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Abstract.  For slope stability analysis, an alternative to the classical limit equilibrium method (LEM) of 
slices is the shear strength reduction method (SRM), which can be integrated into finite element analysis or 
finite difference analysis. Recently, probabilistic analysis of earth slopes has been very attractive because it 
is capable to take the soil uncertainty into account. However, the SRM is less commonly extended to 
probabilistic framework compared to a variety of probabilistic LEM analysis of earth slopes. To overcome 
some limitations that hinder the development of probabilistic SRM stability analysis, a new procedure based 
on recursive algorithm FORM with sensitivity analysis in the space of original variables is proposed. It can 
be used to deal with correlated non-normal variables subjected to implicit limit state surface. Using the 
proposed approach, a probabilistic finite element analysis of the stability of an existing earth dam is carried 
out in this paper. 
 

Keywords:    slope stability; SRM; finite element analysis; probabilistic analysis; FORM 

 
 
1. Introduction 
 

The stability of slopes is commonly evaluated using two different types of methods: (i) limit 
equilibrium methods (LEM); and (ii) strength-reduction method (SRM). The factor of safety Fs, 
defined as the ratio of shear strength (or resisting moment) to mobilized shear stress (or 
overturning moment) of a potential sliding mass, is used as an indicator of its stability. Locations 
of potential slip surfaces need to be assumed in LEM. The factor of safety is evaluated on all the 
potential slip surfaces, and a critical slip surface which produces the lowest factor of safety Fs is 
finally determined. In contrast, the strength-reduction technique integrated with Finite Element 
Method, SRFEM (e.g., Zienkiewicz et al. 1975, Naylor 1982, Ugai 1989, Matsui and San 1992, 
Griffiths and Lane 1999, Zheng and Zhao 2004) or with Finite Difference Method, SRFDM (e.g., 
Dawson et al. 1999) has been developed for slope stability analysis. Assumptions about the 
possible failure mode are not required a priori. Some advantages and limitations of the 
SRFEM/SRFDM were summarized in Cheng and Zhu (2005). 

When the slope stability analyses are extended into probabilistic study, one limitation of the 
SRFEM/SRFDM is that the performance functions are usually implicit, i.e., the safety factor is not 
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available in closed-form, and it can only be evaluated by numerical simulations. As such, direct 
use of reliability methods (e.g., FORM) is not easy since the optimization of reliability index 
requires an explicit performance function. Although one can employ Monte Carlo simulations 
(MCS) for probabilistic stability analysis by FEM/FDM (e.g., Griffiths and Fenton 2004), the 
MCS-based probabilistic slope stability analysis may require intensive computational effort 
especially when the potential failure probability is a very small value (e.g., 0.05%, which is 
common to geotechnical engineering). For such cases, the reliability method incorporating implicit 
performance functions is an attractive alternative. 

Several useful techniques bridging the reliability methods with implicit performance functions 
can be found in the literature. These include response surface method (RSM) and artificial neural 
networks (ANN). Both methods aim at approximating the actual performance function using 
closed-form expressions. For example, polynomials are commonly used in RSM (Bucher and 
Bourgund 1990, Rajashekhar and Ellingwood 1993, Xu and Low 2006, Li et al. 2011, Ji and Low 
2012, Ji et al. 2012, Jiang et al. 2014a, b), and multilayer functions (also called multilayer 
perceptrons) are used in ANN (Goh and Kulhawy 2003, Elhewy et al. 2006, Goh and Kulhawy 
2006, Cho 2009). Another technique for reliability analysis incorporating implicit performance 
functions is the recursive algorithm for FORM (Rachwitz and Fiessler 1978). This is less 
commonly used in the literature. In this paper the recursive algorithm FORM is reformulated in the 
space of dimensionless variables, so that it can be easily adopted for reliability analysis of implicit 
performance function with correlated non-normals. Application of the proposed approach to 
probabilistic analysis of an earth slope using SRFEM will be presented. 

 
 

2. FORM with probabilistic sensitivity analysis 
 
2.1 First-order reliability method (FORM) 
 
In classical FORM, the original correlated basic random variables x (in x-space) that define the 

limit state surface (LSS) or performance function g(x) are transformed into uncorrelated 
standardized normal variables u (in u-space), and the Hasofer and Lind (1974) index β is defined 
as 

**β T uu                              (1) 
 
where u* is the most probable failure point or design point, denoting the point on the limit state 
surface g(u) = 0 closest to the origin of u-space. Usually the design point u* is not known 
beforehand, and the search for u* can be carried out using an iterative algorithm (Rackwitz 1976). 
The procedure is well explained in Ang and Tang (1984), Haldar and Mahadevan (2000), Baecher 
and Christian (2003), among others. 

An alternative formulation of β in x-space or in the space of standardized correlated normal 
variables (n-space) is presented in Low and Tang (2004, 2007) 
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where, xi* is the design point value of the ith variable evaluated in x-space, μi
N and σi

N are 
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equivalent normal mean and standard deviation of the ith variable, respectively, R is the 
correlation matrix, and n* is the design point evaluated in the space of correlated dimensionless 
variables (n-space). μi

N and σi
N can be calculated by the Rackwitz and Fiessler (1978) 

transformation. 
 
2.2 Recursive algorithm FORM in n-space 
 
When LSS is explicit, xi* and β can be easily computed using a constrained optimization 

approach (Low and Tang 2004, 2007); when LSS is implicit, the constrained optimization 
approach can still be used, provided that a closed-form approximation of the LSS is first obtained 
based on the response surface method (RSM) (Xu and Low 2006). It is noted that the RSM-based 
FORM uses an approximated polynomial as the actual performance function. Thus the efficiency 
of this method unavoidably depends on the accuracy of the approximated polynomial. For some 
problems having highly nonlinear performance functions, it may be very hard to approximate them 
using polynomials. Thus it is desirable to carry out reliability analysis without having to 
approximate the actual limit state surface a priori. In this circumstance, an alternative 
Newton-Raphson type recursive algorithm (Rachwitz and Fiessler 1978, Haldar and Mahadevan 
2000) can be used to find the design point, such that (Haldar and Mahadevan 2000) 
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where uk is the kth iteration point in the space of uncorrelated standard normal variables (or 
u-space), g(uk) and g(uk) are the performance function and gradient vector of the performance 
function evaluated at uk, respectively. 

Note that the original recursive algorithm given by Eq. (3) is formulated in the u-space. As a 
result, transformation of the basic random variables from the original space (or x-space) to u-space 
and redefinition of the performance function is required to use the recursive algorithm. However, 
when the performance function is implicit and basic random variables are correlated nonnormals, 
it is almost impossible to carry out reliability analysis by the recursive algorithm in Eq. (3) (Haldar 
and Mahadevan 2000). To overcome this limitation, the recursive algorithm is reformulated in 
n-space, such that (Ji 2013) 
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where nk is the kth iteration point in n-space, g(nk) andg(nk) are the performance function and 
gradient vector of the performance function evaluated at nk, respectively, and R is the correlation 
matrix. Details of the derivation of Eq. (4) are given in Appendix. To obtain the g(nk), the 
following relationship is useful 
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where nk,i is the ith component of the reduced vector nk, xk,i is the ith component of the original 
variable vector xk. 
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In general, the gradient vector is not constant when the performance function is nonlinear. As a 
result, iterative evaluation of Eq. (4) is needed to obtain the final iteration point (i.e., the design 
point n*). The algorithm is repeated until convergence, satisfying two criteria: |nk+1 ‒ nk| and 
|g(nk+1) ≤ ε2|; both ε1 and ε2 are small quantities. After obtaining n*, the reliability index β can be 
computed by Eq. (2). 

 
2.3 Procedure of FORM with sensitivity analysis in x-space 
 
For most engineering problems involving implicit performance function with correlated 

non-normals, Eq. (4) in combination with Eq. (5) can be directly used for the reliability analysis. 
Since the analytical differentiation of g(xk) is not available, the sensitivity analysis (e.g., finite 
difference method) could be used to approximate the ∂g(xk) / ∂xk,i. The procedure for implementing 
the recursive algorithm FORM with sensitivity analysis in x-space is summarized as follows: 
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Newton method used to obtain x from n, starting from μx 

Beta distribution 
Para 1 = α, Para 2 = λ, Para 3 = min, Para 4 = max, 

Mean: μx = min + (max ‒ min)α / (α + λ),  
Newton method used to obtain x from n, starting from μx 

PERT distribution 
Para 1 = min, Para 2 = mode, Para 3 = max, 

Mean: μx = (min + 4 × mode + max) / 6, 
Newton method used to obtain x from n, starting from μx 

 
Fig. 1 Function x_i for obtaining xi from ni (after Low and Tang 2007) 
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Step 1: first select an initial iteration point nk in n-space, and find xk using a x_i function as 
shown in Fig. 1. Since nk is the vector of reduced equivalent standard normal variables, 
initial nk can be at its mean value n0 = 0; 

Step 2: evaluate the performance function g(xk). Use finite difference method to compute 
∆g(xk)/∆xk,i, and obtain the gradient vector g(xk,i); 

Step 3: use Eq. (5) to compute the gradient vector g(nk,i); 
Step 4: compute the new vector nk+1 using Eq. (4), and compute a nominal index βk+1 using Eq. 

(2) where n* is taken to be the new vector nk+1; 
Step 5: using the new vector nk+1, repeat steps 1 to 4 until convergence of the vector n or β 

value and g(nk+1) = 0. 
 
It is worth pointing out that for the recursive algorithm FORM with sensitivity analysis, one 

may encounter difficulties in achieving the convergence of vector n if 1 is set to be a very small 
quantity. This is because the sensitivity analysis always brings some errors in estimating the 
gradient vector of performance function. On the other hand, since our objective is to find the 
reliability index β, one can reduced the convergence criteria for 1 by using 1 = |βk+1 – βk| instead 
of 1 = |nk+1 – nk|, where βk is a nominal reliability index computed by Eq. (2) at the tentative design 
point nk. This is particularly useful when finite difference method is used for the sensitivity 
analysis. 

 
 

3. Validatition of the proposed approach using simple examples 
 
3.1 Application to correlated non-normal variables subjected to explicit limit state surface 
 
The proposed sensitivity-based FORM procedure is first illustrated using a problem containing 

correlated non-normal variables which was solved by Low and Tang (2004, 2007) using the 
constraint optimization approach. The example problem illustrates a reliability analysis of a steel 
beam section. The fully plastic flexural capacity is given as YZ, where Y = the yield strength of 
steel and Z = section modulus of the section. Subjected to a bending moment M at that section, the 
performance function is defined as g = YZ  M. The statistical information of the three variables Y, 
Z and M is shown in Fig. 2. Note that the performance function of this example problem is 
available. As a result, accurate solution of the reliability index is found to be 2.6646. 

A detailed reliability analysis of the above-mentioned example using the proposed FORM 
procedure is also shown in Fig. 2. Initially, the tentative point n0 is chosen to be [0, 0, 0]. Since the 
performance function is given in x-space other than directly in n-space, the one-to-one 
transformation from n-space to x-space is carried out using the user-defined function x_i in a 
spreadsheet in order to evaluate the performance function at the initial point. The gradient vector 
g(x0) is directly obtained from the performance function, (Y0, Z0, −1). Using the proposed 5-step 
procedure, the first tentative β value was found to be 2.8998. After four iterations, the β value was 
found converged to 2.6646, which is the same as the accurate solution. 

 
3.2 Application to a slope reliability analysis 
 
To investigate the applicability of the sensitivity-based FORM in slope reliability analysis, a 

homogeneous 1H:1V cohesive slope as shown in Ji et al. (2012)’s Fig. 12 is re-visited. The 
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ProbDist Variable Para1 Para2 nk xk g (xk)

Lognorma Y 40 5 -1.29 33.79 47.758

Lognorma Z 50 2.5 -0.89 47.76 33.786

ExtValue1 M 1000 200 2.29 1614 -1.000

[R] g (nk) = g (xk) g (nk) nk+1 
1 0.4 0 2E-05 200.9 -1.29 2.6646

0.4 1 0 80.63 -0.89

0 0 1 -413.2 2.29

Computation of the next iteration point based on recursive 
algorithm in n-space

Transformation of variables from n-space to x-space

Note:
(1) the performance function g(xK) = YZ 
− M;
(2) the first component of nk vector is 
associated with Y and the second 
associated with Z, the third associated 
with M; Y and Z are correlated with a 
correlation coefficient of 0.4;
(3) the gradient vector g(xk) is direrctly
obtained from the closed-form g(xK)
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Fig. 2 Reliability analysis of an example problem by sensitivity-based FORM 

 
 

Transformation of variables from n-space to x-space

ProbDist Variable   nk xk g (xk)

Normal c' 15 4.5 -1.33 15.00 0.042
Normal  ' 23 2.3 0.23 23.00 0.030

[R] g (nk) = g (xk) g (nk) nk+1 
1 -0.5 0.000 0.189 -1.33 1.428

-0.5 1 0.068 0.23

Computation of the next iteration point based on recursive 
algorithm in n-space

Note:
(1) the performance function g(xk) = Fs − 1;
(2) the factor of safety Fs is computed by 
Spencer’s method in a spreadsheet;
(3) the first component of nk vector is 
associated with c and the second 
associated with φ; c and φ are correlated 
with a correlation coefficient of −0.5;
(4) the gradient vector g(xk) is obtained by 
finite difference analysis for each variables

 
 

 
Fig. 3 Reliability analysis of a homogeneous earth slope by the recursive algorithm FORM 
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Fig. 4 Influence of perturbation ∆ni value on reliability index β 

 
 
Spencer’s method implemented in a spreadsheet was used to compute the factor of safety Fs. The 
optimization approach for FORM using EXCEL’s SOLVER obtained a β value equal to 1.428. For 
comparison, Fig. 3 shows the reliability analysis by the sensitivity-based FORM in n-space. To 
compute the gradient vector g(x0) or ∆g(x0,j)/∆xj (j = 1 to 2), the forward finite difference 
sensitivity analysis was performed on each component of x0. Note that performance function is 
always evaluated in x-space other than directly in n-space. After 3 iterations, the β value has 
converged to 1.428, which is practically the same as that obtained by the constrained optimization 
approach. The advantage of the sensitivity-based FORM is that the integration of the reliability 
methods and deterministic stability model is not required, so that more complicated numerical 
methods for deterministic stability evaluation (e.g., FEM or FDM) can be used and extended into 
probabilistic analysis, as illustrated next. 

 
3.3 Effect of perturbation values in n-space 
 

It is noted that a constant perturbation value of ni of 0.5 was used in the above sensitivity 
analysis for obtaining the gradient vector g(nk). Other perturbation values in the n-space can also 
be used for the sensitivity analysis. Since the reduced variable ni has mean value of ‘0’ and 
standard deviation of ‘1’, a parametric study of the influence of ni (varying from 0.1 to 0.9) on β 
was carried out. The results are briefly shown in Fig. 4. For the first iteration, the β value is much 
sensitive to the perturbation value used. When more iterations were carried out, the β value 
converges very fast. Thus, it may be concluded that the β value is not really sensitive to the value 
of ni when an iterative procedure is used to improve the results. 
 
 
4. Probabilistic slope stability analysis by strength-reduction FEM 

– Clarence Cannon Dam 
 
4.1 Problem background 
 
Clarence Cannon Dam is located in the Salt River in northeastern Missouri and forms Mark 

Twain Lake. The dam is part of a multi-purpose project which provides flood control, recreation, 
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water supply, fish and wildlife conservation, and hydropower. Completed in 1983, the dam has a 
305 m long earth embankment, a gated concrete spillway section and a concrete powerhouse 
adjacent to the spillway. The earth embankment volume is approximately 2.74 million m3. The 
dam crest at elevation 200 m above mean sea level is about 35 m above the floodplain and 42 m 
above the stream bed. 

The embankment section analyzed is located at survey station 12 + 75 and is representative of 
the dam near its maximum height. The embankment geometry at this location is shown in Fig. 5. 
The section includes a compacted clay foundation cutoff trench through an abandoned glacial 
channel. The cutoff trench and embankment base are constructed of Phase I fill materials and the 
remainder of the embankment is constructed of Phase II fill materials. 

The stability of Cannon Dam has been previously studied by many others. For example, Wolff 
(1985) investigated four different cases of stability of the dam, such as when the dam is at the end 
of construction, with partial pool of reservoir, at steady seepage, and with sudden drawdown. 
Corps’ force-equilibrium method was used to compute the factor of safety along a limited number 
of specified non-circular critical slip surfaces. Hassan and Wolff (1999) analyzed the downstream 
stability of the dam without considering the pore water pressure, and they employed simplified 
Bishop method of slices and Spencer method of slices with both circular and non-circular slip 
surfaces. It is noted that all previous studies found in the literature were limited to limit 
equilibrium methods of slices. For comparison, the Cannon Dam is re-studied in this study by 
strength-reduction finite element analysis using the numerical code PLAXIS. 

 
 

 
Fig. 5 Cannon Dam at section of station 12 + 75 

 
Table 1 Soil properties of Cannon Dam for FEM stability analysis 

Material 
Young’s modulus 

E (MPa) 
Poisson 
ratio v 

Cohesion c 
(kPa) 

Friction 
angle φ () 

Unit weight 
γ (kN/m3) 

Phase II clay fill 15 0.3 143.64 15 19 

Phase I clay fill 10 0.3 117.79 8.5 19 

Sand filter 30 0.3 0 30 16 

Foundation sand 30 0.3 5 18 17.5 

Fill 50 0.3 5 35 20 

Limestone 20000 0.25 200 35 25 
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Fig. 6 Finite element model of the Cannon Dam 

 
 

4.2 Strength-reduction FE stability analysis based on mean values 
 
Soil properties of the Cannon Dam as reported by Hassan and Wolff (1999) and Slide’s manual 

(http://www.rocscience.com/products/8/Slide) are used for the present study. It is noted that only 
the shear strength parameters of clay fills were reported in past studies. In this study, some missing 
values of soil properties which were not provided in the past studies are assumed in accordance to 
their engineering behavior. In addition, elastic modulus E and Poisson’s ratio  are also required in 
the strength-reduction FE stability analysis (based on elastic-perfectly plastic constitutive model 
and Mohr-Coulomb failure criterion). In fact, it is shown in the literature that neither E nor v 
influences the stability factor (e.g., Griffiths and Lane 1999). Thus the following study assumes 
nominal values of E and v which are typical to the relevant geo-materials. The input parameters are 
detailed in Table 1. 

Fig. 6 shows the finite element model for Cannon Dam. 15-node triangular element is used to 
mesh the FE model. For the current study, a total of 1828 elements which include 14921 nodes are 
used. A relatively coarse mesh is applied to the limestone foundation (bottom layer) due to the fact 
that failure will not take place in this layer. Since the downstream (right side) stability of the dam 
is of particular interest, as investigated by others (Hassan and Wolff 1999), the mesh has been 
refined in this side. By trial-and-error, it is found that such a mesh scheme is adequate for the 
stability analysis. 

Fig. 7 shows the displacements and shear strain increments at the state of failure, which is 
computed using the strength reduction technique of PLAXIS. An almost circular failure band is 
observed, and the failure band tends to cross the Phase I fill, Phase II fill and the foundation sand 
layers. It is noted that the shear strain increments is larger around the slope toe area, and becomes 
smaller towards the top surface along the failure band. This implies that the slope failure would 
first take place around the toe area, and progressively extends to the top surface of the dam. 

 
 

 
Fig. 7 Deterministic critical failure mechanism of the Cannon Dam by FEM (mean value point) 
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The critical factor of safety Fs by strength-reduction FE analysis was found to be 2.384. For the 
cross-validation purpose, the stability of Cannon Dam was also examined using limit equilibrium 
methods of slices. The results are compared with others in Table 2. In general, the factors of safety 
Fs computed by various methods are in close agreement with each other. For the limit equilibrium 
methods of slices, when circular slip surface is assumed, generalized limit equilibrium method of 
slices (GLE) obtains a Fs of 2.471, which is slightly higher than that by simplified Bishop method, 
2.462. Since GLE is the most rigorous limit equilibrium method of slices, a non-circular slip 
surface analysis was also performed using GLE, which yields a lower value of Fs of 2.374 than 
does GLE with circular slip surface. In comparison, the Fs by strength-reduction FE stability 
analysis, 2.384, lies between the two values computed by GLE with circular and noncircular slip 
surfaces. Thus, it may be concluded that the strength-reduction FE stability analysis of Cannon 
Dam yields a reasonable Fs value compared with various limit equilibrium methods of slices. One 
advantage of strength-reduction FE stability analysis is that the failure mechanism is found 
automatically, and does not need assumptions of the location and shape of slip surfaces. 

 
4.3 Probabilistic strength-reduction FE stability analysis 
 
As reported by Wolff (1985) and Hassan and Wolff (1999), strength parameters of the Phase I 

clay fill and Phase II clay fill were considered as random variables. Based on UU test of record 
samples, statistical moments for the strength parameters of the two fill layers are summarized in 
Table 3. It is seen that the strength parameters are of very high variability; the coefficient of 
variation (c.o.v.) for φ1 is as high as 1.0. In addition, cross correlation between cohesion c and 
friction angle φ of each layer is also reported: a positive cross correlation of the strength 
parameters in Phase I clay fill; but a negative cross correlation in Phase II clay fill. Based on the 
basic statistical information, a probabilistic investigation of the stability of Cannon Dam can be 
conducted. For example, Wolff (1985) used point-estimate method to estimate the probability of 
failure of the Cannon Dam along a specified non-circular critical slip surface (the deterministic 
critical one). Hassan and Wolff (1999) carried out a reliability analysis of the Cannon Dam using 
MVFOSM with search for the critical-β surface; both circular and non-circular slip surface 

 
 
Table 2 Comparison between stability analyses of the Cannon Dam 

Method of analyses Sliding mode 
Critical factor of 

safety Fs 

Corps’ force-equilibrium method 
(Wolff 1985) 

Non-circular slip surface with 
3-segment polyline 

2.36 

Simplified Bishop method 
(Hassan and Wolff 1999) 

Circular slip surface 2.352 

Simplified Bishop method 
(Hassan and Wolff 1999) 

Non-circular slip surface with 
3-segment polyline 

1.980 

Simplified Bishop method in this study Circular slip surface 2.358 

GLE in this study Circular slip surface 2.471 

GLE in this study Non-circular slip surface 2.374 

FEM analysis in this study Almost circular failure band 2.384 
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Table 3 Statistical information of strength parameters of the Cannon Dam (after Hassan and Wolff 1999) 

Soil description 
Strength 

parameter 
Mean 
value 

Standard 
deviation 

Coefficient of 
variation 

Correlation 
coefficient 

Phase II clay fill 
c2 (kPa) 143.64 79 0.55 

− 0.55 
φ2 () 15 9 0.6 

Phase I clay fill 
c1 (kPa) 117.79 58.89 0.5 

0.10 
φ1 () 8.5 8.5 1.0 

 
 
were considered. Bhattacharya et al. (2003) applied a new numerical procedure for locating the 
critical-β surface in their reliability study of the Cannon Dam. 

For the present strength-reduction FE stability analysis of the Cannon Dam, it is also possible 
to extend into probabilistic analysis using the proposed procedure for implicit performance 
function with the aid of sensitivity analysis in x-space. It is worth pointing out that the 
sensitivity-based FORM requires the least runs of FE stability evaluation compared with 
RSM-based FORM (Xu and Low 2006). Note that past studies using point-estimate method and 
MVFOSM did not mention the statistical distribution of strength parameters but only assumed a 
lognormal distribution for the computed factor of safety Fs. In contrast, the FORM analysis of this 
study requires this additional statistical information. Considering the fact that high variability of 
the strength parameters were reported, Lognormal distribution is recommended in the next 
probabilistic study, since it helps avoid negative values of strength parameters which is 
meaningless in practice. 

Details of the probabilistic FE evaluation are presented in Fig. 8, where forward finite 
difference scheme was used to approximate the gradient vector of performance function. It is 
shown that the reliability index β converges very fast, although there is still a very small 
fluctuation of β value after the forth iteration. This is due to the numerical instability of FE 
analysis when the Fs is close to unity as observed by the author. For convenience, the β value of 

 
 

Transformation of variables from n-space to x-space
ProbDist Variable Para1 Para2 Para3 Para4 x* n ∆nj

Lognormal c2 143.6 79.0  80.90 1 -0.55 0 0 -0.86 0.05

Lognormal 2 15.0 9.0 12.18 -0.55 1 0 0 -0.1 0.2

Lognormal c1 117.8 58.9 33.67 0 0 1 0.1 -2.42 0.05

Lognormal 1 8.5 8.5 1.79 0 0 0.1 1 -1.46 0.2

Procedure for Probabilistic Sensitivity-based FORM ∆nj = varying, g = Fs - 1, where Fs is computed by FEM

Step 1 Initial ni 0 0 0 0 -1.303 0.341 -1.325 -0.855 -0.233 -0.324 -2.133 -1.497 -1.184 0.301 -2.136 -1.479 -0.875 -0.075 -2.385 -1.54

g(ni) 1.203 0.382 0.116 0.057 -0.002

Step 2 g(ni,new) 1.226 1.234 1.221 1.245 0.387 0.404 0.399 0.426 0.124 0.127 0.127 0.144 0.064 0.074 0.069 0.085 0.002 0.008 0.005 0.013

Step 3 Δg(ni) 0.023 0.031 0.018 0.042 0.005 0.022 0.017 0.044 0.008 0.011 0.011 0.028 0.007 0.017 0.012 0.028 0.004 0.01 0.007 0.015

Step 4 Δg(ni)/Δnj 0.46 0.155 0.36 0.21 0.1 0.11 0.34 0.22 0.16 0.055 0.22 0.14 0.14 0.085 0.24 0.14 0.08 0.05 0.14 0.075

Step 5 ni+1 -1.303 0.341 -1.325 -0.855 -0.233 -0.324 -2.133 -1.497 -1.184 0.301 -2.136 -1.479 -0.875 -0.075 -2.385 -1.54 -0.86 -0.098 -2.415 -1.457

 2.045 2.561 2.785 2.934 2.921
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*Note: A total of 25 FEM runs are performed to obtain the reliability index 
 

Fig. 8 Probabilistic evaluation of the Cannon Dam using the sensitivity-based FORM 
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Fig. 9 Probabilistic critical failure mechanism of the Cannon Dam by FEM (design point) 

 
 
2.921 at the fifth iteration is taken to be the final (critical) reliability index. From the final design 
point, it is shown that the normalized indices ni for the strength parameters {c2, φ2} and {c1, φ1} 
are {-0.86, -0.10} and {-2.42, -1.46}, respectively. Obviously, the ni’s for {c1, φ1} have greater 
influence on β than those for {c2, φ2} do. The implication is that the strength parameters of Phase I 
clay fill will contribute much more to the stability of the Cannon Dam than does the strength 
parameters of Phase II clay fill. 

Based on the final design point of the fifth iteration, the probabilistic critical failure mechanism 
of the Cannon Dam can be determined, as shown in Fig. 9. It is very interesting to compare the 
probabilistic critical failure mechanism with the deterministic critical failure mechanism of Fig. 7. 
Both are directly determined by strength-reduction FE stability analysis without making 
assumption with respect to the shape and location of slip surface. However, the two failure 
mechanisms differ very much: an almost circular (critical) failure band was observed from 
deterministic stability analysis; but a very non-circular (critical) failure band was observed from 
probabilistic analysis. Similar findings were previously reported by Cho (2009) where SRFDM 
were used for the stability analysis. 

The results of this probabilistic strength-reduction FE stability analysis of Cannon Dam are 
compared with others using limit equilibrium methods (LEM), as shown in Table 4. Both Hassan 
and Wolf (1999) and Bhattacharya et al. (2003) used MVFOSM in combination with LEMs of 
slices. Thus reliability indices β reported by the two studies are in close agreement each other. But 
it is somewhat strange that the probabilistic critical slip surfaces from the two similar studies differ 
significantly. In contrast, a relatively higher value of β is found in this study. This is reasonable, 
since the mean value Fs by FEM is higher than by the other two LEM analyses, while the potential 
uncertainty of soil properties are the same. Another interesting finding is that even though the β 

 
 
Table 4 Comparison between reliability analyses of the Cannon Dam 

Method of analyses 
Probabilistic critical  
failure mechanism 

Reliability  
index β 

MVFOSM and simplified Bishop method 
(Hassan and Wolff 1999) 

Non-circular surface 2.664 

MVFOSM and Spencer method of slices 
(Bhattacharya et al. 2003) 

Non-circular surface 2.674 

Probabilistic strength-reduction FE analysis 
in this study (FORM) 

Non-circular band 2.921 
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value by FE differs from that by LEM, the probabilistic critical failure band from FE is very 
similar to the probabilistic critical failure surface from Bhattacharya et al. (2003)’s LEM. 

 
 

5. Comparison between RSM-based and sensitivity-based reliability analyses 
 
From the above illustration, it has been shown that both RSM-based FORM and the 

sensitivity-based FORM are able to deal with problems in the absence of explicit performance 
functions. The concept behind the use of RSM for reliability analysis is simple. The main efforts 
lie in the estimation of the actual performance function. However, considering computational 
efficiency and accuracy, the implementation of RSM-based reliability analysis could be 
impractical when the performance function is highly nonlinear and the number of basic random 
variables is very large (high dimensional reliability analysis). For example, for a problem 
involving n basic random variables (n + 1) experimental evaluation of the performance function are 
required when using a linear RSM; when using a simple second-order polynomial RSM, 2n + 1 
experimental evaluations are required when cross terms are not considered, and (n + 1)(n + 2) / 2 
experimental evaluations are required when including the cross terms. Note that the number of 
experimental evaluations increases exponentially with increasing order of polynomial to be used. 
Other the other hand, a stochastic RSM method has been used to overcome the shortcomings of 
RSM to deal with high dimensional reliability analysis of geotechnical problems (Jiang et al. 
2014a, b). 

As an alternative to the RSM-based FORM, the sensitivity-based FORM does not require 
approximating the actual performance function, thus it is more suitable to use when no information 
about the actual performance function (whether linear or nonlinear) is available. Moreover, the 
number of experimental evaluations of the performance function is reduced significantly especially 
compared with nonlinear RSM. For example, for a problem involving n basic random variables, 
only n + 1 (the same number as used in linear RSM) experimental evaluations of the actual 
performance function are required for each iteration when forward or backward difference scheme 
is used for sensitivity analysis, and 2n + 1 experimental evaluations are required for each iteration 
when central difference scheme is used. The use of sensitivity-based FORM for high dimensional 
reliability analysis is referred to Ji et al. (2013) and Ji (2013). 

 
 

6. Conclusions 
 
The stability of earth slope has long been an important topic in geotechnical engineering, and 

recent studies focus on the probabilistic assessment that incorporates the uncertainty of soil 
parameters. In practice, commercial numerical codes are often employed for the factor of safety 
analysis since most earth slopes are complex in the geometry and/or stratification. As such, it is 
interesting to extend the deterministic analysis by those stand-alone numerical codes to 
probabilistic analysis. In this regard, this paper presents a new procedure for the reliability analysis 
involving implicit limit state surface. It is shown that the approach is fast and efficient in the 
determination of design point and manipulable in the space of original variables. It helps extend 
the strength-reduction finite element stability analysis of slopes using stand-alone numerical codes 
(e.g., PLAXIS) into probabilistic assessment. The proposed approach was then applied to a 
well-known case history – the Clarence Cannon Dam. 
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The strength-reduction FE analysis of Clarence Cannon Dam showed that there is an almost 
circular failure band if deterministic (mean) values of the strength parameters were used. 
Moreover, the Fs by FE analysis was consistent with that by LEM with circular slip surface. When 
probabilistic assessment was conducted, it was shown that the probabilistic critical failure band 
could be very non-circular. This is very different from deterministic FE analysis. 
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Appendix: derivation of the recursive algorithm FORM in the space of original 
random variables 

 
 

Consider the basic random variables in x-space are subjected to a correlation matrix R. 
Cholesky decomposition of R yields a lower triangular matrix L and an upper triangular matrix U 
= LT and the two relationships u = L-1n and n = Lu can be obtained, where n and u denote the 
random variable vector x’s transformation into n-space and u-space, respectively. Since L is a 
lower triangular matrix, the derivative of the performance function has the chain rule of the form 
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where uk,i and nk,i are respectively the ith component of the vector uk and nk, m is the total number 
of variables. 

The gradient vector of performance function can be translated from u-space to n-space, such 
that 
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Multiplying L to both sides of Eq. (3), and using Eq. (A3), the recursive algorithm is 
reformulated to be 
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where nk is the kth iteration point in n-space, g(nk) and g(nk) are the performance function and 
gradient vector of the performance function evaluated at nk, respectively, and R is the correlation 
matrix. 
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