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Abstract.  Thermal conductivity of ground has a great influence on the performance of Ground Heat 
Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or 
porosity) and the moisture content since they are decisive factors that determine the interface area between 
soil particles which is available for heat transfer. In this study, a large number of thermal conductivity 
experiments were conducted for soils of varying porosity and moisture content, and a database of thermal 
properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and 
an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The 
new models were validated by comparing predictions by the models with new thermal conductivity data, 
which had not been used in developing the models. As for the 3D CSM, the normalized average values of 
training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions 
became somewhat unreliable in a low range of thermal conductivity values in considering the distribution 
pattern. As for the ANNM, the ‘Logsig-Tansig’ transfer function combination with nine neurons gave the 
most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 
with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better 
results than the 3D CSM. 
 

Keywords:   thermal conductivity; predictive model; artificial neural network model; transfer function; 
weathered granite soils 
 
 
1. Introduction 
 

In general, ground-surface temperatures fluctuate with seasonal air temperature, while the 
temperature below a depth of 15 m remains relatively constant throughout the year because the 
overlying ground acts as an insulator (Bennett 2008, Olgun et al. 2012). Ground-Source Heat 
Pump (GSHP) systems utilize this relatively constant temperature as an energy source by 
circulating fluid through heat exchangers. Owing to this tremendous and free source of stored 
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energy, the GSHP systems can guarantee high heat efficiency compared to other heating and 
cooling systems. In order to exploit this ground energy, a heat exchanger is installed in the GSHP 
system and buried in various ways. Though there are others, traditionally, vertical closed-loop heat 
exchangers are commonly used and they need high drilling costs at the initial stage of construction. 
Recently, however, to reduce high construction costs, these heat exchangers can be installed inside 
foundation piles of building, and the piles are called energy piles (Pahud et al. 1999, Laloui et al. 
2003, Brandle 2006). Then they play a role not only as a structural support but also as a carrier for 
heat exchange. Because the heat exchangers are just installed inside existing piles without any 
additional drilling, the depth is limited to the length of piles (about 20 m). Therefore, energy pile 
heat exchange occurs usually in a shallow depth, and the design of energy piles should 
accommodate the thermal properties of soil existing in the relatively shallow depths. 

In the design of energy piles, the most important factor is the thermal conductivity of ground in 
which the heat exchangers are installed. Therefore a reasonable estimation of those thermal 
properties facilitates an efficient design of GSHP systems by providing more accurate estimates of 
heat transfer between the ground loop heat exchanger and the surrounding soil (Hart and Whiddon 
1984). Unfortunately, there are not enough thermal property databases that reflect the 
characteristics of Korean weathered-granite soils. Moreover, it is uncertain whether current 
estimation models are applicable to Korean weathered granite soils. For these reasons, this study 
focused on Korean weathered-granite soils, and developed a database of relevant thermal 
properties. Based on this new database, a 3D CSM and an ANNM were proposed for accurate 
estimation of thermal conductivity. Finally, the new models were validated by comparing model 
predictions with new thermal conductivity data that are not used in developing the models. 

 
 

2. Thermal conductivity test 
 
There are two methods for measuring the thermal conductivity: the steady state method and the 

non-steady state method. The steady state method measures the heat velocity needed to keep the 
temperature constant between two different materials. The representative equipment used for the 
steady state method is a Heat Flow Meter shown in Fig. 1(a) (Netzsch 2013). Though the test 
procedure is simple, it takes long time to accomplish, and if the surface materials are unstable, this 
test may give results of low accuracy. On the other hand, the non-steady state method is based on a 
linear heat source theory. The material properties are determined while the sample temperature is 
still changing. The main advantage of the non-steady state technique is its short measurement time. 
The TP08 Probe (Hukseflux 2006) is a typical equipment used for the non-steady state method. It 
only takes 200 s to obtain the results. 

In order to compare the results from these methods, thermal conductivity tests were carried out 
using the two identical soil samples. Fig. 2 illustrates the variation of thermal conductivity with the 
dry density, as determined by the two different methods. In most cases, both methods predicted 
similar values of thermal conductivity at the same dry density (See the vertical bar in Fig. 2), even 
though there was a slight difference in the two predictions for sand. Thus, the results are quite 
similar, regardless of which test methodology is used. 

 This study selected the TP08 probe as a measurement tool because it has great advantages in 
developing the database due to its short measurement time. The TP08 probe is composed of parts 
shown in Fig. 1(b): ○1  wire, ○2  base, ○3  needle, ○4  temperature sensor, ○5  heating wire, and ○6  
thermocouple junction. As shown in Fig. 1(b), once heat is injected by the needle probe, it induces 
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     (a)   (b) 

 

Fig. 1 Thermal conductivity measurement equipment: (a) Schematic design of HFM equipment; 
(b) Schematic layout of TP08 Probe (Hukseflux 2006) 

 

 
 

Fig. 2 Comparison of results from TP08 and HFM in dry state 

 
 
a thermo-electromotive force, after which the thermal conductivity can be measured in a non- 
steady state. 

 
 

3. Development of database 
 
3.1 Test materials 
 
The weathered granite soils from Gangwon Inje (W1), Gangwon Pyungchang (W2), Gangwon 

Taebaek (W3), Busan Geumjung (W4), Sejong Yeongi (W5) and Joomoonjin sand (Sand) in 

361



 
 
 
 
 
 

Gyu-Hyun Go, Seung-Rae Lee, Young-Sang Kim, Hyun-Ku Park and Seok Yoon 

Korea were sampled and used in the thermal conductivity tests. Table 1 summarizes the basic 
properties of these samples. Because the porosity of an undisturbed sample was in the range of 0.4 
~ 0.5, the disturbed soil for the thermal conductivity test was made in this range. Joomoonjin sand 
is poorly graded, but the weathered granite soils are quite similar to other well graded soils. Also, 
as shown in Fig. 3, the weathered granite soils can be regarded as non-plastic soils due to the low 
proportion of fine particles in those soils. 

A quantitative mineral analysis of the weathered granite soils was performed by X-ray 
diffraction (XRD – Table 2, Fig. 4). The thermal conductivity of the soil particles (λsp) was 
obtained from the literature (Horai 1971) and a geometric-mean-based model (Eq. (1)). The 
geometric-mean-based model is a kind of theoretical model based on an arithmetic mean, 
geometric mean and harmonic mean. 
 

 
j

j
j

x
ms xj

j
1   with ,                          (1) 

 

where λmj is the thermal conductivity of jth mineral, and xj is a composition ratio of jth mineral. 

 
 
Table 1 Basic properties of soil samples 

Soil Porosity* 
Coefficient of
uniformity Cu

Coefficient of
curvature Cc 

Specific 
gravity Gs 

USCS* 

Sand 0.45 2.06 1.05 2.65 SP 

W1 0.47 6.22 0.96 2.59 SP 

W2 0.46 4.89 1.51 2.66 SW 

W3 0.45 11.67 1.08 2.55 SW 

W4 0.53 8.53 1.58 2.54 SW 

W5 0.44 6.55 0.97 2.58 SP 

*Porosity (undisturbed); USCS: Unified Soil Classification System 
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     Fig. 3 Particle size distribution of samples 
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Table 2 Results of mineral quantitative analysis (XRD) 

Soil 
Mineral portion (%)* 

Quartz 
(7.69) 

Microcline 
(2.49) 

Albeit 
(1.96) 

Kaolin
(3.0)+

Orthoclase
(2.32) 

Muscovite
(3.48) 

Illite
(3.0)+

Chlorite 
(5.15) 

λsp 

(W/m·K)

Sand 92.0 5.0 ‒ ‒ 3.0 ‒ ‒ ‒ 7.01 

W1 38.3 17.0 12.9 13.9 ‒ 12.2 7.5 1.1 4.22 

W2 28.6 19.0 28.5 9.0 ‒ 6.8 - 1.1 3.49 

W3 32.9 19.3 5.0 26.2 ‒ 4.9 5.5 3.0 4.04 

W4 38.5 ‒ 23.5 17.9 19.2 ‒ ‒ 0.6 3.88 

W5 28.2 21.8 24.6 13.8 ‒ 5.9 4.2 0.8 3.50 

*Provided by KIGAM, +Assumed referring to a literature (Johansen 1975) 

 

 
Fig. 4 Results of mineral quantitative analysis 

 
 

As for the Joomoonjin sand, the proportion of quartz appeared to be more than 90% of total 
mineral composition. This means that there are great differences in the mineral compositions of 
weathered granite soils and joomoonjin sand. The implication is that it may be difficult to apply 
current models to weathered granite soils in Korea because a number of current prediction models 
are applicable to pure sand or gravel which has different mineral compositions compared to the 
weathered granite soils (Farouki 1986, Park 2011). 

 
3.2 Test results 
 
It is widely known that the moisture content greatly influences the thermal conductivity of soils 

(Kersten 1949, Penner et al. 1975, Salomone and Kovacs 1984, Park 2011). The moisture content 
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(a) Joomoonjin sand (porosity = 0.48) 

 
(b) Joomoonjin sand (porosity = 0.42) 
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(c) W1-1 (porosity = 0.51) 

 
(d) W1-2 (porosity = 0.59) 
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(e) W2-1 (porosity = 0.43) 

 
(f) W2-2 (porosity = 0.53) 

 
 

Fig. 5 Comparison results of experiments and previous prediction models (Park et al. 2012) 
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(g) W3-1 (porosity = 0.48) 

 
(h) W3-2 (porosity = 0.58) 

 

0 10 20 30 40 50 60 70
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
 Test results                       Kersten (1949)
 Johansen (1975)               Cote and Konrad (2005)
 Lu et al. (2009)                  Lee (2010)
 Geometric mean model

T
he

rm
a

l C
o

n
d

u
ct

iv
ity

 (
W

m
-1
K

-1
)

Degree of Saturation (%)

 

0 10 20 30 40 50 60 70
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
 Test results                       Kersten (1949)
 Johansen (1975)               Cote and Konrad (2005)
 Lu et al. (2009)                  Lee (2010)
 Geometric mean model

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

m
-1
K

-1
)

Degree of Saturation (%)

 
(i) W4-1 (porosity = 0.48) 

 
(j) W4-2 (porosity = 0.56) 
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(k) W5-1 (porosity = 0.48) 

 
(l) W5-2 (porosity = 0.56) 

 
Fig. 5 Continued 
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Table 3 Previous prediction models applied to thermal conductivity test analysis 

Model Prediction formula* Remark 

Kersten (1949) λ = 0.1442 (0.7 log w + 0.4) · 100.6243ρd ρd in g/cm3 

Johansen (1975) 

λ = (λsat ‒ λdry) · (0.7 log Sr + 1.0), 

where 

λsat = λ1
s
‒
p

nλw
n , λdry = (0.137 ρd

 + 64.7) / (2700 ‒ 0.947 ρd) ± 20% 

ρd in kg/m3 

Côté and Konrad  
(2005) 

λ = (λsat ‒ λdry) · [kSr / (1 + (k ‒ 1) Sr)] + λdry 

where 

k = empirical parameter, λdry = χ10‒ηn 
χ = 0.75 for soil, η = particle shape parameter, n = porosity 

Coarse-fine  
grained soil 

Lu et al. (2007) 

λ = (λsat ‒ λdry) · (exp{α [1 ‒ Sr
α‒1.33}, 

where 

α = 0.96 for coarse soil, λdry = ‒ 0.56n + 0.51, n = porosity 

Coarse  
grained soil 

Lee (2010) λ = (0.42 ρd ‒ 0.62) · w + 0.2633 
Weathered  
granite soil 

Geometric  
mean model 

λ = Π λ
x

m
j

j , x = volume fraction,  
j = soil grain, pore water, and pore air 

Theoretical model

*w: moisture content, Sr: degree of saturation, λsp: thermal conductivity of soil particle, λw: thermal 
conductivity of water (= 0.57 Wm-1K-1) 
 

 
 

Fig. 6 3-D curved surface model based on experimental data 

 
 

3.3 Estimation model based on database 
 
Here a new thermal conductivity estimation model was proposed considering the effects of 

porosity and moisture content. Based on the newly established database, a 3-D Curved Surface 
Model (CSM) (Fig. 6) was developed, and its equation (Eq. (2)) is represented as a function of 
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porosity and moisture content. It was taken by the polynomial regression analysis from the surface 
fitting tool box in MATLAB Program, and this tool box can determine the optimum equation 
which yields the highest coefficient of determination values. The range of conditions is limited to 
the following: 0 ~ 25% moisture content and 0.25 ~ 0.65 porosity. This model was based on the 
experimental database for weathered granite soils, and thus it can accurately predict the results for 
weathered granite soils. 
 

nnnf   6.2851.394.057.2066.0),( 2              (2) 
 

where ω is the moisture content, and n is the porosity. 
 
 

4. Thermal conductivity artificial neural network model 
 

The Artificial Neural Network Model (ANNM) is a mathematical model which imitates the 
network system of a human brain. This model has been widely used in various geotechnical 
engineering areas, including the estimation of consolidation settlement and undrained shear 
strength of soils (Lee et al. 2000, Min et al. 2000, Kim 2005). In this study, an ANNM was 
developed based on thermal conductivity data, for estimating the thermal properties of weathered 
granite soils in Korea. 

As shown in Fig. 7, the ANNM consists of a multilayer neural network which includes Input 
layer (I) – Hidden layer (H) – Output layer (O). In each layer, there are several neurons replicating 
a standard unit of human nervous tissue and they are connected with neurons in other layers by 
specific weights and biases. The input data of neurons in each layer are multiplied by weights, and 
then the sum of these values are handled by a transfer function. The resulting values are then 
transferred to the next layer as input data. The building process of an ANNM can be divided into 
two steps. The first step is a training phase, in which the weights of neurons in each layer are 
adjusted. In this step, the ANNM is able to learn about the optimum weights that can generalize 
the given data by itself. Next step is a testing phase where the developed model is verified by 
comparing the prediction data with new experimental data. The data should not be used in 
developing the model. 
 
 

1 2 3 4 5 6 7

1 2 3 4

1

λs

n ω

5

λsp cu cc

Input layer
(I) 

Hidden layer 
(H) 

Output layer 
(O)

 
Fig. 7 Artificial neural network model for estimating thermal conductivity 
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Table 4 Characteristics of input data used in neural network training and testing 

 1 2 3 4 5 

Soil Porosity 
Moisture  

content, ω (%) 
λsp* (W/m•K) 

Coefficient of  
uniformity Cu 

Coefficient of  
curvature Cc 

W1 0.47 0 ~ 22 4.22 6.22 0.96 

W2 0.46 0 ~ 22 3.49 4.89 1.51 

W3 0.45 0 ~ 23 4.04 11.67 1.08 

W4 0.53 0 ~ 25 3.88 8.53 1.58 

W5 0.44 0 ~ 20 3.50 6.55 0.97 

* Soil particle’s thermal conductivity estimated by geometric mean model 

 
 

4.1 Database of weathered granite soils 
 
As specified in Section 3, in this study a thermal conductivity database was set up for 

weathered granite soils sampled in Gangwon Inje (W1), Gangwon Pyungchang (W2), Gangwon 
Taebaek (W3), Busan Geumjung (W4), and Sejong Yeongi (W5). Five fundamental soil properties 
were selected as input variables for the model (Table 4), and about 100 data points were used for 
the ANNM. Seventy-four of these data points were used as ‘training data’ to develop the ANNM, 
and 30 points of randomly selected data were used as ‘testing data’ to verify the applicability of 
the ANNM. The input data were normalized to a value of range within [0, 1] to perform the 
training job more efficiently. 

 
4.2 Optimization technique 
 
In general, an ‘error back-propagation algorithm’ is used for training multilayer neural 

networks because it is useful for developing non-linear relationships between input and output data. 
The ‘Levenberge-Marquardt technique’ (provided in the Matlab Toolbox) was used for optimizing 
the weights and biases. This technique improves the training efficiency of the error 
back-propagation algorithm (Demuth and Beale 1992). The training phase was stopped when it 
reached a maximum Epoch, or when the mean squared error (mse) defined by Eq. (3) converged 
below the mean-squared-error goal (0.005). 
 

 



n

k

ktka
n

mse
1

2)()(
1

                           (3) 

 
where a(k) is the thermal conductivity predicted by the ANNM, t(k) is the measurement data of 
thermal conductivity, and n is the total number of data. 

 
4.3 Decision of optimization model 
 
In order to build up the ANNM, the five fundamental input parameters shown in Table 4 were 

selected. Since the accuracy of the model depends on the number of neurons in the hidden layer 
and type of transfer function, different combinations of transfer function (Log-sigmoid, Tan- 
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Table 5 Combination of transfer functions and R2 values of each model 

Transfer function Number of neurons R2 of training data R2 of testing data 

Logsig - Linear 7 0.90 0.80 

Logsig - Logsig 8 0.87 0.85 

Logsig - Tansig 9 0.93 0.84 

Tansig - Linear 10 0.89 0.83 

Tansig - Logsig 7 0.85 0.87 

Tansig - Tansig 6 0.85 0.82 

 
 
sigmoid, or Linear) were applied to the model (Table 5). Then the analysis was performed to 
obtain the coefficient of determination (R2) for the training and testing data by increasing the 
number of neurons from 1 to 10. Finally, the most accurate model was selected as the optimized 
estimation model. 

Figs. 8(a), (c), (e), (g), (i) and (k) show the variation of coefficient of determination (R2) for the 
training and testing data according to the number of neurons in the hidden layer. The coefficient of 
determination of the training data was prone to increase as the number of neurons increased, while 
the coefficient of determination of the testing data fluctuated, rather than to increase consistently. 
The increase in R2 in the training data is resulted from the ‘remember effect’ during the training 
phase rather than ‘learning performance improvement’ due to the increase in neurons. Figs. 8 (b), 
(d), (f), (h), (j) and (l) show the comparison results between predictions and experiments for the 
training and testing data, and their R2 values are enumerated in detail. 

Though all six models showed high accuracy in the prediction (> 0.8 of R2), the model using 
the Logsig–Tansig transfer function combination was selected as the best. As shown in Fig. 8(e), 
as the number of neuron increases, the coefficient of determination (R2) also shows a tendency 

 
 

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 training
 testing

C
oe

ffi
ci

e
nt

 o
f d

et
er

m
in

at
io

n,
 R

2

Number of Neuron in hidden layer

Transfer function combination: Logsig-Linear

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 training data, R2=0.90

 testing data, R2=0.80

P
re

di
ct

ed
 th

er
m

al
 c

on
du

ct
iv

ity
 (

W
/m

K
)

Measured thermal conductivity (W/mK)

(a) R2 variation with number of neurons in hidden layer (b) Logsig - Linear model with 7 neurons 
 

Fig. 8 Comparison of R2 values for different models 
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(e) R2 variation with number of neurons in hidden layer (f) Logsig - Tansig model with 9 neurons 
 

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Transfer function combination: Tansig-Linear

C
oe

ffi
ci

en
t o

f d
et

e
rm

in
at

io
n,

 R
2

Number of Neuron in hidden layer

 training
 testing

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 training data, R2=0.89

 testing data, R2=0.83

P
re

d
ic

te
d 

th
er

m
a

l c
o

n
d

uc
tiv

ity
 (

W
/m

K
)

Measured thermal conductivity (W/mK)

(g) R2 variation with number of neurons in hidden layer (h) Tansig - Linear model with 10 neurons 
 

Fig. 8 Continued 
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(k) R2 variation with number of neurons in hidden layer (l) Tansig - Tansig model with 6 neurons 
 

Fig. 8 Continued 

 
 
to increase in both training and testing data. Therefore, the model (Logsig–Tansig) with 8 neurons 
yields the highest accuracy among others; it represents the R2 value of 0.93 and 0.84, respectively. 

 
 

5. Results 
 
This study verified the predictive accuracy of the developed models by comparing the results 

obtained by the ANNM, 3D CSM (Eq. (2)) and the previous estimation models (Table 3). Fig. 9 
plots the prediction results of each model using the training and testing data. For the reasonable 
verification, new thermal conductivity data which had not been used in developing the model were 
used for testing. As shown in Fig. 9, both the ANNM and 3D CSM provide good predictive 
accuracy compared to the previous estimation models for both training and test data. The empirical 
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models (e.g., Kersten (1949), Johansen (1975), Côté and Konrad (2005), and Lu et al. (2007)) 
have a tendency to overestimate the measured values, while the theoretical (geometric mean) 
model underestimates them. Though the Lee model (2010) is also an empirical model, it is not 
adaptable for the samples considered in this study because the model was developed primarily for 
the heavily compacted weathered granite soil of which the dry unit weight was larger than 15 
kN/m3. 

Based on the results of Table 6, the ANNM and 3D CSM seem to be better than the others for 
the prediction, and hence their predictive accuracy is compared in more details. Figs. 10 and 11 
show the comparison of normalized values for the two models. As for the 3D CSM, the 
normalized average values of training and test data were 1.079 and 1.061, respectively, with 
variations of 0.158 and 0.148. The predictions became unreliable for low range thermal conductivity 
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(a) ANNM (b) 3D CSM 
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Fig. 9 Comparison results of each model 
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(e) Côté and Konrad (2005) model  (f) Lu et al. (2007) model 
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(g) Lee (2010) model (h) Geometric mean model 
 

Fig. 9 Comparison results of each model 

 
Table 6 Coefficient of determination (R2) for each estimation model 

Method 
Coefficient of determination (%) 

Training data Testing data 

ANNM (Logsig(9)-Tansig) 93 84 

3D CSM 72 68 

Kersten (1949) 62 59 

Johansen (1975) 63 63 

Côté and Konrad (2005) 67 66 

Lu et al. (2007) 65 60 

Lee (2010) 14 10 

*Geometric mean model 75 68 

* Theoretical model 
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(a) ANNM (b) 3D CSM 
 

Fig. 10 Comparison of normalized thermal conductivity (training data) 

 

 
conductivity values in considering the distribution pattern. It is because the experimental value 
itself has a large volatility in low range of thermal conductivity. But it does not have significant 
physical implication. As for the ANNM, the normalized average values of training and test data 
were 1.006 and 0.954, respectively, with variations of 0.026 and 0.098. Accordingly, it can be 
concluded that the ANNM gives much more accurate results than the 3D CSM. Another advantage 
of the ANNM is that it can improve its accuracy by accumulating more data. Therefore, it has a 
great potential for the application of it to the estimation of thermal conductivity, for any type of 
soils in Korea. 

 
 

(a) ANNM (b) 3D CSM 
 

Fig. 11 Comparison of normalized thermal conductivity (testing data) 
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6. Conclusions 
 
This study developed the thermal conductivity database for weathered granite soil in Korea. 

Based on the experimental data, two empirical models were suggested and verified by comparing 
the accuracy with others. 

The conclusions drawn from this study can be summarized as follows: 
• The 3D Curved Surface Model was presented as a function of porosity and moisture content 

based on the experimental database, and the prediction results showed that the model using 
only two variables can guarantee adequate accuracy in the prediction of thermal 
conductivity for weathered granite soils. However, the prediction became unreliable in a low 
range of thermal conductivity in considering the distribution pattern. 

• As for the Artificial Neural Network Model, the ‘Logsig-Tansig’ transfer function 
combination gave the highest accuracy estimates. 

• The ANNM can consider various input parameters and hence it can provide greater 
accuracy compared to the previous empirical models. 

• The ANNM has also a great potential for the estimation of thermal conductivity for any 
types of soil in Korea, since it can be improved by accumulating more data. 
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