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Abstract.  Population increase and economic developments can lead to construction as well as demolition 
of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. 
Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base 
materials in road construction is a foremost application to be promoted to gain economical and sustainability 
benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, 
it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were 
subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined 
compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of 
the standard road materials used in Queensland, Australia. It was found that material type 
‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are in the margin of the minimum required 
specifications of base materials used for high volume unbound granular roads while others are lower than 
that the minimum requirement. 
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1. Introduction 
 

Demolished materials are becoming more popular to be recycled and reused due to shortage of 
natural mineral resources, increasing waste disposal cost, and increasing the demand of materials. 
Conversely supplying the conventional aggregates for construction purposes make impact on 
resource depletion, environmental degradation, and energy consumption. Therefore reusing the 
recycled materials creates many economical and environmental benefits. 

Crushed concrete can be considered and promoted as an alternative and a sustainable source of 
aggregate for construction industry. Studies have revealed that recycled concrete aggregates can be 
applied as a partial or complete substitution of natural aggregates in the production of ordinary 
concrete (Amnon 2003, Poon et al. 2004, Kou et al. 2011). Ismail and Ramli (2013) tested the 
effect of using different molarities of acid solvent and age of treatment (soaking) on properties of 
RCA in concrete structures. Their result was the use of treated RCA made higher compressive 
strength as compared to untreated RCA in concretes. Butler et al. (2011) focused his studies on 
                                                 
Corresponding author, Research Scholar, E-mail: shiran.jayakodyarachchige@student.qut.edu.au 
a Lectureer, Ph.D., E-mail: chaminda.gallage@qut.edu.au 
b Professor, Ph.D., E-mail: arun.kumar@qut.edu.au 



 
 
 
 
 
 

Shiran Jayakody, Chaminda Gallage and Arun Kumar 

RCA to evaluate the bond strength between RCA concrete and steel reinforcement and conclusion 
was to consider RCA as an alternative coarse aggregate to use in structural concrete applications. 
However, Hansen (1992) found that fine portion of RCA makes detrimental effects on the harden 
properties of concrete; thus coarse RCA is best to reuse for concrete. 

The studies on RCA as pavement material have been widely reported in the last decade. Poon 
and Chan (2006) reported the feasibility of using RCA blended with crushed clay bricks as 
materials to produce sub-bases. His samples had the minimum required strength according to 
Hong Kong specifications. Park (2003) introduced RCA as base and sub-base material for concrete 
pavement. Nataatmadja and Tan (2001) used high strength concrete to produce RCA at the 
laboratory and conducted repeated load tri-axial test to investigate the resilient response of RCA. 
Based on the test results they assumed the performance of the base and sub-base materials 
prepared with both coarse and fine RCA were comparable to that of conventional base and 
sub-base materials. Chini et al. (2001) conducted a research in the United State to assess the 
feasibility of using RCA as a base material layer under hot mix asphalts and as an aggregate in 
portland cement concrete pavement. This research was confirmed the requirement of future 
research on RCA and the need of a practical guide for the use of RCA in pavement construction. 
This guide can be used by the producers and users of RCA prior to make popular it as a pavement 
aggregate. 

Although these research findings have demonstrated the feasibility of using RCA as sub-base 
material as well as for base course of the concrete pavements, a detailed investigation of RCA as 
base and sub-base material for unbound granular pavements is required. These investigations 
should include determining the classification properties of RCA considering the variability of its 
compositions and performance characteristics under repeated loading. Evaluation of the 
performance of a granular pavement constructed using RCA is the best way to investigate the 
deformation criteria in real traffic loading under different climatic conditions. As the first step of 
such a detailed investigation on RCA, this paper presents the results of classification tests of six 
different RCA samples. The results have been analysed to examine the feasibility of using RCA in 
unbound granular pavement construction by comparing their classification properties with those of 
the conventional unbound granular materials used in the state of Queensland, Australia. 

 
 

2. Materials used 
 
For this study, two primary commercially available RCA products, named as RM001 and 

RM003 (see Fig. 1) were obtained from a leading concrete recycling plant in Queensland. Material 
sources are demolished building (slabs, floors, columns and foundations), bridge supports, airport 
runways and concrete road beds. The collected source materials went through specified crushing 
process to produce RM001 and RM003. Table 1 shows the maximum percentages of the 
constituents that can be permitted in RM001 and RM003 at the plant output. RM 001 is produced 
by crushing only the waste concrete which is separated from other demolished waste to avoid 
mixing other constitutes such as bricks, asphalt, glass etc. In the process of producing RM003 
bricks and RAP are allowed but controlled for their maximum allowable percentages. Figs. 1 
(a)-(b) show the photos of the two crushed RCA products. 

These two materials were blended in different percentages by weight to form another four 
samples to represent various combinations of constituents. New sample types with their blending 
percentages are showing in Table 2. 
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(a) (b) 

Fig. 1 RCA materials (a) RM001 and (b) RM003 

 
Table 1 Percentage limits of constituents of two main RCA materials 

Recycled material type 
Maximum limit of each constituent (Percentage by mass) 

Reclaimed concrete *RAP Brick 

RM001 100 – – 

RM003 100 20 15 

*RAP – Reclaimed Asphalt Pavement 

 
Table 2 New RCA samples with blending percentages 

Material name 
Mixing percentages by mass (%) 

RM001 RM003 

RM1-100/RM3-0 100 0 

RM1-80/RM3-20 80 20 

RM1-60/RM3-40 60 40 

RM1-40/RM3-60 40 60 

RM1-20/RM3-80 20 80 

RM1-0/RM3-100 0 100 

 
Table 3 Standard pavement materials with their description 

Material type Pavement layer 
CBR (Soaked) –

Minimum % 
Description 

2.1 Base 80 
Roads with design traffic equal to or exceeding 106

equivalent standard axle (ESA) repetitions 

2.2 Base 60 Roads with design traffic less than 106 ESAs 

2.3 Sub-base 45 Roads with design traffic equal to or exceeding 106 

2.4 Sub-base 35 Roads with design traffic less than 106 ESAs 

2.5 Lower sub-base 15 Roads with design traffic less than 106 ESAs 
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3. Laboratory testing, results and discussion 
 
RCAs are highly heterogeneous and consist of different amounts of impurities and their 

quantities are not steady. Therefore RCA can have inconsistent classification and strength 
properties and it is essential to check the properties of RCAs through classifications and strength 
tests. In this study sieve analysis test, atterberg limits test, proctor compaction test and strength test 
such as California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were 
performed on each RCA sample shown in Table 2 to investigate the possible range of variation of 
classification and strength parameters. The results were then compared with the specifications of 
standard base and sub-base materials recommended by Department of Transport and Main Roads 
in Queensland. These standard materials types are shown in Table 3 with their descriptions 
(MainRoads 2009). 

 
3.1 Particle size distribution 
 
Particle size distribution (PSD) of a particular pavement aggregate type affects its 

compressibility, permeability, density, etc. (Papagiannakis and Masad 2008). Therefore gradation 
of a pavement material has to be checked continuously to maintain the required particle size and 
quantities. The primary materials RM001 and RM003 had maximum particle size 25.4 mm and 19 
mm respectively. To determine the gradation of mixed RCA samples, dry sieve analysis was 

 
 

 
 

Fig. 2 Gradation curves for six samples and maximum & minimum curves of subtype 2.1 materials 
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performed according to the Australian standards (Australia 2009a). Fig. 2 shows the PSD curves 
for six RCA samples having reasonably well graded distribution. However, the comparison of the 
six gradation curves with ‘Material type 2.1’ appears that the grading limits of all RCA samples 
are within the shortage of coarse particles and do not fulfil even the lower bound of Material type 
2.1 (which indicates the low percentage of coarse particles). Material Type 2.1 is presented the 
standard specification for base layer material in high traffic volume roads by the Department of 

 
 

 
  

 
  

 
Fig. 3 Gradation curves for six samples prior to and after compaction 
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Fig. 4 Gradation curves for six samples after compaction with maximum & minimum curves of subtype 2.1 
materials 

 
 
Transport and Main Roads, Queensland, Australia (see Table 3). The lower coarse aggregates 
results in comparatively low strength in compacted material and low bearing capacity due to the 
weak imparting strength among the particles. 

Breaking of materials under compaction is significant for the volume stability of a particular 
pavement layer in unbound granular pavements. Breakdown of individual particles under the 
traffic loading can alter the grading of the materials and lead to changes in density (Youdale and 
Sharp 2007). Fig. 3 shows the PSD curves prior to and after compaction for each sample. Fig. 4 
shows the PSD results after compaction for the six samples together with lower and upper bound 
of Material type 2.1. The grading curves of the Figs. 3-4 indicate that breakdown occurred under 
the compaction in all samples. They show comparatively higher response for breaking particles 
under compaction in ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ since it is likely that breakdown 
occurred in aggregates when high percentage of RM001 material that has more coarse aggregates. 
With the increasing of RM003 portion in other samples the breakdown has been less since the 
percentage of aggregates is low. It is clearly notable that there is reduction of coarse particles and 
increasing fines after compaction. 

 
3.2 Plasticity 
 
Determining the plastic properties of materials is very important since the plasticity affects 
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shear strength, modulus, permeability, etc of compacted materials. The plasticity index reflects the 
range of moisture content over which the material is susceptible to compaction by external forces 
(Aksakal et al. 2013) and depict the expansive nature of a particular material (Voung et al. 2008). 

Liquid limit (LL) and plastic limit (PL) test were conducted for fines passing 0.475 mm sieve 
according to the Australian standards (Australia 2002, 2009b). Fines of only ‘RM1-100/RM3-0’ 
and ‘RM1-0/RM3-100’ were tested since other four samples are blended using these two fines. 
The LL values and mean values of PL test are summarized in Table 4. According to the 
Department of Main Roads, Queensland specifications; the maximum plasticity index (PI) is 6 for 
material subtype 2.1 (See Table 3). ‘RM1-100/RM3-0’ is within that range but ‘RM1-0/RM3- 
100’having PI of material subtype 2.3 which is given maximum PI as 8. The subtype 2.3 has been 
recommended for upper sub-base layers by Main Roads (MainRoads 2010). However, RCA fines 
are showing plastic properties similar to the high quality pavement aggregates such as crushed 
Rhyolite (PI = 6) and crushed Hornfels (PI = 8) (Jameson et al. 2010). The low plastic properties 
of RCA’s fines decrease the workable range of the materials leading low susceptibility for 
compaction. 

 
3.3 Compaction 
 
The moisture density curve (compaction curve) of a soil is an indicator of the sensitivity of the 

density with respect to the variation of moisture content in the materials (Poon et al. 2005). 
Materials with flat curves can tolerate a greater amount of variations in the moisture content 
without compromising much of the achieved density from compaction. In contrast, materials with 
sharp curves are extremely sensitive to the optimum value during compaction. 

Standard proctor compaction test in accordance with Australian Standards, AS 1289.5.1-2003 
(Australia 2003) was performed on each testing sample and the results of optimum moisture 
content (OMC) and maximum dry density (MDD) values of each material is tabulated in Table 5. 
The range of the variation of MDD and OMC are relatively small as 1.748-1.856 t/m3 and 

 
 
Table 4 Plasticity Index of two main materials 

Fine sample RM1-100/RM3-0 RM1-0/RM3-100 

LL 21 27 

PL 15.6 20 

PI 5.4 7 

 
Table 5 Optimum moisture content and maximum dry density for six samples 

Sample type Optimum moisture content % Maximum dry density (t/m3) 

RM1-100/RM3-0 13.2 1.748 

RM1-80/RM3-20 13.2 1.768 

RM1-60/RM3-40 13.3 1.822 

RM1-40/RM3-60 13.5 1.856 

RM1-20/RM3-80 14.0 1.836 

RM1-0/RM3-100 14.2 1.846 
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13.2-14.2%, respectively. It can be seen that with the increase in RAP and brick fines contents of 
samples, they tend to well compacted. Both OMC and MDD increase as fines can absorb more 
water and reduce the void volume by filling the voids between larger particles. However all the 
RCA samples show comparatively higher OMCs and lower MDDs than the high quality crushed 
pavement aggregates like Rhyolite (5.85%, 2.34 t/m3), Hornfels (6.5%, 2.32 t/m3), Limestones 
(6.5%, 2.34 t/m3) which the corresponding OMC and MDD are shown in brackets (Jameson et al. 
2010). The main reason for the higher water absorption is the presents of cement fines and other 
constituents like bricks. In addition, the aggregates have been subjected two crushing processes 
(Initial crushing after the mining and second crushing process at the recycling concrete structures) 
and therefore the stiffness of the aggregates become lower. This cause for easily breakage of the 
materials and add more fines at the compaction. Therefore, lack of coarser particles and higher 
constituents led for lower bulk density and thus for lower MDDs in RCA samples. 

 
3.4 California bearing ratio tests 
 
Rutting and shoving are the major defects in pavement surface due to the shear failure in base 

and sub-base layers. CBR test provides an indicator of the shear strength of materials since the 
compacted materials subject to shear deformation (Voung et al. 2008). Therefore CBR 
characterization is widely used in pavement industry to provide a relative measure of strength, 
elastic modulus and moisture durability across various road materials for structural design 
purposes (Papagiannakis and Masad 2008). 

CBR tests were performed as specified in AS 1289.6.1.1 – 1998 (Australia 1998) on the six 
samples. Even though the samples were mixed with water at their corresponding OMCs values, the 
achieved moisture contents were over the OMCs levels. This is due to the high inconsistency of 
the sand and cement fines as well as varying the constituents content (RAP and brick contents are 
varying between 0-20 and 0-15% respectively in RM003-see Table 1). Therefore it was very 
complicated to maintain exact moisture content in the samples. Figs. 5(a)-(b) show the loading 
machine of CBR test and a compacted sample after loading. 

In order to find out the optimum moisture homogenization period (time between material 
mixing with water and compaction), a series of CBR tests were performed on RCA samples. The 
water mixed samples were kept in sealed containers in different moisture homogenization periods 
(e.g., 0, 3, 8 hours) since the main components of crushed concrete; aggregates, cement motar, 
bricks and sand need specific time period for uniform moisture distribution. The results of these 
CBR tests are tabulated in Table 6. The three columns show the CBR values for three different 
curing periods. It is notable in each column that the high CBR values are dominated for the 
samples having a greater percentage of RM001 since there are more coarse aggregates and absence 
of bricks and RAP materials. CBR values have been gradually decreased with increasing the 
portion of RM003 since it presence more fines and course for loss of shear strength of compacted 
materials by reducing the friction between interlocking particles. 

The samples under ‘No moisture homogenization period’ have given the lowest CBR values 
since they did not have enough time for homogenization of moisture and therefore lower the 
compaction and CBR values. 3 hours curing period showed higher CBR values since the materials 
have taken sufficient time for uniform moisture distribution which helps for proper compaction of 
the samples. Only RM1-100/RM3-0 and RM1-0/RM3-100 were tested to determine the strength 
gaining of CBR values after 8 hours curing period. Results show 69% in RM1-100/RM3-0 with 
slight decrease in CBR. More homogenisation time allows cementation of materials with residual 
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(a) (b) 
 

Fig. 5 (a) CBR test machine and (b) sample after CBR test 

 
Table 6 Variation of CBR values with different moisture homogenization periods 

Sample Type 

CBR % 

No moisture 
homogenization period

3 hrs moisture 
homogenization period

*8 hrs moisture 
homogenization period

RM1-100/RM3-0 61 74 69 

RM1-80/RM3-20 56 63 – 

RM1-60/RM3-40 55 66 – 

RM1-40/RM3-60 50 61 – 

RM1-20/RM3-80 48 60 – 

RM1-0/RM3-100 46 50 53 

*CBR was conducted only for two samples to observe the strength gaining pattern 

 
 
cement that makes material less compactive and as a result decreases in CBR value. RM1-0/RM3- 
100 shows 53% which indicates 3% rise in CBR. This sample consists of more fines and other 
constituents which required little more time than 3 hours curing for homogenisation of the 
moisture. Since this rise in CBR is not a greater value, it is concluded that 3 hours is sufficient for 
both samples to become saturated with moisture mixing throughout the sample. Three hours curing 
time was recommended for all the six samples since RM1-100/RM3-0 and RM1-0/RM3-100 
represents the primary materials RM001 and RM003 and the rest of the 4 samples are mixture of 
these two. Therefore 3 hours curing for moisture homogenization was followed for curing the next 
CBR test series. 

 
3.4.1 CBR test for unsoaked samples 
Next CBR test series was conducted to investigate the effects of unsoaked curing periods of the 

compacted samples on CBR values. Each sample was prepared following the 3 hours curing  
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Table 7 CBR values for different curing period of compacted samples 

Sample type 

CBR % 

No curing period for 
compacted sample 

Mixture-3 hrs curing & 
compacted sample cured 4 days

Mixture-3 hrs curing & 
compacted sample cured 8 days

RM1-100/RM3-0 74 81 78 

RM1-80/RM3-20 63 77 75 

RM1-60/RM3-40 66 74 75 

RM1-40/RM3-60 61 63 64 

RM1-20/RM3-80 60 60 60 

RM1-0/RM3-100 50 58 55 

 
 
 
period and followed standard compaction procedure. The compacted samples were cured 
(unsoaked) in sealed containers for different periods (e.g., 0, 4 and 8 days) with 4.5 kg surcharged 
load before testing. The variations of CBR values with curing periods for each RCA are shown in 
Table 7. For the first test program, there was not a curing period for compacted samples and then 4 
days curing for compacted samples were followed to compare with the 4 days soaked CBR test 
results. Next, 8 days curing period for compacted samples were applied to observe the strength 
gaining with time. The CBR values in each column are gradually decreased with increasing the 
portion of RM003 (Discussed in Section 3.4). The results show 4-days curing period is optimum 
for the compacted samples and the 8-days curing results show that the strength has become steady 
state. The compacted RCA samples have been strengthened with cementation of the materials and 
the compacted particles have gained their maximum friction between interlocking particles within 
first 4-days and then have become steady beyond that. Therefore it shows almost similar CBR 
values after 8-days curing. 

 
3.4.2 CBR test for soaked samples 
Testing the CBR values of pavement materials after soaking is more significant to observe the 

strength of materials under fully saturated condition. This is highly applicable in selecting material 
and designing pavement for flood. The soaked and the unsoaked CBR values which were obtained 
for each RCA sample cured for 3 hours after mixing and 4 days after compaction are shown in Fig. 
6. For the soaked test, the samples were kept inundated in water for 4 days with 4.5 kg surcharged 
load prior to testing. It shows that soaked CBR values are slightly less than the unsoaked values 
since the presence of water reduces the inter-particle friction and also high degree of saturation 
produce high pore-water pressure and cause for low shear strength (Voung et al. 2008). 

The Department of Main Roads in Queensland has introduced standard limit for minimum 
soaked CBR values for different pavement layers in different traffic volume roads (Table 3). 
According to them, none of the sample fulfils the minimum standard CBR value of base layer 
material in high traffic volume roads (more than 106 equivalent standard axle (ESA) repetitions) 
(MainRoads 2010). The first three samples are in the range of Material type 2.2 which is for base 
layer in roads with design traffic less than 106 ESAs. Other three samples are suitable for sub-base 
layers in Roads with design traffic equal to or exceeding 106 ESAs. 
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Fig. 6 Summary of CBR values for best unsoaked and soaked results 

 
 

3.4.3 Unconfined compressive strength 
Unconfined compressive strength (UCS) of a particular material is a significant factor to 

estimate the bearing capacity in unconfined situation. Conversely, UCS test is used to determine 
the modulus properties of materials by examining the response of the axial strain of the sample 
under loading (Yılmaz and Sendır 2002). This is a commonly used test for the modified pavement 
materials to determine the relative response of granular material to chemical binder stabilization 
even the CBR test is not used to evaluate the responses of chemical binders in granular materials 
(Andrews and Group 2006). 

In this test series UCS test was performed as specified in AS5101.4-2008 (Australia 2008b) for 
compacted materials to determine the strength properties. The specimens were prepared at their 
respective OMC and MDD by applying standard compaction effort. The compacted samples had 
slightly overtaken the OMC level of each specimen and therefore the MDDs were slightly 
decreased in the samples. Water mixed samples were cured in sealed containers for 3 hours for 
equally homogenisation of the moisture and then the compacted samples were cured 4 days in 
sealed containers prior to the test performed. These curing time periods were based on the best 
curing time periods for the RCA samples which were revealed through CBR test series (Section 
3.4 and 3.4.1). Figs. 7(a)-(b) show a UCS sample before and after loading. 

As shown in Table 8, UCS value of RCA decreases with increase in RM003 percentage. It is 
possible to have more residual cement in RM001 than RM003. The residual cement can act as 
bonding agent among aggregates and give high strength to the sample. Therefore, the higher 
residual cement content (RM001) is greater the strength of RCA. The increase in RM003 causes 
on increase in fines particles, possible brick and RAP in RCA and those reduce the friction of 
interlocking particles and hence lower the load bearing and strength of the compacted samples. 

The specified UCS value for base layer material is 0.7-1.5 MPa after the addition of 
cementitious binders, lime or chemical binders (Australia 2008a). UCS of pavement materials 
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Fig. 7 UCS sample ‘RM1-100/RM3-0’ (a) before and (b) after test 

 
Table 8 Unconfined compressive strength values of compacted samples 

Sample type UCS (MPa) 

RM1-100/RM3-0 0.4504 

RM1-80/RM3-20 0.4365 

RM1-60/RM3-40 0.3811 

RM1-40/RM3-60 0.3234 

RM1-20/RM3-80 0.3014 

RM1-0/RM3-100 0.2772 

 
 
upgrades greater than 1.5 MPa by adding greater quantities of cementitious binder and bituminous 
binders when higher stiffness is required to provide tensile resistance in base layer (Andrews and 
Group 2006). The first two samples have UCS 0.45 and 0.44 MPa respectively and can predict the 
possibility to improve their UCS than 0.7 MPa by adding little quantities of binders as required. It 
is possible to apply for the other samples as well to add more binders to gain required compressive 
strength. 
 
 
4. Conclusions 
 

Following conclusions can be made for RCA samples prepared by blending two primary 
crushed concrete products named RM001 and RM003. The test results of six RCA samples (Table 
2) are compared with the pavement materials used in state of Queensland, Australia. The 
comparative standard materials, “Material type 2.1, 2.2, 2.3, 2.4, 2.5” are shown in Table 3 with 
their descriptions. 

• The particle size distribution curves are remaining reasonably well graded before and after 
compaction of the six samples. However the comparisons of the curves of RCA samples 
reveal the lack of coarser particles. Six RCA samples are shown their PSD in between 
Material type 2.1 and Material type 2.2. 

• Plasticity index of RCA fines (< 0.425 mm) indicates low plastic properties alike the high 
quality pavement materials (Crushed Rhyolite and Hornfels) (Jameson et al. 2010). 

Failure plane 
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• The proctor compaction test gave relatively higher water absorption for maximum dry 
density. The high quality base layer crushed aggregates like Rhyolite, Hornfels, Limestones 
show relatively lower OMC values and they are 5.8, 6.5, 6.5% respectively (Jameson et al. 
2010). Both maximum dry density and optimum moisture content increase with increasing 
the RM003 portion. However, the density varied in a small range giving the lowest value for 
‘RM1-100/RM3-0’ which represents only crushed concrete aggregate. 

• RCA require specific time period to optimum the strength in CBR test. With the results, it is 
possible to conclude the adequate curing time for strength gaining as 3 hours curing after 
water mixing and 4 days curing after compaction. 

• None of the sample has the minimum standard soaked CBR value for base layer material in 
high traffic volume roads. The first three samples; RM1-100/RM3-0, RM1-80/RM3-20 and 
RM1-60/RM3-40 samples are showing appropriate CBR strength for use as a base aggregate 
in roads with design traffic less than 106 ESAs. Other three samples are suitable for sub-base 
layers in roads with design traffic equal to or exceeding 106 ESAs. 

• The unconfined compressive strength of the six RCA samples did not show the minimum 
required value which is expected as 0.7 MPa in base layer materials. However it can be 
improved by adding binders in different quantities for the six samples. 

• However, the CBR and UCS results were affected by higher moisture contents which were 
the achieved moisture levels were slightly over the corresponding OMC values. Therefore, it 
can be expected higher CBR and UCS results at or below the OMCs of the samples since 
these materials are highly sensitive in moisture. 
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