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Abstract.  In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were 
studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on 
the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) 
of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of 
the basic friction angle of the joint (φb), the joint roughness coefficient (JRC), and the joint compressive 
strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS 
on the FS of a slope is small, whereas the influences of the φb and the JRC are significant. The FS of the rock 
slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow 
outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. 
Finally, the work is extended to study the reliability of the slope against plane failure according to the 
uncertainty from physical and mechanics parameters. 
 
Keywords:    rock slope stability analysis; plane failure; nonlinear Barton-Bandis failure criterion; 
hydraulic action; factor of safety 
 
 
1. Introduction 
 

Hoek and Bray (1981) proposed the basic analytical solution for rock slope plane failures based 
on limit equilibrium theory. This basic solution was updated by a number of researchers 
considering various internal influencing factors, such as the height of the rock slope, the angle of 
the slope face, the angle of the failure surface, the depth of the tension crack, the shear strength of 
the failure surface, and the unit weight of the rock, as well as external influencing factors, such as 
the seismic load, surcharges, water pressure, and reinforcement effects (Ling and Cheng 1997, 
Kliche 1999, Rocscience 2003, Wyllie and Mah 2004, Shu et al. 2004, Hoek 2007, Shukla et al. 
2009, Shukla and Hossain 2011a, b, Zhao et al. 2011). 

However, few studies focus on the Factor of Safety (FS) for rock slopes with an inclined upper 
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slope surface and inclined crack, which appear widely in engineering practice. Sharma et al. (1995) 
addressed this shortage, but Rocscience (2003) found that the equation provided in Sharma et al. 
(1995) for calculating the wedge weights is incorrect and that the factor of safety provided by the 
paper is not dependable. 

Among the external influencing factors of slope stability, the effect of groundwater is one of 
the most important factors causing slope failure; therefore, the hydraulic distribution form and 
flow activities of underground water and its influence on the stability of rock slopes have become 
one of the most important topics of engineering research on rock slopes (Hoek and Bray 1981, 
Sharma et al. 1995, Wyllie and Mah 2004, Luo et al. 2010, Zhao et al. 2011). Examples illustrate 
that the safety factor of a saturated slope is less than 70% of the safety factor of a dry slope (Hoek 
and Bray 1981, Chen et al. 2005). 

Hoek and Bray (1981) believed that the hydraulic distribution is unknown in actual rock slope 
engineering. Tang and Chen (2008) performed 72 sets of experiments on water pressure in a 
fissure to study the relationship between a static water pressure calculation formula and the 
aperture of the fissure. The results indicated that a complex and particular water pressure 
distribution formed in the tension fissure. Hoek and Bray (1981) suggested that the maximum 
water pressure is located at the bottom of the tension crack, and many follow-up studies (Ling and 
Cheng 1997, Kliche 1999, Rocscience 2003, Shu et al. 2004, Wyllie and Mah 2004, Hoek 2007, 
Shukla et al. 2009, Shukla and Hossain 2011a, b, Wu et al. 2011) corroborated this suggestion. 
However, this finding is not completely in conformity with practical engineering in certain 
situations, such as when the flow slit of a failure plane is blocked and the groundwater cannot 
discharge fluently through the flow slit (Luo et al. 2010, Zhao et al. 2011). 

In fact, Hoek and Bray (1981) noted that there may be a more dangerous water pressure 
distribution in a rock slope if the slope face is iced in winter and the assumed condition of zero 
water pressure in the rock slope no longer exists. In this case, the water pressure at the bottom of 
the rock slope face should be equal to the total head of the water pressure in the rock slope. 
Therefore, this possibility should be established in the preliminary design stage in region where 
freezing conditions are possible. A similar situation occurred in southern China in the spring of 
2008, when extreme snow and ice conditions appeared in a large area of Hunan, Guizhou, Sichuan, 
Yunan, Jiangxi, and Hubei Provinces (Wei et al. 2008, Yin 2008, Ma et al. 2008, Zhang et al. 
2010, 2011). 

Among the internal influencing factors of slope stability, the shear characteristics of the 
discontinuity in the rock mass are important because the discontinuity controls the deformation 
and destruction of the entire rock slope. Numerous project failures around the world have been 
caused by discontinuities in rock masses; thus, studying the shear strength of discontinuities in 
rock masses and their influence on rock-soil structures has important theoretical significance and 
engineering value. Many scholars have found that shear behavior on the rock mass structure 
surface cannot always satisfy the linear Mohr-Coulomb (M-C) failure criterion, which exhibits 
linear behavior. In particular, the shear strength given by the linear M-C criterion is significantly 
large when the normal stress σn is smaller. Because most of the vertical stresses of the rock slopes 
involved are small, analyzing rock slope stability with the linear M-C failure criterion may cause 
significant overestimation errors. Moreover, Choi and Chung (2004) noted that the joint cohesion, 
joint friction angle, and joint tensile strength, which are the essential input parameters in the M-C 
failure criterion, are not easy to obtain from laboratory tests. Therefore, it is necessary to adopt 
another strength criterion reflecting the nonlinear shear behavior of the discontinuity in the rock 
mass (Chen et al. 2005). 
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One effective model is the joint roughness coefficient – joint compression strength (JRC-JCS) 
model proposed by Barton, which estimates the shear strength parameters of structural surfaces in 
engineering practice (Barton 1971, Barton and Bandis 1990). However, the majority of calculation 
methods and numerical software applied in geotechnical engineering are established on the linear 
M-C failure criterion, so many studies focus on turning nonlinear Barton-Bandis (B-B) failure 
criterion parameters into the linear M-C failure criterion strength parameters c and φ by using the 
equivalent tangent method and the equivalent linear fitting method (Zhao 1998, Choi and Chung 
2004, Liu et al. 2005, Li et al. 2009). 

Only a few researchers have studied the stability of rock slopes based on the B-B failure 
criterion. Miller (1988) and Rocscience (2003) analyzed the stability of rock slopes without 
tension cracks against planar failure based on the B-B failure criterion under simple conditions. 
However, the analysis results of the safety factor were incorrect when at an (τ / σn) > 70° (here τ is 
the peak strength and σn is the effective normal stress on the failure plane) (Rocscience 2003, Chen 
et al. 2005, Nagpal and Basha 2012). 

There are many uncertainties in stability analysis of rock slope, which has influence on the 
analysis results. One the shortcoming of the conventional FS used in the rock slope stability 
analysis is that it does not reflect the uncertainty of the rock mass parameters. Some researchers 
have contributed to the subject of reliability of rock slopes with B-B failure criterion (Feng and 
Lajtai 1997, Nagpal and Basha 2012, Sharma and Basha 2012, Basha and Moghal 2013). Feng and 
Lajtai (1997) analyze the effect of parameter variability with EzSlide through the use of the Monte 
Carlo simulation technique. Nagpal and Basha (2012) developed a reliability approach, in which 
the resisting forces of the sliding plane are calculated using Barton’s theory to analyze the stability 
of anchored rock slopes against planar failure. Sharma and Basha (2012) and Basha and Moghal 
(2013) summarized the development of a methodology and reliability-based LRFD guidelines (the 
Load Resistance Factor Design) for rock slopes against wedge failures, and Barton’s model was 
used to derive analytical expressions for the FS. 

This paper aims to derive the effect of different water pressure distribution forms and nonlinear 
B-B failure criteria on the stability of translational sliding in rock slopes with an inclined upper 
slope surface and crack. The influence of various parameters on the stability of rock slopes was 
analyzed. Similar as Feng and Lajtai (1997), Nagpal and Basha (2012), Sharma and Basha (2012) 
and Basha and Moghal (2013), the work is also extended to study the reliability of the rock slope 
against plane failure according to the uncertainty of calculation parameters (e.g., material strength, 
joint geometry and pore water pressures). 

 
 

2. Nonlinear Barton-Bandis failure criterion of the structural plane 
 
There are two methods to estimate the shear strength of the discontinuity in rock masses 

(Ladanyi and Archambault 1970, Barton 1971, Jaeger 1971, Barton and Bandis 1990, Chen et al. 
2005). The first method describes the mechanical mechanism of the shear strength formula for the 
structural surface by analyzing the empirical formula, which is summarized from direct shear tests 
of the structural surface. The second method proposes a theoretical formula of shear strength for 
the structural surface based on a theoretical analysis of the structural shear strength, and a test is 
conducted to verify the effectiveness of this method. The former formula for the shear strength of 
the structure surface is an estimating test, such as the Patton formula, Jaeger formula, and Barton 
formula; the latter is an estimating theory, such as the Ladanyi formula (Chen et al. 2005). 
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Barton (1971) and Barton and Bandis (1990) simulate the structural surface by using a model 
material formed by tensile failure and a rough undulating surface. By carefully studying the direct 
shear characteristics and test results of the surface, they propose the nonlinear JRC-JCS empirical 
formula, which can be used to estimate the peak shear strength of an irregular discontinuity with 
infill 
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where the JRC is in accordance with Barton typical curve comparison value. If the rock adjacent to 
the discontinuity surface is unweathered, the JCS is equal to the uniaxial compressive strength of 
the rock. If the rock adjacent to the discontinuity surface is weathered, the JCS decreases to a 
quarter of the uniaxial compressive strength. φb is the basic friction angle of rock mass structure 
surface and is determined by laboratory experiments. In practical applications, the JRC, JCS, and 
φb values can be estimated based on experience or existing standards (Barton 1971, Barton and 
Bandis 1990, Chen et al. 2005, He et al. 2012). 

The Barton formula is derived based on the direct shear test results of model materials under 
low-stress conditions (Chen et al. 2005); the most suitable stress level range is 0.01 < σn / σc < 0.3 
(σc is rock uniaxial compressive strength). Because most rock slope stability problems of stress are 
within this range, Hoek and Bray (1981) believe that the Barton formula can be used to estimate 
the shear strength for rock slope engineering but the maximum of the brackets in Eq. (1) should be 
less than 70°. 

 
 

3. Analytical mode of planar failure 
 
3.1 Analytical mode 
 
Hoek and Bray (1981) provided an analytical solution for the translational sliding failure mode 
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Fig. 1 Typical geometry for the translational sliding failure mechanism in a hard rock slope in 
Hoek and Bray (1981) 
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(b) The typical geometry of the slope considered in the analysis 

Fig. 2 Typical geometry for the translational sliding failure mechanism in a hard rock slope in 
present study 

 
 
in a rock slope, as shown in Fig. 1, in which the upper slope surface is horizontal and the tension 
crack is vertical. The translational sliding failure mode proposed by Hoek and Bray (1981) was 
improved in Sharma et al. (1995) and Rocscience (2003), as shown in Fig. 2, in which the upper 
slope surface and crack are inclined. Slope stability is studied as a two-dimensional problem 
considering a slice of the unit thickness through the slope with the basic computational formula 
and hypotheses, as suggested by Hoek and Bray (1981), Sharma et al. (1995) and Rocscience 
(2003). 

The slope geometry is defined in Fig. 2. The various symbols used in this figure are as follows: 
β, the slope dip; θ, the failure plane dip; H, the slope height; B, the distance from the crack to the 
crest of the slope; α, the upper slope surface dip; and δ, the crack dip. The details of the derivation 
of slope geometry (trigonometric calculations) are presented in the Appendix. 
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3.2 Hydraulic distribution form and water pressure calculation 
 
Using Hoek and Bray’s (1981) suggestions, the water force in crack V and the water force in a 

failure plane U can be calculated using the water pressure in the tension crack and failure plane. 
Because the hydraulic distribution form is much more complex than the water pressure distribution 
hypothesis, it is crucial to make reasonable assumptions regarding the hydraulic distribution form 
based on the actual situation of the slope. 

The water force is calculated according to the following three working conditions in this paper: 
Case 1: maximum water pressure at the base of the crack, as shown in Fig. 3; Case 2: maximum 
water pressure at the toe, as shown in Fig. 4; Case 3: maximum water pressure at mid height, as 
shown in Fig. 5. 

The physical interpretations for the three hydraulic distribution forms are as follows 
(Rocscience 2003, Shu et al. 2004, Zhao et al. 2011, Wu et al. 2011). For Case 1, suppose that the 
degree of opening of the failure plane is small or nonexistent. If the volume of water in the tension 
crack is greater than that of the discharge water, hydrostatic pressure can suddenly increase at the 
bottom of the tension crack, in accordance with the first water pressure distribution case. For Case 
2, suppose that the flow slit of the failure plane is blocked or water discharge breaks down in a 
region with permafrost or seasonal frozen soil. Groundwater cannot discharge through the flow 
outlet freely at the bottom of the sliding body, and the water pressure at the bottom of the sliding 
surface will increase sharply, in accordance with the second water pressure distribution case. For 
Case 3, suppose that the degree of opening of the failure plane is large and the volume of water in 
the crack and failure plane is less than that of the discharge water. The maximum water pressure 
point in the crack or the failure plane will gradually change with time, in accordance to the third 
water pressure distribution case. 

 

Case 1: MAXIMUM PRESSURE AT THE BASE OF THE TENSION CRACK 
The symbols used in this figure are γw, the water unit weight, and Zw, the depth of the water in 

the tension crack. 
The water force on crack DE can be expressed as follows 

 
 

F

H

C

β

θ

W

V
U

α

δ
Zw

Z

E γwZw
γwZw

D

GB

 

Fig. 3 Case 1: Maximum water pressure at base of tension crack 
 

396



 
 
 
 
 
 

Effect of hydraulic distribution on the stability of a plane slide rock slope 

F

H

C

β
θ

W

V

U

α

δ
Zw

Z

E γwZw

γw(LEFsinθ+Zw)

γw(LEFsinθ+Zw)

D

GB

 

(a) Type a 
 

F

H

C

β
θ

W

U

α

δ

Zfw

Z

E

γwZfw

γwZw

γwZfw

D

GB

 

(b) Type b 

Fig. 4 Case 2: Maximum water pressure at toe 
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where γw is the unit weight of water (kN/m3). 

The water force on failure plane EF can be expressed as follows 
 

EFwwEF LZU  
2

1
                             (3) 

 
where LEF is the length of the failure surface EF (m) which is presented in Appendix. 
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Fig. 5 Case 3: Maximum water pressure at mid height 
 
 
Case 2: MAXIMUM PRESSURE AT THE TOE 
The symbol used in this figure, Zfw, represents the depth of the water on the failure surface. 
There are two types of water pressure distributions along the crack and the base of failure 

surface. 
Type a: Zw ≠ 0 
The water force on crack DE can be expressed as follows 
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The water force on failure plane EF can be expressed as follows 
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Type b: Zw = 0 and Zfw ≤ LEF sinθ 
The water force on crack DE can be expressed as follows 
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The water force on failure plane EF can be expressed as follows 
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Case 3: MAXIMUM PRESSURE AT MID HEIGHT 
There are three types of water pressure distributions along the crack and the base of failure 

surface. 
Type a: Zw = 0 and Zfw ≤ LEF sinθ 
The water force on crack DE can be expressed as follows 
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The water force on failure plane EF can be expressed as follows 
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Type b: Zw ≠ 0 and Zw ≤ (LEF sinθ + Zw)/2 
The water force on crack DE can be expressed as follows 
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The water force on failure plane EF can be expressed as follows 
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Type c: Zw ≠ 0 and Zw ≥ (LEF sinθ + Zw)/2 
The water force on crack DE can be expressed as follows 
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The water force on failure plane EF can be expressed as follows 
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3.3 Factor of safety 
 
This problem considers the force equilibrium without considering any resistance to sliding at 

the lateral boundaries of the sliding block. The Factor of Safety (FS) of the rock plane slope is 
defined as follows (Hoek and Bray 1981, Sharma et al. 1995, Wyllie and Mah 2004, Hoek 2007) 
 

induce

resist

F

F
FS                                 (14) 

 
where Fresist is the total force available to resist sliding and Finduce is the total force tending to 
induce sliding. 

From Fig. 2, the normal stress acting on the failure plane EF is calculated as follows 
 

EF

DEEFCDEF
n L

VUW )cos(cos  
                   (15) 

 
where WCDEF is the weight of the sliding wedge CDEF (kN) and can be found in Appendix. 

When the shear strength of the sliding failure plane can be defined in terms of the M-C failure 
criterion, the total force available to resist sliding is calculated as follows 
 

   tan)cos(cosresist  DEEFCDEFEFEF VUWLcLF          (16) 
 

where c is the cohesiveness of the failure plane (kPa) for the linear M-C failure criterion, φ is 
the friction angle of the failure plane (°) for the M-C failure criterion. 

The total force tending to induce sliding is calculated as follows 
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Substituting Eqs. (16)-(17) into Eq. (14), the FS of slope can be calculated as follows 
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When the shear strength of the sliding failure plane can be defined in terms of the nonlinear 

JRC-JCS empirical formula, according to Eq. (1), the total force available to resist the sliding of 
rigid body CDEF is calculated as follows 
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Fig. 6 Forces acting on the anchored translational sliding in a hard rock slope 
 
 
where the normal stress on slip surface EF is calculated as in Eq. (15). 

Substituting Eqs. (17) and (19) into Eq. (18), the FS of a rock slope can be calculated as 
follows 
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where the water force in tension crack VDE and the water force in failure plane UEF can be 
calculated according to the working condition. 

When external influencing factors, such as seismic load, surcharge, and reinforcement effects, 
are also considered, as shown in Fig. 6, according to the linear M-C failure criterion, the FS of a 
rock slope can be calculated as follows 
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where kh is the coefficient of horizontal earthquake loading, T is the Anchoring force (kN), ω is the 
inclination of stabilizing force to the normal, clockwise from the horizontal (°) and q is the 
surcharge on the upper slope surface (kPa). 

When external influencing factors, such as seismic load, surcharge, and reinforcement effects, 
are considered, as shown in Fig. 6, according to the nonlinear B-B failure criterion, the FS of a 
rock slope can be calculated as follows 
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4. Verification calculation and analysis 
 

In this section, example calculations and analyses are carried out to validate the present method 
in this section. 

Example calculation 1: Consider that H = 60 m, β = 50°, θ = 35°, α = 0-30°, δ = 70-90°, Zw = 14 
m, γR = 26 kN/m3, γw = 10 kN/m3, c = 120 kPa, φ = 45°, and the distance from the crack to crest B 
is equal to 15.33576 m. The hydraulic distribution form and water pressure calculations follow the 
working conditions of Case 1. A comparison of the results with Sharma et al. (1995) and 
Rocscience (2003) is provided in Table 1. 
 
 
Table 1 FS calculated by Rocscience (2003) (R03), Sharma et al. (1995) (S95) and this study 

Upper slope 
surface 

angle (°) 

Tension
crack 

angle (°)

Weight (t) Percent filled (%) Factor of safety 

SR95 R03 This study S95 R03 This study S95 R03 This study

0 70 2267.68 2267.76 2267.757 - 74 65.755 1.60 1.570 1.567 

10 70 3317.43 2268.91 2268.915 - 62 55.116 1.54 1.565 1.561 

15 70 4433.85 2265.85 2265.850 - 58 50.842 1.51 1.553 1.558 

20 70 6715.23 2259.95 2259.947 - 53 47.020 1.48 1.558 1.555 

25 70 12998.24 2250.62 2250.624 - 49 43.533 1.45 1.555 1.552 

30 70 71425.55 2236.97 2236.970 - 46 40.290 1.43 1.543 1.549 

0 80 2340.37 2341.05 2341.055 - 87 84.955 1.58 1.583 1.579 

10 80 3456.77 2373.24 2373.240 - 73 71.210 1.53 1.578 1.575 

15 80 4636.49 2388.45 2388.453 - 68 65.687 1.50 1.570 1.572 

20 80 7032.68 2403.29 2403.289 - 63 60.750 1.48 1.567 1.570 

25 80 13465.16 2417.85 2417.853 - 58 56.244 1.45 1.568 1.568 

30 80 46627.40 2432.20 2432.198 - 54 52.055 1.43 1.562 1.566 

0 90 2391.03 2392.38 2392.378 - 100 99.935 1.58 1.586 1.587 

10 90 3558.34 2446.29 2446.289 - 84 83.766 1.53 1.581 1.583 

15 90 4785.03 2474.30 2474.301 - 77 77.270 1.50 1.584 1.582 

20 90 7254.02 2503.66 2503.659 - 71 71.462 1.48 1.584 1.580 

25 90 13932.64 2534.95 2534.948 - 66 66.162 1.45 1.579 1.578 

30 90 47526.01 2568.90 2568.898 - 61 61.234 1.43 1.578 1.576 
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The results from the present study are the same as those provided in Rocscience (2003), but 
there are large differences with the results provided in Sharma et al. (1995). According to the 
study of Rocscience (2003), the equation provided in Sharma et al. (1995) for calculating the 
wedge weights is incorrect and the safety factor provided by Sharma et al. (1995) is not reliable. 

Example calculation 2: Consider a dry plane slide rock slope without crack (see Fig. 7) where β 
= 64°, θ = 35-50°, γR = 27 kN/m3, H = 3, 6, 15, and 30 m, φb = 32°, JCS = 100 Mpa, and JRC = 3, 
7, and 11. The computed values by Rocscience (2003), Miller (1988) and the present study are 
listed in Table 2. 
 
 

H

β

θ

W

Wcosθ
Wsinθ

F resist

 

Fig. 7 A dry translational sliding in a hard rock slope without tension crack 
 
 
Table 2 The FS values calculated by Rocscience (2003), Miller (1988) and present study 

JRC 
H 

(m) 

Factor of safety 

θ = 35° θ = 50° 

Miller 
(1988) 

Rocscience 
(2003) 

This study 
Miller 
(1988) 

Rocscience 
(2003) 

This study 

3 

30 1.21 1.209 1.209 0.74 0.741 0.741 

15 1.25 1.248 1.248 0.76 0.765 0.765 

6 1.30 1.301 1.301 0.80 0.798 0.798 

3 1.34 1.343 1.343 0.82 0.824 0.824 

7 

30 1.78 1.778 1.778 1.16 1.158 1.158 

15 1.92 1.919 1.919 1.26 1.253 1.253 

6 2.13 2.127 2.127 1.40 1.395 1.395 

3 2.31 2.306 2.306 1.52 1.519 1.519 

11 

30 2.72 2.711 2.711 1.96 1.948 1.948 

15 3.15 3.138 3.138 2.32 2.307 2.305 

6 3.92 3.904 3.904 3.02 3.003 2.305 

3 4.76 4.736 3.924 3.87 3.848 2.305 
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According to Hoek and Bray (1981), the most suitable stress level range of the nonlinear B-B 
failure criterion is 0.01 < σn / σc < 0.3 and the maximum of the brackets in Eq. (1) should be less 
than 70°. That is, when atan (τ / σn) > 70° (i.e., [φb + JRC log10 (JCS / σn)] > 70°), [φb + JRC log10 

(JCS / σn)] is assumed to be 70°. Therefore, some of safety factor values calculated by Rocscience 
(2003) and Miller (1988) should be revised as shown in Table 2. 

 
 

5. Calculation and parameter analysis 
 
5.1 Influence of the Barton-Bandis failure criterion parameters on the stability analysis 
 
In this section, parametric study is carried out to investigate the effect of B-B failure criterion 

parameters on the stability analysis of rock slopes. 
Consider a dry plane slide rock slope with vertical tension crack and horizontal upper slope 

 
 

Fig. 8 The FS as a function of the slope height 
 

Fig. 9 The FS as a function of the sliding 
plane dip angle 

 
 

Fig. 10 The FS as a function of the rock bulk density
 

Fig. 11 The FS as a function of the tension crack 
length ratio to the slope height angle 
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(a) The effect of φb and JCS on the factor of safety (b) The effect of φb and JRC on the factor of safety

Fig. 12 The FS as a function of the basic friction angle of joint 
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Fig. 13 The FS as a function of the slope dip angle 
 
Table 3 Calculation parameters 

Serial number 
of figure 

φb (°) JCS (MPa) JRC H (m) β (°) θ (°) γR (kN/m3) Z/H (m) α (°) δ (°)

Fig. 8 29 50 8 4~36 60~90 45 25 0.2 0 90

Fig. 9 29 50 8 10~50 60 20~40 25 0.2 0 90

Fig. 10 29 50 8 10~30 60 45 22~28 0.2 0 90

Fig. 11 29 30 8 10~30 60 45 25 0.0~0.4 0 90

Fig. 12(a) 20~30 10~70 8 10 60 45 25 0.2 0 90

Fig. 12(b) 20~30 50 3~12 10 60 45 25 0.2 0 90

Fig. 13(a) 29 50 3~12 10 30~70 25 25 0.2 0 90

Fig. 13(b) 29 20~80 8 10 30~70 25 25 0.2 0 90
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Fig. 14 The FS as a function of the joint roughness 
coefficient (JRC) and the joint compressive 
strength (JCS) 

 
 

Fig. 15 The FS as a function of the joint roughness 
coefficient (JRC) and the joint compressive 
strength (JCS). Note: According to Hoek and 
Bray (1981), When [φb + JRC log10 (JCS / 
σn)] is greater than 70°, make it equal to 70° 

 
Table 4 Calculation parameters 

Serial number of figure φb (°) JCS (MPa) JRC H (m) β (°) θ (°) γR (kN/m3) B (m) α (°) δ (°)

Fig. 14 32 5~100 3~15 60 64 35 27 20 15 70

Fig. 15 34 10~100 0~20 30 45 35 27 15 15 70

 
 
surface, Figs. 8-13 presents the changes in the FS for varied case parameters as shown in Table 3. 
Consider a dry plane slide rock slope with inclined crack and inclined upper slope surface, Figs. 
14-15 presents the changes in the FS for varied case parameters as shown in Table 4. 

Figs. 8-15 illustrate that the FS of the slope decreases with increasing slope height and unit 
weight of the rock mass. The effect of the unit weight is not discernible. Moreover, when φb, JRC, 
and JCS increase, the FS exhibits a significant upward trend; however, when the other conditions 
are the same, the FS decreases first and then increases with increases in the inclination angle of the 
slope and the depth of the tension crack at the top of the slope. It is found that JCS in Eq. (32) is 
log10 (of JCS), so the effect of this parameter on the FS is smaller. The outstanding impact on the 
FS is due to φb and JRC. 

 
5.2 Influence of the hydraulic form on the stability of slope 
 
The influence of the hydraulic form on the stability of the slope is investigated in this section 

by considering the influence of the occurrence of different hydraulic forms. 
Changes in the FS for the planar failure rock slope when H = 60 m, β = 64°, θ = 35°, γR = 27 

kN/m3, γw = 10 kN/m3, B = 20 m, α = 15°, δ = 70°, φb = 32°, JCS = 100 Mpa, JRC = 9, the rock 
slope has three different hydraulic distribution forms, Zw + Zwf = 0-65.3590 m, and Zw = 0-41.4201 
m (LDE × sinδ = 41.4201 m) (when Zw = 0, Zwf = 23.9389 m (LEF × sinθ = 23.9389 m) in Cases 2 and 
Cases 3) are shown in Fig. 16. 

Fig. 16 illustrates that the hydraulic distribution form, the water depth in the tension crack, and 
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Fig. 16 The FS versus depth of water in tension crack for different water pressure distribution conditions 
 
 
the failure plane have a significant influence on the stability of the rock slope. A rock slope will 
have a smaller FS as the water in the crack becomes deeper. Furthermore, the influence of this 
phenomenon is more significant when the flow outlet is blocked (Case 2). When the flow outlet is 
blocked, groundwater cannot discharge through the flow outlet at the bottom of the sliding body, 
and the water pressure in the sliding surface increases sharply. The FS of the rock slope might 
exceed the expected results, particularly in regions with permafrost or seasonal frozen soil. In the 
case that the sliding surface flow outlet is not blocked, the FS for the traditional hydraulic 
distribution form (Case 1) is slightly larger than that for the modified hydraulic distribution form 
(Case 3) when the water in the tension crack is shallower. The outcome is the opposite when the 
water in the crack is deeper. 

 
 

6. Reliability analysis 
 
The traditional deterministic analysis method cannot exactly reflect the uncertainty and 

complexity of geotechnical properties by only taking the mean parameter values of rock masses 
for calculation. A more rational approach is to compute a reliability index β, similar methodology 
as reported by Nagpal and Basha (2012), Sharma and Basha (2012) and Basha and Moghal (2013) 
is adopted for the reliability-based analysis of rock slopes against plane failure in the present paper. 
The minimum reliability index β is determined by the Monte Carlo simulation technique in this 
paper (Fenton and Griffiths 2008). 

Consider a dry plane slide rock slope with H = 60 m, β = 64°, θ = 35°, α = 15°, B = 20 m, γR = 
27 kN/m3 are regarded as constant parameters, only a limited number of random variables 
considered are shown in Table 5 refer to the study of Feng and Lajtai (1997), Nagpal and Basha 
(2012), Sharma and Basha (2012) and Basha and Moghal (2013). The effect on minimum 
reliability index (β) due to the change in coefficient of variation of the nonlinear B-B failure 
criterion parameters JRC, JCS, φb and the crack dip δ is shown in Fig. 17. 
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Table 5 Calculation parameters for Fig. 17 

Serial number of figure Random variables Mean 
Coefficient of variation 

(COV) (in %) 
Distribution 

Fig. 17 (a) 

JRC 4~16 5~30 Log-normal 

JCS 10 (MPa) 30 Log-normal 

φb 32 (°) 15 Log-normal 

δ 70 (°) 5 Normal 

Fig. 17 (b) 

JRC 9 10 Log-normal 

JCS 10~100 (MPa) 5~30 Log-normal 

φb 32 (°) 15 Log-normal 

δ 70 (°) 5 Normal 

Fig. 17 (c) 

JRC 9 10 Log-normal 

JCS 10 (MPa) 30 Log-normal 

φb 20~40 (°) 2~30 Log-normal 

δ 70 (°) 5 Normal 

Fig. 17 (d) 

JRC 9 10 Log-normal 

JCS 10 (MPa) 30 Log-normal 

φb 32 (°) 15 Log-normal 

δ 60~78 (°) 5~30 Normal 

 
 

Fig. 17 illustrate that the reliability index (β) decreases greatly with the increasing variability 
for JRC and φb, the increasing variability for JCS does not much affect the reliability index (β) and 
the increasing variability for δ have minor influence on reliability index (β). 
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Fig. 17 Variation of reliability index (β) with different parameters (JRC, JCS, φb, δ) for COV 
in different parameters (JRC, JCS, φb, δ) 
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Fig. 17 Continued 
 
Table 6 Calculation parameters for Fig. 18 

Serial number of Fig. 6 Random variables Mean 
Coefficient of variation 

(COV) (in %) 
Distribution 

Fig. 18 

Zw + Zfw 2-44 (m) 5~30 Normal 

JRC 9 10 Log-normal 

JCS 10 (MPa) 30 Log-normal 

φb 32(°) 15 Log-normal 

 
 

Consider that H = 60 m, β = 64°, θ = 35°, α = 15°, δ = 70°, B = 20 m, γR = 27 kN/m3, γw = 10 kN/m3 
are regarded as constant parameters, and the random variables considered are shown in Table 6. 
For three different hydraulic forms (Cases 1, Cases 2 and Cases 3), the effect on minimum 
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Fig. 18 Variation of β with Zw + Zwf for COV in Zw + Zwf for different hydraulic forms 
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Fig. 18 Continued 
 
 
reliability index (β) due to the change in coefficient of variation of Zw + Zwf is shown in Fig. 18. 

Fig. 18 illustrates that although the increasing variability for Zw + Zwf does not affect the 
reliability index (β) greatly, the groundwater will obviously led to the decrease of the reliability 
index (β), especially in the least favorable hydraulic distribution form (Cases 2) that the flow 
outlet is blocked. 

 
 

7. Conclusions 
 
(1) φb, JRC, and JCS have a significant impact on the stability of the rock slope. Relatively 

speaking, the influence of a change in JCS on the FS of slope is small, whereas the 
influences of φb and JRC on the FS of the slope are significant. 

(2) The hydraulic distribution form, the water depth in the crack, and the failure plane has a 
significant influence on the stability of the rock slope. A rock slope will have a smaller FS 
as the water in the crack becomes deeper. The influence of this phenomenon is more 
significant when the flow outlet is blocked (Case 2), a situation that is particularly 
prevalent in regions with permafrost or seasonal frozen soil. In the case that the sliding 
surface flow outlet is not blocked, using the calculation results of the FS from the 
traditional hydraulic distribution form (Case 1) would lead to an incorrect evaluation of 
slope stability. 

(3) According to the uncertainty of rock masses parameters, the reliability analysis of the rock 
slope against plane failure has been carried out. The reliability index (β) decreases greatly 
with the increasing variability for JRC and φb, the rise of groundwater level also obviously 
led to the decrease of the reliability index (β), especially that the flow outlet is blocked. 

 

Over time, if the failure plane of a rock slope is filled with some type of weak material, the 
shear strength of the filling structure is determined by the shear strength of the filling substance 
itself, the wall strength of the structure surface, the thickness of the filling, structural surface 
undulations, and other factors. In addition, the rock slope is not always controlled by a single 
sliding surface; further analysis of the stability of rock slopes composed of a multi-slip structure 
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surface and affected by the infill in the structural surface is required. 
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Appendix: The details of the trigonometric calculations of slope geometry 
 
 
From Fig. 2, the length of the upper slope surface LCD can be expressed as follows 
 

.
cos

B
LCD                                (A1) 

 
From Fig. 2, the length of tension crack LDE and the length of failure plane LEF can be expressed as 

follows 

and)sin(
)sin(







 DG
DE

L
L                       (A2) 

 
,EGFGEF LLL                              (A3) 

 

where 
 

,CDCGDG LLL                              (A4) 
 

),sin(
)sin(







 CF
CG

L
L                         (A5) 

 

),sin(
)sin(







 CF
FG

L
L                       (A6) 

 

and
sin 

H
LCF                              (A7) 

 

)sin(
)sin(







 DG
EG

L
L                        (A8) 

 
where LDG, LFG, LEG, LCG, LCF is the length of the slope geometry DG, FG, EG, CG, CF 

respectively. 
The area of wedge ACFG can be expressed as follows 
 

).sin(
2

 


 CFFG
CFG

LL
A                         (A9) 

 
The area of wedge AEDG can be expressed as follows 
 

).sin(
2

 


 EGDG
EDG

LL
A                        (A10) 

 
The area of wedge ACDEF can be expressed as follows 
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.EDGCFGCDEF AAA                            (A11) 

 
 
As shown in Fig. 1, the weight of the sliding wedge WCDEF is calculated from the following 
 

,CDEFRCDEF AW                              (A12) 
 
where γR is the unit weight of the rock (kN/m3). 
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