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Abstract.  An analytical solution of the fully coupled system of equations governing the plane strain 
deformation of a poroelastic medium with anisotropic permeability and compressible fluid and solid 
constituents is obtained. This solution is used to study the consolidation of a poroelastic clay layer with free 
permeable surface resting on a rough-rigid permeable or impermeable base. The stresses and the pore 
pressure are taken as the basic state variables. Displacements are obtained by integrating the coupled 
constitutive relations. The case of normal surface loading is discussed in detail. The solution is obtained in 
the Laplace-Fourier domain. Two integrations are required to obtain the solution in the space-time domain 
which are evaluated numerically for normal strip loading. Consolidation of the clay layer and diffusion of 
pore pressure is studied for both the bases. It is found that the time settlement is accelerated by the 
permeability of the base. Initially, the pore pressure is not affected by the permeability of the base, but has a 
significant effect, as we move towards the bottom of the layer. Also, anisotropy in permeability and 
compressibilities of constituents of the poroelastic medium have a significant effect on the consolidation of 
the clay layer. 
 

Keywords:    anisotropic permeability; clay stratum; compressible constituents; normal strip loading; 
plane strain; poroelastic 
 
 
1. Introduction 
 

Biot’s theory of linear poroelasticity has been used extensively to study the consolidation of a 
layered poroelastic medium. Some researchers have included the anisotropy in hydraulic 
permeability in the study of the deformation of a porous medium e.g., Booker and Randolph 
(1984), Booker and Carter (1986, 1987a, b), Ganbe and Kurashige (2001), Taguchi and Kurashige 
(2002), Chen (2004, 2005), Chen and Gallipoli (2004), Singh et al. (2007), Ai and Wang (2008), 
Ai and Wu (2009), Rani et al. (2011) etc. 

Booker and Randolph (1984) discussed the consolidation of a poroelastic half-space with cross 
anisotropic deformation and flow properties subjected to surface loading assuming the fluid and 
solid constituents incompressible. Chen (2004) studied the consolidation of a multilayered 
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poroelastic half-space with anisotropic permeability assuming the pore fluid to be compressible 
and the solid skeleton to be incompressible. Chen (2005) obtained the response of a poroelastic 
half-space with transversely isotropic permeability and poroelasticity to a point sink taking both 
the fluid and solid constituents incompressible. Chen et al. (2005a, b) discussed axisymmetric 
consolidation of soil medium subjected to a uniform circular pressure on the ground surface. The 
poroelastic medium was assumed to be transversely isotropic in its elastic and hydraulic 
properties. 

Singh et al. (2007) obtained an analytical solution of the system of equations governing the 
plane strain deformation of a poroelastic half-space with anisotropic permeability and 
compressible fluid and solid constituents. This solution has been used to study the consolidation of 
a half-space by surface loads. The corresponding three-dimensional problem of axisymmetric 
surface loads has been studied by Singh et al. (2009). 

Ai and Wang (2008) obtained the axisymmetric consolidation of a soil layer using Laplace and 
Hankel transforms in terms of elements of the Thomson-Haskell matrix. Ai et al. (2008) solved 
Biot’s three-dimensional consolidation problem for a saturated poroelastic multi-layered soil due 
to loading at an arbitrary interface in the Cartesian coordinate system using transfer matrix method. 
The corresponding problem of circular loading has been discussed by Ai et al. (2010a). 
Subsequently, Ai et al. (2010b) presented transfer matrix solutions to study the axisymmetric and 
non-axisymmetric consolidation of a multilayered soil under arbitrary loading. 

Ai and Wu (2009) obtained a solution for plane strain consolidation of a soil layer with 
anisotropic permeability and incompressible fluid and solid constituents due to surface loads. The 
case of strip loading is discussed numerically. Kim and Mission (2011) formulated a finite 
difference solution for the one-dimensional consolidation in multilayered clay profiles using 
interface boundary relations in terms of infinitesimal strain. Rani et al. (2011) obtained an 
analytical solution of the fully coupled system of equations governing the axisymmetric 
quasi-static deformation of a poroelastic clay layer with anisotropic permeability and compressible 
fluid and solid constituents using Laplace-Hankel transforms. The case of normal disk loading is 
discussed in detail. Li et al. (2013) obtained an analytical solution in term of summation of infinite 
series for the consolidation within a finite rectangular poroelastic medium due to uniform normal 
loading using Fourier and Laplace transforms. Ai et al. (2013) obtained the solution for three 
dimensional consolidation of a multi-layered poroelastic medium with anisotropic permeability 
and compressible pore fluid using a transfer matrix approach. 

The purpose of the present study is to investigate analytically and numerically the plane strain 
deformation of a clay layer resting on a rough-rigid permeable or impermeable base due to surface 
loading. Both the solid and the fluid constituents are compressible. The permeability in the vertical 
direction is taken different from the permeability in the horizontal direction. The case of normal 
strip loading is discussed in detail. Numerical computations are performed to study the effect of 
the anisotropy in permeability and compressibilities of fluid and solid constituents for two cases: a 
layer resting on a rough-rigid permeable base and a layer resting on a rough-rigid impermeable 
base. The present study may find applications in the consolidation process of clay layers due to 
surface loading. The theory developed is significant in the study of consolidation of a poroelastic 
layer which is mechanically isotropic but hydraulically anisotropic. 

 
 

2. Basic equations 
 

A homogeneous, isotropic, poroelastic medium can be characterized by four constitutive 
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constants. Let these constants be the shear modulus (G), the drained Poisson’s ratio (υ), the 
undrained Poisson’s ratio (υu) and the Biot-Willis coefficient (α). For plane strain deformation of a 
poroelastic medium in the x1x3-plane, the displacement components in the solid skeleton are of the 
form 

),,(,0),,,( 313323111 txxuuutxxuu                     (1) 
 

Let σij denote the total stress tensor in the fluid-infiltrated porous elastic material, εij the 
corresponding strain tensor and p the excess fluid pore pressure. For plane strain, these quantities 
are related through the following coupled system of equations (Detournay and Cheng 1993) in 
which σij and p are taken as the basic state variables. 

 
2.1 Equations of equilibrium 
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2.2 Compatibility equation 
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is the poroelastic stress coefficient. 

 
2.3 Constitutive equations 
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where 
 

 )21(0                               (9) 
 

2.4 Darcy’s law 
 
According to Darcy’s law of fluid flow in a poroelastic medium with anisotropic permeability 

 

3332111 /,0/ xpqqxpq                      (10) 
 
where q is the fluid flux and χi is the Darcy conductivity in the xi-direction. 
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2.5 Fluid diffusion equation 
 































2
3

2

32
1

2

1
0

0
3311

2

x

p

x

pG
p

t u




                 (11) 

 

Eq. (11) may be written in the form 
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is the hydraulic diffusivity. 

Using Eqs. (5) and (6), Eq. (11) can be expressed in the form 
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is the Biot modulus. 

 
 

3. Solution of the governing equations 
 
The four unknowns σ11, σ33, σ13 and p are to be determined from the coupled system of the four 

Eqs. (2), (3) and (12). This system can be solved in terms of Biot’s stress function F such that 
(Wang 2000) 
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The equilibrium Eq. (2) are then identically satisfied. Eqs. (3), (12) and (17) yield 
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Eliminating F and p in turn, Eqs. (18) and (19) lead to the following decoupled equations 
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Taking the Laplace transform of Eqs. (20) and (21), we obtain 
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where now p(x1, x3, t) and F(x1, x3, s) denote the Laplace transform of (x1, x3, t) and F(x1, x3, t), 
respectively and s denotes the Laplace transform variable. 

A straightforward method of solving equations of the type Eqs. (22) and (23) has been given by 
Roeloffs (1988, Appendix) and Wang (2000, pp. 157-159). Thus, the general solution of Eq. (22) 
may be expressed in the form 
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Similarly, the general solution of Eq. (23) may be expressed in the form 
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Eqs. (24b) and (25b) can be solved by taking Fourier transform in the x1 coordinate and then 

solving the resulting ordinary differential equations. We thus find that for the deformation of a 
homogeneous poroelastic clay stratum 0 ≤ z ≤ h by surface loads, suitable solutions of Eqs. (22) 
and (23) are of the form 
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where the arbitrary constants A1, A2, etc. may be functions of k, x = x1, z = x3 and 
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Inserting the expressions for F and p from Eqs. (26) and (27) in Eq. (18), we find 
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Similarly, Eq. (20) implies 
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Eqs. (10), (17), (26) and (27) yield 
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Corresponding to the stresses given by Eqs. (33)-(35), the displacements are found by 

integrating the constitutive Eqs. (5) to (7). We find 
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In deriving Eqs. (36)-(37), the relation Eq. (29) has been used. Eqs. (26) and (31) to Eq. (37) 
can be used to solve analytically the problem of the deformation of a homogeneous poroelastic 
clay stratum possessing anisotropic permeability and compressible constituents. The constants A2, 
B1, B2 etc. are to be determined from the boundary conditions. As an example, we solve the 
problem of 2-D surface loads in the next section. 
 
 

4. Surface loads 
 

A normal load (σ33)0 is applied on the surface z = 0 of the poroelastic clay stratum 0 ≤ z ≤ h 
overlying a rough-rigid base (Fig. 1). We assume that the boundary z = 0 is permeable, but the 
lower boundary z = h may be permeable or impermeable. We consider both the cases: Case I, 
when the base z = h is permeable and Case II, when the base z = h is impermeable. The boundary 
conditions yield 
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Eqs. (26), (32) and (34) to (41) yield six equations in six unknowns (A1, A2, A3, A4, B2, B5). 
Explicit expressions for these unknowns are given in the Appendix for Case I: Permeable base and 
 
 

 
Fig. 1 Poroelastic clay stratum of thickness h with permeable free surface resting on a rough 

rigid permeable or impermeable base 
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Case II: Impermeable base, respectively. 
Substituting the values of A1, A2, etc. in Eqs. (26) and (31) to (37), we get the integral 

expressions for the pore pressure, fluid flux, stresses and displacements. These integrals cannot be 
solved analytically. One has to resort to numerical integration. 

 
 

5. Normal strip loading 
 
Consider a strip ‒ L ≤ x ≤ L of infinite length in the y-direction on the surface. Let a normal 

load σ0 per unit length acting in the positive z-direction be uniformly distributed over this strip. We 
have (Singh and Rani 2006) 
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for z = 0. Comparing Eqs. (41) and (42), we have 
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and the lower solution in Eqs. (31) to (37) is to be chosen. Inserting the values of constants, A1, A2, 
etc. from the Appendix into Eqs. (26) and (32)-(37), we get the expressions for the pore pressure, 
fluid flux, stresses and displacements at any point of the stratum caused by strip loading for Case I: 
Permeable base and Case II: Impermeable base, respectively. We have verified that, as the depth h 
of the stratum tends to ∞, the integral expressions coincide with the corresponding results of a 
poroelastic half-space with anisotropic permeability and compressible constituents given by Singh 
et al. (2007). Explicit expressions for the Laplace transform of pore pressure p(x, z, s) and the 
vertical (down) displacement at the original u3(0, 0, s) are found to be 
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Case II: Impermeable base 
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6. Numerical results and discussion 

 
Eqs. (44)-(47) give the solution in the Fourier-Laplace transform domain. Two integrations are 

required to get the solution in the space-time domain. Schapery (1962) proposed a very simple and 
efficient approximate formula for finding the Laplace inversion numerically. According to this 
formula 

 , )()( )2/(1 tssst                               (48) 

 

where )(s  is the Laplace transform of ϕ(t). In view of its simplicity and computational efficiency, 
we have used Schapery’s approximate formula for the Laplace inversion. Fourier transform 
inversion involves evaluating the semi-infinite integral with respect to k. This has been done by 
using the extended Simpson’s rule. 
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We have computed the surface settlement u3 and the pore pressure p at various points lying on 
the z-axis vertically below the mid point of the strip ‒ L ≤ x ≤ L, z = 0. We introduce the following 
dimensionless quantities 
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First, we compare the pore pressure P and the surface settlement W for permeable and imper- 
able bases. Fig. 2 shows the time settlement at the mid point of the strip ‒ L ≤ x ≤ L for υ = 0.12, γ 
= 2 for both permeable and impermeable bases for layer thickness h = L for υu = 0.31, α = 0.6. The 
surface settlement is accelerated by the permeability of the base, without affecting the initial and 
the final settlement. 

Fig. 3 shows the depth profile of pore pressure for Ruhr Sandstone in which υ = 0.12, υu = 0.31, 
α = 0.65 for T = 0.01 at the mid point of the strip ‒ L ≤ x ≤ L for layer thickness h = L and 10 L, for 
both bases. We note that the depth profiles for the two cases are significantly different for a thin 
stratum (h = L). However, for a thick stratum (h = 10 L), the depth profiles for the two cases are 
almost identical except near the base of the stratum. Also, the pore pressure vanishes for the 
permeable base at the bottom of the layer, which is consistent with the boundary condition. Fig. 4 
shows the diffusion of pore pressure with time for γ = 0.6 at the mid point of the strip for both 
permeable and impermeable bases. Near the surface, the effect of the permeability of the base is 
only marginal. However, near the bottom, the diffusion of the pore pressure in the two cases 
differs significantly. 
 
 

0.14

0.16

0.18

0.20

0.22

-6 -5 -4 -3 -2 -1 0 1 2

Impermeable Base
Permeable Base

h = L,  z = 0
 = 2,   = 0.6
 = 0.12, 

u
 = 0.31

log
10

 T

W

 
Fig. 2 Time variation of the surface settlement W (0, 0, t) at the mid point of the strip for υ = 

0.12, υu = 0.31, α = 0.6 for the layer thickness h = L for both permeable and impermeable 
bases 
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(b) 

Fig. 3 Depth profile of the pore pressure for Ruhr Sandstone (υ = 0.12, υu = 0.31, α = 0.65) for 
two values of layer thickness: (a) h = L; (b) h = 10 L for both permeable and impermeable 
bases 

 
 

Next, we compute the pore pressure P and the surface settlement W for a permeable base. Fig. 5 
shows the effect of Biot-Willis coefficient (α) on the time settlement at the mid point of the strip 
for υ = 0.12, υu = 0.31 and γ = 2 for layer thickness h = L. The coefficient α (0 ≤ α ≤ 1) denotes the 
ratio of compressibility of the solid skeleton to the compressibility of the drained bulk material. 
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For incompressible solid skeleton, α = 1. Fig. 5 indicates that the compressibility of the solid 
skeleton accelerates the surface settlement. The effect of undrained Poisson’s ratio υu (0 ≤ υ ≤ υu ≤ 
0.5) on the surface settlement is depicted in Fig. 6 for υ = 0.12, α = 0.65 and γ = 2 for h = L. 
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(b) 

Fig. 4 Diffusion of pore pressure P(0, z, t) with time for Ruhr Sandstone for (a) z = L; h = 3 L; 
(b) z = 2 L, h = 3 L. As we approach the bottom of the layer, the permeability of base has 
a significant effect in pore pressure 
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Fig. 5 Effect of the compressibility of the solid skeleton on the time settlement W (0, 0, t) at the 

mid point of the strip for the layer thickness h = L 
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Fig. 6 Effect of the compressibility of the pore fluid on the time settlement W (0, 0, t) at the mid 

point of the strip for υ = 0.12, α = 0.65 and γ = 2 for the layer thickness h = L 
 
 
The upper limit υu = 0.5 corresponds to a poroelastic material with incompressible pore fluid. The 
fluid constituent’s compressibility increases the initial undrained settlement but has no effect on 
the final drained settlement. 
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Fig. 7 shows the effect of layer thickness on the time settlement at the mid point of the strip ‒ L 
≤ x ≤ L. The surface settlement increases with increase in layer thickness. Fig. 8 shows the depth 
profile of pore pressure for Ruhr Sandstone for which υ = 0.12, υu = 0.31, α = 0.65 for the layer 
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Fig. 7 Effect of the layer thickness on the settlement W (0, 0, t) at the mid point of the strip for 

Ruhr Sandstone for γ = 2. The surface settlement increases as the layer thickness increases 
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Fig. 8 Depth profile of the pore pressure P(0, z, t) for Ruhr Sandstone (υ = 0.12, υu = 0.31, α = 

0.65) for the layer thickness h = L 
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(b) 

Fig. 9 Effect of the anisotropic permeability γ on the diffusion of pore pressure P(0, z, t) with 
time for Ruhr Sandstone for (a) z = L, h = 3 L; (b) z = 2 L, h = 3 L. The Mandel-Cryer 
effect is pronounced for small values of γ 

 
 
thickness h = L for different times. The pore pressure decreases with time. Fig. 9 displays the 
effect of anisotropic permeability on diffusion of pore pressure with time. The pore pressure rises 
from the initial undrained value and then decays to zero as t → ∞ for small values of anisotropic 
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parameter γ = (χ1 / χ3)
1/2. This is the well-known Mandel-Cryer Effect. This effect is pronounced 

for small values of γ. 
 
 
7. Conclusions 
 
(i) The time settlement is accelerated by the permeability of the base. However, the initial and 

the final settlements are not affected. 
(ii) Near the surface, the pore pressure is not much affected by the permeability of the base. 

But it has a significant effect near the bottom. 
(iii) Permeability of the base affects the depth profile of the pore pressure significantly for a 

thin stratum. However, for a thick stratum, it does not have much effect except near the 
base of the stratum. 

(iv) The compressibility of the solid skeleton of the poroelastic material may accelerate the 
consolidation process. However, it has no effect on the initial and the final settlements. 

(v) The compressibility of the pore fluid increases the initial settlement. But it has no effect on 
the final settlement. 

(vi) The surface settlement increases with an increase in the layer thickness. 
(vii) The Mandel-Cryer effect of the pore pressure is more pronounced when the horizontal 

permeability is smaller than the vertical permeability. 
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Appendix 
 
 
Case I: Permeable base 
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Plane strain consolidation of a compressible clay stratum by surface loads 
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Case II: Impermeable base 
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