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Abstract.  On the basis of Hoek–Brown failure criterion, a numerical solution for the shape of collapsing 
block in the rectangular cavity subjected to seepage forces is obtained by upper bound theorem of limit 
analysis. The seepage forces obtained from the gradient of excess pore pressure distribution are taken as 
external loadings in the limit analysis, and the pore pressure is easily calculated with pore pressure 
coefficient. Thus the seepage force is incorporated into the upper bound analysis as a work rate of external 
force. The upper solution of the shape of collapsing block is derived by virtue of variational calculation. In 
order to verify the validity of the method proposed in the paper, the result when the pore pressure coefficient 
equals zero, and only hydrostatic pressure is taken into consideration, is compared with that of previous 
work. The results show good effectiveness in calculating the collapsing block shape subjected to seepage 
forces. The influence of parameters on the failure mechanisms is investigated. 
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1. Introduction 
 

The potential collapse of a cavity roof is a practical problem in geotechnical and civil 
engineering. Due to the random variability of the mechanical properties of the in-situ rock and the 
presence of cracks and fractures in the rock banks, the complication of the problem increased, 
especially when many factors are taken into account, such as seepage forces and temperature. 
Recently, the stability of tunnel face, and other similar projects have been investigated by many 
scholars by evaluating their lower and upper bound solutions since limit analysis theory is first 
applied by Davis et al. (1980). Compared with slice method and limit equilibrium method, 
solutions obtained from limit analysis are more rigorous and the forces are considered without any 
assumptions (Chen 1975). Thus limit analysis method is widely used to analyze the stability of the 
front of cavity driven in deep or shallow strata owing to its advantages. 

At the present time, the limit analysis method, as a complementary tool in tunnel engineering, 
is mainly used to analyze the stability of tunnel face excavated in shallow strata with linear 
Mohr-Coulomb criterion. However, the collapse mechanism of deep tunnel is a complicated 
nonlinear evolution process, and the characteristics of material are also nonlinear, which have been 
verified by many tests (Agar et al. 1985). That’s to say, deep tunnel and shallow tunnel are of 
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great difference on mechanical characteristics. Therefore, the nonlinear failure criterion, i.e., 
Hoek-Brown failure criterion, should be applied to solve the problem of roof collapsing for a 
deep-buried tunnel. And the Hoek-Brown failure criterion has been widely used in a variety of 
geotechnical engineering problems (Serrano and Olalla 1994, 1998, 1999, Maghous et al. 1998, 
Jimenez et al. 2008, Sofianos 2003, Sofianos and Halakatevakis 2002). Based on the generalized 
Hoek-Brown failure criterion, Merifield et al. (2006) derived the ultimate bearing capacity of a 
surface footing on a rock mass by using limit theorems, and the upper bound solutions are equal to 
lower ones of the bearing capacities precisely. In order to discuss the possible collapse of a 
rectangular cavern roof and tunnel with arbitrary sections based on the upper bound theorem of 
limit analysis and Hoek-Brown failure criterion, Fraldi and Guarracino (2009, 2010) obtained the 
exact solution of detaching profile. 

As is known to all, water as well as other fluid has a significant impact on the stability of 
underground structure generally, thus it is of great importance to investigate its mechanism and 
treatment method. In previous study, Wang et al. (2012) used numerical simulation and upper 
bound analysis theorem to analyze the face stability of shield tunnel under seepage condition. Lee 
and Nam (2001) used the numerical method to study the seepage forces acting on the tunneling 
lining, and then the effect of seepage forces on the stability analysis was investigated by means of 
limit analysis. According to the study done by the above authors, the effect of seepage forces 
should be incorporated into the limit analysis of rectangular cavity which is in rich water stratum. 
When using the limit analysis theory to analyze the stability of rectangular cavity, the effect of 
seepage forces should be taken into consideration, and some methods should be also developed to 
calculate the rate of work done by seepage forces. The seepage forces obtained from the gradient 
of excess pore pressure distribution are taken as external loading in the limit analysis with 
referring to the study of Saada et al. (2012), and it is convenient to calculate the pore pressure with 
pore pressure coefficient. 

 
 

2. Upper bound with seepage forces 
 
On the basis of upper bound theorem, the load obtained by equating the external rate of work to 

the rate of energy dissipation in any kinematically admissible velocity field is no less than the 
actual collapsing load when the velocity boundary condition is satisfied (Michalowski 1995). In 
order to take the effects of seepage forces into account in the realm of the upper bound theorem of 
limit analysis for slope stability, Saada et al. (2012) assumed that the work of seepage forces is 
equal to the sum of seepage forces regarded as external loading working on skeleton expansion. 
Thus the effect of seepage forces incorporated into the upper bound theorem can be written as 
follows 

 
 vdugraddvXvdsTd i

s
iijij                   (1) 

 
where σij and εij are the stress tensor and strain rate in the kinematically admissible velocity field 
respectively, Ti is a surcharge load on boundary s, X is the body force, Ω is the volume of the 
collapse mechanism, v is the velocity along the velocity discontinuity surface, ‒grad u is excess 
pore pressure. 

What’s more, some other assumptions should be made: the material is perfectly plastic and 
follows an associated flow rule; the blocks bounded by the velocity discontinuity line and 
boundary surface are regarded as rigid materials. 
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Fig. 1 Collapsing patterns for rectangular cavity subjected to seepage forces 

 
 
3. Upper bound of rectangular cavity subjected to seepage forces 

 
3.1 Failure mechanism of rock mass for cavity 
 
In regard to the upper bound theorem of limit analysis, how to construct a kinematically 

admissible failure mechanism is critical. On the basis of the actual mechanical characteristics of 
rock mass over the roof of a deep-buried tunnel, choosing an arched detaching curve f(x) to 
describe the velocity discontinuity surface is well coincident with the reality, which is presented in 
Fraldi and Guarracino (2009), as shown in Fig. 1. Owing to the presence of velocity discontinuity 
surface, it will induce the plastic flow. Thus, according to Hoek-Brown failure criterion and 
associated flow rule, the energy dissipation rate along the detaching surface can be worked out. By 
equating the rate of external work to the energy dissipation rate, the virtual work equation which 
meets the velocity boundary condition is derived. What’s more, the variational calculation is 
applied to minimize the objective function so as to obtain the effective shape of the collapsing 
block in a limit state. 

 
3.2 Energy analysis with nonlinear failure criterion 
 
Hoek–Brown failure criterion has two forms of expressions which are expressed by the major 

and minor principal stresses and the normal and shear stresses respectively (Hoek and Brown 
1997). As the energy dissipation along the velocity discontinuity surface is caused by normal and 
shear stresses, it is convenient to use the later form of expression 
 

 BctncA 1)(                              (2) 
 

where σn is the normal stress, τ is the shear stress, A and B are physical parameters of the rock, σc 
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and σt are the uniaxial compressive strength and the tensile strength of the rock mass, respectively. 
On the basis of the Hoek-Brown failure criterion expressed in terms of normal and shear 

stresses and associated flow rule, the normal and shear stresses and strain on the velocity 
discontinuity surface can be worked out (Baker and Frydman 1983). Therefore, the energy 
dissipation rate determined by the internal forces on the velocity discontinuity surface can be 
expressed as (Fraldi and Guarracino 2009) 
 

  vxftxfBABD BB
ctnnnni 











   2)1/(11)1/(1 )(1/)()1()(          (3) 

 

in which ε̇n and ϒ̇n are normal and shear plastic strain rate respectively, f’(x) is the first derivative 
of f(x), t is the thickness of the velocity discontinuity surface. Thus the total energy dissipation rate 
determined by the internal forces on the detaching surface is 
 

  dxvxfBABdsDD
L

BB
ct

s

i  )()1()(
0

)1/(11)1/(1

0
               (4) 

 

Owing to the collapsing block is symmetrical with regard to the y-axis, the work rate of failure 
block produced by weight can be written as 
 

dxvxfP
L

 )(  
0

                                (5) 

 

where γ′ is the buoyant weight which can be obtained by γ′ = γ – γw, L is the half width of the 
failure block. According to the study of Saada et al. (2012), the distribution of excess pore 
pressure is defined as 

hpppu ww                              (6) 
 

where p is the pore water pressure at the considered point which can be derived by an appropriate 
method p = rpγh, rp referring to pore pressure coefficient, and pw = γwh is the hydrostatic distribution 
for pore pressure, γw referring to the water unit weight, h is the vertical distance between the roof 
of the cavity and the top of the failure block. 

Afterwards, ‒grad u can be calculated by 
 

 pw rdhduugrad  /                        (7) 
 

Thus according to Eq. (1), the seepage forces producing work rate along the velocity 
discontinuity surface is 

  dxvxfrdvugradP
L

pwu  )(   
0

                     (8) 

 

Therefore, an objective function which is composed of external rate of work and the internal 
energy rate of dissipation can be constructed as follows 
 

 

 






L

LLL

i

dxxxfxf

dxvugraddxvxftdxxfDxxfxf

0

000

2

),(),( 

    )(  )(1 ),(),(




      (9) 

ϒ̇
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where ψ[f(x), f’(x), x] is a function which can be written as 
 

    vxfrxfBABxxfxf p
BB

ct   )( )1()()1()(),(),( )1/(11)1/(1      (10) 
 

In order to make the integral ψ over the interval [0, L] to achieve an extremum, a typical 
problem encountered of the calculation of variations, i.e., to find a function, y = f(x), under the 
customary regularity conditions, which makes the Eq. (9) a stationary value. The expression of ψ 
is a function which can be turned into an Euler’s equation by variational calculation. So the first 
variation of the total dissipation ζ can be written as follows 
 

  0
)()(

0),(),( 


















xfxxf

xxfxf
            (11) 

 
According to Eq. (10), it can be easily obtained as follows 

 

vxfBAB
xf

vr
xf

BBB
cp 






  )1/(1)1/(1 )()(

)(
)1(

)(


         (12) 

 

vxfxfBAB
xfx

BBB
c 












  )()()1()(

)(
)1/()12(1)1/(1

          (13) 

 
By substituting Eqs. (12) and (13) into Eq. (11), the Euler equation of the problem is obtained 

 

  Vvrxfxf p
BB    v0)1()()( )1/()12(              (14) 

where 
1)1/(1 )1()(   BAB B

c                        (15) 
 

V represents the space of all admissible velocity fields. Eq. (14) is a nonlinear second-order 
homogeneous differential equation which can be calculated by the method of integral calculation. 
After the first integration, it can be written as 
 

  0 )1()()1( 0
)1/(1    xrxfB p

BB                 (16) 

 
where τ0 is a constant calculated by the geometrical condition, and it should satisfy f’(x = 0) = 0 
for the detaching curve f(x) is symmetrical with regard to y-axis. Thus, the expression of velocity 
discontinuity surface f(x) can be derived as follows 
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where h stands for integration constant which can be obtained with the derivation of detaching 
curve f(x). 

By substituting Eq. (17) into Eq. (10), ψ is obtained as 
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By virtue of calculating the integral of ψ over the interval [0, L] according to Eq. (18), the 
expression of ζ presents below 
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 (19) 

 

Indeed, the value of τ0 can be easily obtained. On the basis of symmetrical characteristics of the 
detaching curve f(x), it indicates that the value of τ0 is equal to zero on the basis of f’(x = 0) = 0, so 
f(x) can be simplified as follows 

hx
r

Axf B

BB

c

pB 






 



 /1

/)1(

/1 )1(
)(




                  (20) 

 

On the other hand, there is an implicitly condition of f(x = L) = 0, i.e., 
 

B

BB

c

pB L
r

AhLxf /1

/)1(

/1 )1(
0)( 







 
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




            (21) 

 

At last, according to upper bond theory of limit analysis, it can be calculated easily by virtue of 
equating the rate of the energy dissipation to the external rate of work, i.e., 
 

 
 

  0)1(

)1()1(
0),(),(

/)1(/1/)1(
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p
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B
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BALhr
xxfxf




         (22) 

 

Combining Eqs. (21) and (22), the explicit form of L and h have been derived 
 

    BB
p

B
ctp hrALrBBh   )1()1(1 )1(and)1(/)1(       (23) 
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Consequently, the expression of f(x) is 
 

  tp
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BB

c

pB rBBx
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Axf 

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4. Analytical results and discussions 
 

On the basis of the work of Saada et al. (2012) which investigated the stability of rock slopes 
subjected to seepage forces with upper bound theorem, the corresponding method is applied to 
derive the shape of potential collapsing block in rectangular cavity in this paper and the results has 
been well validated by comparing with the previous work. 

 
4.1 Comparison 
 
In the paper, the shape of detaching curve is obtained by limit analysis based on Hoek–Brown 

criterion. In order to make a comparison with the previous work which has been obtained on the 
basis of Mohr-Coulomb criterion, it is necessary to make some transformations. When B → 1, the 
Hoek-Brown criterion reduces to the Mohr-Coulomb criterion, so the expression of velocity 
discontinuity surface f(x) turns out to be 
 

    111

1

)( )1(cot2cot)1(2)(lim 



   ppt
B

CM rcxrxAxff      (25) 

 

Based on the relationship between the Hoek–Brown generalized criterion and the 
Mohr-Coulomb criterion, in which the coefficient of A and B as well as σt are equal to 
 

ccAB n
CM

nt    tan,cot ,tan,1 )(             (26) 
 

The h and L become 
 

    1)(1)( )1(2and)1(cot2    p
CM

p
CM rcLrch          (27) 

 

The result is coincident with that of Fraldi and Guarracino (2009) when the pore pressure 
coefficient rp = 0, which in turn validates the correctness of the result. Meanwhile, through the 
analysis, the unstable shows if the inequality below is met 
 

  BB
p

B
cc hrALL   )1()1( )1(                       (28) 

 

  tprBBhH   1)1(/)1(                      (29) 
 

From Eq. (29), it is obvious that the deep cavity considered as the ‘deep’ not only is because of 
its actual depth but also depends on some physical properties of the rock mass, i.e., the parameters 
of A, B as well as σc, σt, γ and rp. 

 
4.2 Discussions of numerical results 
 
In order to discuss the impact of the pore pressure coefficient and different rock parameters 
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over the shape of collapsing block for rectangular cavity, different shapes of collapsing blocks on 
the condition of seepage forces based on Hoek-Brown failure criterion are plotted in Figs. 2 and 3. 
According to the work done by Fraldi and Guarracino (2009), the rock mass parameter B varies 
from 3/4 to 1, A varies from 0.15 to 3/4, σt / σc varies from 1/300 to 1/50, and γ varies from 15 kN·m‒3 
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(b) Influences of Parameter A on collapse mechanisms 
 

Fig. 2 Shape of collapsing block with regard to different rock parameters 
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(d) Influences of parameter γ on collapse mechanisms 

 
Fig. 2 Continued 

 
 
to 25 kN·m‒3, and the corresponding plots are drawn in Fig. 2, respectively. Meanwhile, on the 
basis of the study of Saada et al. (2012), the value of rp is generally below 0.3, so the analysis of 
seepage forces estimated by pore pressure coefficient rp ranging from 0 to 0.4 is conducted as 
shown in Fig. 3. 
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Fig. 3 Shape of collapsing block with respect to different pore pressure coefficients 

 
Table 1 Numerical solution of the width and height of the collapsing block with regard to different 
parameters 

Parameters maximum value A = 3/4 B = 0.5 σt / σc = 1/50 γ = 15 kN·m‒3 rp = 0.4 Referring value

L/m 27.7829 57.7350 40.1186 41.1598 32.9278 24.6959 

h/m 12.1429 15.0000 24.2857 20.2381 16.1905 12.1429 

 
 

It is found from the figures that, with the increase of B and γ, the width and height of the 
collapsing block both decrease. While with the increase of σt and rp, the width and height of the 
collapsing block increase. In particular, when A becomes larger, the width of the collapsing block 
increases, but the corresponding height stays the same. For the condition of pore pressure 
coefficient rp = 0, it means the impact of seepage forces is not taken into consideration, and the 
shape of collapsing block is exactly the same as the work of Fraldi and Guarracino (2009), which 
shows the validity of the method presented in the paper for calculating seepage forces. 

In comparison with the result of Fraldi and Guarracino (2009), it can be obviously found from 
Fig. 3 that the width and height of the collapsing block on the condition of seepage forces are 
larger than that ignoring the seepage forces. It can also explain that the effect of water has a 
negative influence on the stability of cavity. What’s more, the corresponding values are 
determined by the pore pressure coefficient to a large extent. 

The maximum value of the collapsing width L and height h corresponding to the parameters 
with reference to the work of Fraldi and Guarracino (2009) can be derived by numerical software, 
and its values are presented in Table 1. It can be found that each of the rock parameters has an 
impact on the scale of the collapsing block to some extent. The referring value of parameters in 
Table 1 is corresponding to A = 2/3, B = 0.7, σt / σc = 1/100, γ = 25 kN·m‒3, and rp = 0.2. 
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(a) Equivalence relationship between Hoek-Brown failure criterion and Mohr-Coulomb one 
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(b) Comparison of collapse mechanisms 

 
Fig. 4 Comparison between results from classical Hoek-Brown and equivalent Mohr-Coulomb parameters

 
 

In order to make a comparison on the results based on Hoek-Brown failure criterion and 
Mohr-Coulomb one, the relationship of two criterions above should be built firstly. According to 
the work of Hoek and Brown (1997) and Fraldi and Guarracino (2009), this relationship can be 
established by means of linear regression which is shown in Fig. 4(a). 
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Though the comparison is on the basis of the equivalence between Hoek-Brown failure 
criterion and Mohr-Coulomb one, but each of the collapsing block presents different scale, as 
shown in Fig. 4(b). It is obvious that the width and height of collapsing block with Hoek-Brown 
criterion are smaller than that with the latter one, from which the more effective collapsing scale is 
obtained with the nonlinear properties of rock taken into consideration. 

 
 

5. Conclusions 
 
By using the upper bound theorem of limit analysis, the exact solution describing the shape of 

collapsing block in rectangular cavity subjected to seepage forces has been derived based on 
Hoek–Brown failure criterion and the method of the calculus of variations. The effect of seepage 
forces is taken as a work rate of external force incorporated to upper bound theorem and it has a 
bad influence on the stability of cavity. The result obtained under the condition of zero pore 
pressure coefficient is exactly the same with the work of Fraldi and Guarracino (2009), which 
shows the validity of the method proposed in the paper for calculating seepage forces. The paper 
can be regarded as an extended work of the study of Fraldi and Guarracino (2009), but Fraldi and 
Guarracino (2009) didn’t take the effect of seepage forces on the prediction of collapsing 
mechanism into account. According to the results discussed above, it can be noticed that the rock 
parameters with a high value of B, as well as a low value of the tensile strength and seepage forces 
can lead to a smaller collapsing block from the point of engineering. 
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