Bearing plate dimension, 2a 0.3 m  

 Tension force, T 100 kN  

 Tendon/bar diameter, db 0.032 m  

 Grout/drill hole diameter, dg 0.1 m  

 Young’s modulus of rock, Er 30 GPa  

 Young’s modulus of grout, Eg 20 GPa  

 Young’s modulus of tendon/bar, Eb 200 GPa  

 Poisson’s ratio of rock, νr 0.32  

 Poisson’s ratio of grout, νg 0.2  

 

Fig. 5 Contours of vertical stress σz distribution 
 
 

geerally have low tensile strength, this region with high tensile stress, σz = −110 kPa, may cause 
initiation of fractures or even failure of the surrounding rock. That’s why; in the design stage, the 
region surrounding the bond length of a tensioned anchor requires special attention to prevent the 
failure of rock. In addition to the abovementioned tensile region, another tensile zone away from 
the anchor axis and near the rock surface (see Fig. 5) is also observed. Due to low values of stress, 
this tensile region is not considered especially important. 

It can be easily deduced from Fig. 6, which depicts the horizontal stress contours, that σx 

distribution is generally similar to that of σz. The only exception is that a tensile stress zone with 
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the maximum value of 17 kPa is formed in the unbonded region far beneath the bearing plate. It is 
also observed that the compressive stress zone for σx is larger in comparison to σz and the highest 
value is also produced under the bearing plate. 

Unlike σz, the highest value of tensile horizontal stress in the zone near the rock surface outside 
the bearing plate is considerable and equals to 53 kPa. These tensile stresses in this region which is 
called the Spalling zone may cause micro-cracking of the surface area. By definition, Spalling 
stresses are tensile horizontal stresses acting normal to the axis of load and distributed along the 
loaded rock surface. 

Spalling stresses, which are dominated in the Spalling zone, are mainly caused by the condition 
of compatibility of strains. These stresses are also induced between multiple tensioned anchors 
along the loaded surface (Windsor 1993). Similar stresses are also observed in the vicinity of the 
anchorage zone of tensioned concrete members (see for example: Brudent 1990, Sanders and 
Breen 1997, Zhao et al. 2011). 

A plot of shear stress distribution, τxz, is shown in Fig. 7. As can be seen, high values of shear 
stress are produced beneath the edge of bearing plate and in the vicinity of the bond length 
proximal end. Shear stress concentration under the bearing plate edge can cause punching shear 
failure of the rock or the reinforcing wall/facing on which the anchor is installed. Note that the 
concentration of shear stress around the anchor proximal end is mainly due to the shear stresses 
mobilized at the tendon-grout-rock interfaces (see Fig. 2(b) and Eq. 7). It is worthy of note that 
shear stress values other than two areas just discussed are small and negligible. 

In the following, the effect of relative stiffness between the surrounding rock and the grout, r = 
Er / Eg (stiffness ratio), on the vertical stress is investigated and the results are shown in Fig. 8. In 
this figure, σz variation with depth in the section under the bearing plate (x / a = 0.5) is plotted for 
different values of stiffness ratio, r, ranging from 0.001 to 5. It is observed that σz values 

 
 

Fig. 6 Contours of horizontal stress σx distribution 
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Fig. 7 Contours of shear stress τxz distribution 

 

Fig. 8 Variation of σz with depth for various relative stiffness between the grout and surrounding 
rock; r = Er / Eg 

 
 

near the bearing plate are similar for various values of r, but at greater depths, there is a noticeable 
discrepancy between stress distributions. 

What is interesting is that for the smallest value of r which is valid for soft soils, the vertical 
stress is completely compressive and no stress concentration is observed with depth. As the 
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stiffness ratio increases, the curves are separated from each other and large stress concentrations 
are formed around the proximal end of the anchor bond length. 

 
5.2 Verification 
 
In order to verify the results obtained with the outlined analytical approach, the previous 

example is also solved for with the code FLAC (Itasca Consulting Group, 2005), a 2D Finite 
Difference Method (FDM) program, with the assumption of plane strain. FLAC uses Cable 
elements as rockbolt/anchor reinforcements which are capable of modeling the shear resistance 
between the grout and the cable. 

It should be noted that the formulation used in Cable elements does not consider the anchor 
head (bearing plate) geometry. In order to compare the theoretical results with FDM, it is 
necessary to consider the anchor head geometry in the FDM code. To simulate the bearing plate in 
FLAC, the subsequent procedure is followed: In the first step, it is necessary to neutralize the 
Cable element point load applied to the rock surface. Since the Cable element load is applied to the 
surface through a node, application of a tensile point load with the same magnitude to this node 
will counterbalance and neutralize the Cable element load. In the next step, if a distributed 
pressure corresponding to the stress produced by bearing plate is applied to the rock surface, the 
bearing plate effect will be correctly modeled with FDM. Moreover, to make a comparison 
between results obtained from the analytical approach and FDM, the out of plane spacing between 
rock anchors is taken as unity in FLAC. 

Having performed the abovementioned procedure, the stress components are obtained with the 
FDM. Figs. 9 and 10 show how the stresses obtained with the FDM compare with the analytical 
approach. It is clearly observed that the analytical results have a very good agreement with FDM. 
The small discrepancies found near the proximal end can be explained by tensile stress distribution 
in the tendon embedded in the bond length (Fig. 11). This figure shows that the tensile stress in the 
tendon near the proximal end in the analytical approach is 20% higher than FDM. This higher 
tensile stress in the tendon can justify small differences noticed between the stresses obtained by 
analytical approach and FDM. It should be noted that in the analytical approach the tensile stress  

 
 

Fig. 9 σz variation along two vertical sections beneath bearing plate (x / a = 0.5) and outside the 
bearing plate (x / a = 3.33). Comparison between FDM and analytical approach 
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Fig. 10 σx variation along two vertical sections beneath bearing plate (x / a = 0.5) and outside 
the bearing plate (x / a = 3.33). Comparison between FDM and analytical approach 

 

Fig. 11 Tensile axial stress in the tendon embedded in the anchor bond length. Comparison 
between FDM and analytical approach 

 
 

in the tendon is obtained from Li and Stillborg (1999) model (Eq. (7)) which has shown good 
agreement with experiments. Consequently, the results obtained from the analytical approach 
(white symbols in Fig. 11) are more accurate than those of FDM. 

A new theoretical approach for stress analysis around tensioned rock anchors has been 
developed and presented in this paper. To formulate the problem, a number of assumptions have 
been made: semi-infinite, isotropic, homogeneous elastic rock; elastic behavior of tendon; plane 
strain conditions. The problem of stress distribution around a tensioned anchor in rock is solved by 
decomposing it into two simpler but fundamental problems: A distributed load applied at a finite 
portion (anchor head area) of the rock surface and a shear stress distribution applied at the 
interface between the anchor and rock along the grouted bond length. The solution of the first 
fundamental problem already exists and the solution of the shear stress distributed along the bond 
length has been found in this paper. The complete solution of the tensioned anchor problem is 
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obtained according to Superposition principle by addition of the stress components found from the 
solution of each fundamental problem. 

The proposed solution includes details of the anchor head (bearing plate) and grouted bond 
length. To gain a thorough understanding of the stress distribution around a tensioned anchor in 
rock, an illustrative example is solved using the proposed formulation and stress contours are 
drawn for stress components. 

Results show that in the unbonded region, the vertical stress is completely compressive and a 
large tensile zone is formed around the anchor bond length especially in the vicinity of the 
proximal end. Horizontal stress distribution is found to be generally similar to that of vertical 
stress but an area of tensile horizontal stress called the Spalling zone is observed outside the face 
plate near the rock surface. In the case of shear stress, stress concentrations are observed around 
the bearing plate edge and in the vicinity of the bond length proximal end. Based on the results 
obtained, large stress concentrations induced around the proximal end of the anchor bond length 
require special attention in the design stage to prevent initiation and propagation of fractures in 
rock. 

Sensitivity of the vertical stress to the relative stiffness between the grout and surrounding rock 
was further explored. The results show that for a soft soil/rock the vertical stress is completely 
compressive and no tensile region is observed around the anchor. As the rock stiffness increases, a 
tensile region is formed around the anchor bond length and large stress concentrations are 
observed in the vicinity of the bond length proximal end. 

To verify the analytical results, finite difference method (FDM) analysis has been performed 
and the results are compared with theoretical approach. Very good agreements have been obtained 
for the analytical results in comparison with FDM. Since a realistic model for distribution of the 
shear stress along the bond length is assumed in the analytical approach, the accuracy of the 
proposed solution is higher in comparison to FDM. 

The main contributions of this study are consideration of the bearing plate and grouted bond 
length in derivation of the problem solution. To the knowledge of authors, no studies have been 
conducted so far that consider bearing plate and bond length in the analysis of stress around 
tensioned rock anchors. Although the analysis outlined in this paper is novel and has major 
advantages, the solution has limitations in that it does not consider yielding of the rock and 
decoupling at the interface between the anchor and the rock. The proposed analytical solution is 
straightforward and provides accurate values for the stress components. The solution can also be 
used for preliminary design and calibration of numerical models. 
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Appendix A: Derivation of the stresses induced by the anchor bond length 
 
 
This appendix provides a demonstration of the derivation of the formulations obtained for stresses 

induced by the shear stresses mobilized along the anchor bond length (See Fig. 2(b)). As stated 
earlier, the anchor problem can be obtained using two simpler fundamental problems: A 
uniform distributed load of magnitude q applied over the surface of the rock under the bearing 
plate (Fig. 2(a)) and a concentrated force P applied at a point in the interior of the semi-infinite 
rock (Fig. 3). 

The solutions of the first and the second problems have been presented in Eqs. (1)-(3) and Eqs. 
(4)-(6), respectively. The latter solution is used to find the stresses induced by the non-uniform 
distribution of shear stress applied at the interface of the rock-anchor along the bond length. 

The shear stress on the interface can be regarded as a concentrated ring load in vertical direction 
(Fig. 4(a)). The relationship between the force in the tendon inside the bonded zone, dF, and the 
shear stress at the interface were obtained as follows (Eq. (11)) 
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The stress components caused by this unit load ring of dF at an arbitrary point, (x.z), in the 

surrounding rock can be obtained using Eqs. (4)-(6) where P is replaced by dF from Eq. (A1). 
Thus, we have 

 
 

dc
r

zx

r

cz

r

cz

v

v

r

xczcz

r

cxcxcz

r

xcz

v

v

d

cc

d

T

bb
x

.
43)(

)21(4

31

)(8

2)2)(()(

)21(2

1)(
2exp.

2

4
2

2

2
2

2
1

6
2

2

4
2

222

4
1

2

0
















































































 



 




   (A2) 

 
 















































 
















 





4
2

2

2
2

2
1

6
2

2

4
2

2

4
1

3

0

43

)21(4

31

)(8)2))[(()(

)21(2

1

)(
2exp.

2

r

zx

r

cz

r

cz

v

v

r

xczcz

r

czczcz

r

cz

v

v

d

cc

d

T

bb
z 




          (A3) 

459



 
 
 
 
 
 

Alan Showkati, Parviz Maarefvand and Hossein Hassani 




























 














 
















 





4
2

2
2

2
1

6
2

2

4
2

22

4
1

2

0

)(411

)21(4

31

)(8)2()(

)21(2

1

)(
2exp.

2

r

czz

rrv

v

r

czcz

r

cczz

r

cz

v

v

d

cc

d

T

bb
xz 




             (A4) 

 
Integration of Eqs. (A.2)-(A.4) with respect to dc from c0 to c0 + lb results in the stresses caused by 

the exponential distribution of shear stress applied along the anchor bond length as follows 
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