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Abstract.  The present paper is dealing with the investigation of the stress field around the infinitely long 
cylindrical cavity, of a circular cross section, contained in the transversally isotropic elastic continuum. 
Investigation is based upon the determination of the stress function that satisfies the biharmonic equation, for 
the given boundary conditions and for rotationaly symmetric loading. The solution of the partial differential 
equation of the problem is given in the form of infinite series of Bessel’s functions. Determination of the 
stress-strain field around cavities is a common requirement for estimation of safety of underground rock 
excavations. 
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1. Introduction 
 

An investigation of the influence of heterogeneities (inclusion, cavities, cracks...) on the 
effective properties of materials is of a great interest in applied mathematics and computational 
mechanics and a vast amount of literature covers this subject. Cavities are good approximations 
for modeling voids existing in natural materials, such as geo-materials. Particular practical 
importance of such investigations is related to determination of stress-strain fields around 
unsupported or supported cavities in a solid rock mass created by excavations for underground 
structures. These investigations enable a better understanding of interaction between underground 
structure and rock medium in three-dimensional conditions. The practical consequences that may 
be derived from the evaluation of disturbances of stresses and strains in vicinity of the cavities 
formed by underground excavations in solid rocks are related to the essential requirements for the 
safety of the tunneling works, particularly in cases where three-dimensional geometry of the 
cavities is playing significant role in the stress-strain changes (Lukić et al. 2010, Tomanovic 2012). 
Determination of the stress-strain state around a spherical, cylindrical and elliptical cavity (oblong 
ellipsoid) situated in elastic continuum, with unsupported internal boundary, has been recently 
considered in the work (Lukić et al. 2010). Also, in this paper a brief historical review of 
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investigation of the mechanical properties of solids containing spherical, cylindrical and elliptical 
cavities is given. The researches particularly emphasized are: Eshelby (1959), and the authors of 
recent studies, (Chen 2004, Chen et al. 2003, Chen and Lee 2002, Dong et al. 2003, Duan et al. 
2005, Lukić et al. 2009, Markenscoff 1998a, 1998b, Ou et al. 2008, 2009, Rahman 2002). 

An initial determination of stress state around a cylindrical cavity is given in the work, Kirsch 
(1898), related to 2D problem. The solution in Schiff (1883) is based on a special transcendental 
equation that contains Bessel`s functions, and Fourier`s approach for division of variables. The 
solution of the derived equation for isotropic solid body is given in Prokopov (1949). The case 
with arbitrary loading perpendicular to the internal cavity surface was considered in Lur’e (1970). 
The solution of stresses around cylindrical cavity was given in Podil’chuk (1984) using infinite 
series that contain Bessel’s functions. The more recent work in this field, presented in Chen (2004), 
dealing with a cylindrical bar that contains a spherical cavity or rigid inclusion, is based on the 
eigenfunction expansion variational method. Also, the work (Jabbari et al. 2008), even though 
related to a different topic, is using the generalized Bessel's function and direct method to solve the 
Navier's equations using the complex Fourier's series. The Improved Element-Free Galerkin 
method for solution the three-dimensional problems in linear elasticity is presented in Zhang and 
Liew (2010). 

Relatively large interest exists in investigation of various aspects of cylindrical and spherical 
cavity expansion problems which are, to some extent, close to considered analysis. For instance, 
the paper (Zhang et al. 2009) analyses an elastoplastic cylindrical cavity expansion due to the 
anisotropic initial stress, (Hao et al. 2010) analyses the cylindrical cavity expansion with linear 
softening behavior, (Zou et al. 2010) considers the unified elasto plastic solution for cylindrical 
cavity expansion considering large strain and drainage conditions, while (Wang et al. 2007) 
considers the similar problem of expansion in elasto plastic brittle materials. The paper (Xue et al. 
2009) considers the influence of the initial radius on expansion of cylindrical cavities, while (Qi et 
al. 2009) presents an unified analytical solutions for cylindrical cavity expansion in saturated soil,  

 
 

 
 

Fig. 1 Cylindrical coordinate system, Lukić (1998) 
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Fig. 2 Rotationally symmetric stress of a cylinder with infinite length in a transvresally isotropic 
medium 

 
 
large deformations and undrained conditions. Finally, Zhao (2011) generalizes the conventional 
theory of cavity expansion, both cylindrical and spherical, to account for the effect of 
microstructure. Silvestri and Abou-Samra (2012) presented a method which may be employed 
whenever the soil can be modelled using the modified Cam clay. 

The work (Karinski et al. 2009) is treating the stress analysis around an underground opening 
with sharp corners due to non-symmetric surface loads. The paper is analyzing the stress 
distribution and particularly the stress concentrations developed at sharp corners, using the BIE 
method. The present paper is an extension of the authors' previous work, (Lukić et al. 2010). 
 
 
2. Axially symmetric stresses for a transversally isotropic medium 

 
In the cylindrical coordinates (r, , z) (see Fig. 1), the operator ∇2 is defined by 
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A problem of partial, arbitrary, rotationally symmetrical stress of a cylinder with infinite length 

in a transversally isotropic medium, see Fig. 2, could be presented by homogenous partial 
differential equation of the fourth order (∇2∇2Φ = 0), like the one used for homogenous and 
isotropic medium, in which the stress function Φ (r٫z) is used. 

 
2.1 Differential equation 
 
If cylindrical coordinate system is used, with coordinates (r, φ, z) (see Fig. 1), where z is an 

axis of symmetry, the generalized Hooke’s law for the case of symmetric stresses and for 
homogenous transversally isotropic medium could be given as follows 
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while the other componental deformations γrφ and γφz are zero due to symmetry. Besides the 
obvious notation for strains and stresses in Eqs. (2), Er is the elasticity modulus in radial direction, 
Ez is the elasticity modulus in axial direction, and r and z are the corresponding Poisson’s 
coefficients, while G is the shear modulus. 

In the generalized Hooke’s law, given by Eq. (2), five constants are present. They are not 
mutually independent. Using the Maxwell-Betti's relation one obtains the next correlation 
 

rzzr EE                                (3) 
 

Thus, the number of mutually independent constants is four. However, in the following text it 
will be assumed that the Poisson's coefficients r and z are equal to zero. Under such assumption 
relations (2) are somewhat simplified and easier to handle, but also, obtained results under such 
assumption are closer to realistic conditions and results obtained by in situ meassurements made 
by the radial press. Now, assuming that r and z equal to zero, the generalized Hooke’s law might 
be written as follows 
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Componental deformations for the case of axially symmetric stresses, for the cylindrical 
coordinate system, could be written as follows (see, for example, Klindukhov 2009) 
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The equilibrium conditions are given as 
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If equilibrium equations are expressed through componental dilatations, by using Eqs. (4) and 
(5), the following equations are obtained. 
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Eqs. (7) may be written in a form more convenient for further considerations 
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where D1
2 and D2

2 are the differential operators given as 
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Also, e is the cubic dilatation expressed through componental displacements 
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If the componental displacements are expressed using the two new unknown functions ζ (r, z) 

and ψ (r, z) as follows 
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then, using the expression (12) and notation (9), the cubic dilatation might be written as 
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Inserting expressions (12) into Eq. (8), the first equilibrium equation may be expressed in terms 
of functions ζ and ψ 
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The functions ζ and ψ could be expressed by the new function Φ (r, z), so that the first equilibrium 
equation becomes identically satisfied 
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Inserting (12) and (15) into the second equilibrium Eq. (8), one obtains the differential equation 
of the problem 
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If the following notation is used 
 

2

2

2

2
2
3

1

zE

G

rrr
D

r 










                        (17) 

 

then the differential Eq. (16) obtains a simple form 
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Inserting Er = Ez = E and G = E/2, and since from the beginning there is an assumption that 
Poisson’s coefficients are zero, a known differential equation of axially symmetric stress for 
isotropic medium is obtained 
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Differential Eq. (18) could be significantly simplified if the connection is established between 
modules of elasticity Er and Ez and the shear modulus G 
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Relation (21) is obtained from the St-Venant’s formula for transverse isotropic elasticity 
assuming that the Poisson’s coefficients are equal to zero. Such assumption leads to simplification 
of equations for transversally isotropic rock mass and also obtaining the results for the specific 
problem of the radial press. In doing so the authors had in mind that for the isotropic continuum 
this problem has the exact solution. 

Inserting relation (21) into Eq. (18) differential equation for this special case could be easily 
obtained as 
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or in the expanded form 
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when the shear modulus G is an independent parameter, componental displacements and stresses 
displayed by function Φ are given as 
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Componental displacements and stresses for the special case given by Eq. (21) are 
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In the further text the solution of differential Eq. (22) is shown, which is obtained by using the 

connection (21). 
 
2.2 The solution of differential equation 
 
When the solution is assumed in the form of trigonometric series 
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the partial differential Eq. (23) becomes an ordinary differential equation 
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where E1
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2 are differential operators given as 
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Apart from Eq. (23), i.e., Eq. (30), the function Φ must also satisfy the boundary conditions 
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for r = a. Introducing the notation. 
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This is the well known Bessel’s equation, and its general solution is 
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where K0(r) and I0(r) are the Bessel’s functions of the order zero and of a complex argument, while 
C1, C2 are constants. 

Inserting expression for R from Eq. (37) into Eq. (35), one obtains 
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If introducing the notation given by Eq. (39) 
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Therefore, the Bessel’s equation is obtained again, but it is the non-homogeneous now. The 
general solution for the homogeneous equation is known (L1 and L2 are constants) 
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The particular integral than could be written in the form of a definite integral 

 

            


dkIrKdkKrIf
rr

p           0000            (46) 

 
In a developed form and considering first that γ(kλr) = C1K0(kλr), one obtains 
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than, taking γ(kλr) = C2I0(kλr), one obtains 
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It could be seen that particular integrals become integrals of the Lommel`s type, Watson 

(1922), ’so the final integration is possible 
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The general integral of Eq. (30) now can be obtained in the form 
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Constants C1-4 are arbitrary, unlike constants D1-4 which are not, and in our case have this 

values 
 

0    , 1 4231  DDDD                          (52) 

 
Therefore, the general integral for our case can be written in the final form 
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If one examines the behavior of K0(r) and I0(r) when r → ∞, by the asymptotic development 
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one might conclude that the part of the solution in (37), namely C2I0(kλr), can not satisfy the 
boundary condition for r → ∞, i.e., the condition (33), since for r → ∞ the functions I0(kλr) obtain 
an infinite value, while the functions K0(kλr) tend to zero. Therefore, in the solution (37) one could 
use only the particular solution C1K0(kλr). After some mathematical derivations, and with 
condition that due to previous analysis one excludes the particular integrals containing I0(kλr), one 
could write the solution of differential Eq. (23) which corresponds to imposed boundary 
conditions. 

It can be easily seen that the integral 
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satisfies the above given conditions in infinity and with its two free constants represents the 
solution for the states of stresses and deformations of infinite mass, from which the cylinder of 
infinite length is removed, and is loaded with rotationally symmetric load along the axis of 
removed cylinder, and for transversally isotropic mediums. 
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Integral 
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is the solution of the case of a full cylinder loaded by the rotationally symmetric loading 
distributed over its rim, for transversally isotropic medium. The sum of those integrals given by 
(53) with four free constants can be used as a solution for a tube of arbitrary width. From this 
general integrals one can easily obtain the solution for above mentioned cases, and for 
homogeneous isotropic medium we should assume that k → 1, i.e., Er=Ez. For integral given by Eq. 
(55) one obtains 
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Also, for the integral given by Eq. (56) one obtains 
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so the sum of integrals (57) and (58) is given by 
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According to (29), the solution of Eq. (23) could be written in a form which corresponds to the 

assumed boundary conditions 
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Inserting the function Φ given by (60) into (35) one obtains 

 

 

 






























































 














 












 




























0
1411

3
2

12

0
0400

4
2

12

0

1
121

1
4

2

010
2

121

0
014

2

 )()()(
)(1

  sin
2

   

 )()()(
)(1

  cos
2

 
)(

)(
)1(

1)(
  cos

2
  

)(
1

)()()(
)1(

1

)(
1

)(   cos
2


































rKCrKrkKk
k

C
z

EE

EE

rKCrKrkKk
k

C
z

EE

EE

r

rK
rkK

r

k

k
C

r

rK
Cz

EE

EE

rK
r

rKrkKkrkK
r

k

k
C

rK
r

rKCz
EE

EE

zr

zr

zr

zr
z

zr

zr

zr

zr
r

   (61) 
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From Eq. (61) one could see that the condition is fulfilled at infinity, i.e., all stresses become 
zero when r → ∞, because each function tends to zero when r → ∞. 

To fulfill the conditions on boundary we have two free constants C4 and C1. The connection 
between constants is obtained from τ = 0 for r = a 
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If we use the notation λ = α/a and r = a, one obtains 
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Using the condition that radial stress for r = a equals to the given external load, we obtain 
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Loading can always be given sufficiently exactly by the Furrier’s integral. In addition, if we 

consider the load as symmetric with respect to origin of the coordinate system, that is, as the even 
function, we obtain 
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In expression (64) the sign of 

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0 can be changed with definite integral 

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0 considering C1 as 
a function of α. By comparison of expressions (64) and (65) we explicitly obtain the constant C1 as 
a function of α and a function f (z/a) 
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Using expression (63), which gives the connection between constants, and expression (66), we 

obtain the constant C4 in the explicit form 
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After inserting the values for constants into Eqs. (47) and (48), after a short calculaton one 
obtain 
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(68)

 
The pure deformation, that is dilatations and shears can be easily obtained from the known 

expressions 
 




 


zr

zr
rz

z

z
z

rr

r
r EE

EE

EEE


     ;      ;      ;                (69) 

 
Displacements of points are given by the following expressions 
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The states of stresses and deformations are defined in this way, for every point of the 

homogenous transversally isotropic medium of infinite mass from which the cylinder of an infinite 
length, loaded on the circumference by an arbitrary rotationally symmetric loading, is extracted. 

 
2.3 A case of a partial uniformly distributed load along the z axis 
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Fig. 3 Axisymmetric partial loading 

 
 

The states of stresses and deformations for the case of loading shown in Fig. 3, can be easily 
derived from equations presented in the former section. The expression (65) applied to this case of 
loading given in Fig. 3 is given as 
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since f (z/a) = p. Now, Eq. (71) becomes 
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Constant C1 for this case of loading is obtained as 

 

)( 
)(

)(
11)(

1

2
sin

11

0
1

02
1

2

1








kkK
K

K
kkK

a

B

k

kpa

EE

EE
C

zr

zr


























     (73) 

 
Using (63) and (73) expressions for stresses are easily obtained 
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Upon analysis of convergency of integrals (74) one might conclude that all stresses become 
zero when r → ∞ (integrals are convergent), i.e. the effect of cavity upon the state of stress ceases. 
Therefore, the boundary condition (33) for stresses when r → ∞ is fulfilled. In convergency 
analysis of integrals (74) the tabular values of Bessel’s functions up to α = 16 were used, Watson 
(1922). For α > 16 the values of functions K0(α) and K1(α) were determined from the asymptotic 
development of these functions 
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The convergency of integrals for the shear stress (74) at the boundary r = a was also analyzed. 
Due to asymptotic development of Bessel’s functions (K0(α) and K1(α)) and the theorems for 
convergency of the improper integrals it was shown that this condition is also fulfilled. 

Radial displacement “u” expressed by stress function is given by (27). The same result will be 
obtained if the presumption is 

r

u
Er       ,                             (76) 

 

Radial displacement than becomes 

rE
ru                               (77) 

 

If the stresses from Eq. (74) are inserted into (77), displacement “u” obtains the final form 
 














d

kkK
K

K
kkK

a

r
kK

a

r
K

K

kK
k

a

B

a

z

E

pa
u

r




































































 


)( 
)(

)(
11)(

 

)(

)(

 
2

sin
 

cos
2

0
1

02
1

11
1

12

0

 
(78)

227



 
 
 
 
 
 

Dragan Č. Lukić, Aleksandar D. Prokić and Stanko V. Brčić 

For the edge r = a on the circumference of the cylinder displacement “u” is obtained directly 
from Eq. (78) inserting simply r = a 
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That is 
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Determination of componental stresses and componental displacements, as shown in Eqs. (74) 
and (80), is reduced to calculating a definite integral within the bounds of 0 to ∞. Integration in the 
closed form is not possible. The approximate value of integral that can be acceptable for the 
practical purposes, can be obtained by numerical integration methods. In this case it is even more 
possible because the functions under integral actually represent a damped oscillation whose values 
for higher α are irrelevant. 

Inserting the notations: η = B/2a; ξ = z/a into Eq. (80), one obtains for “u” 
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It is not hard to see that the integrand becomes undefined expression of the form 0/0, when α → 
0. This limit value can be easily obtained by applying the L`Hospital`s rule onto the function under 
integral 
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As can be seen, the limit value of the function under integral does not depend on parameter k 
for α = 0. Calculated and presented in a diagram in Fig. 4, there is a change of coefficient ψ, which 
in this case, apart from depending on the diameter of the cylinder “a” and the width of the loading 
B, depends also on parameter k, that is on the ratio of modules of elasticity. The coefficient ψ in 
this case is 
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Displacement can be also written as 

r
ar E

pa
u                              (84) 

228



 
 
 
 
 
 

Stress state around cylindrical cavities in transversally isotropic rock mass 

 
Fig. 4 Change of the coefficient ψ with respect to the ratio of modules of elasticity k 

(k = 1- isotropic; k = 2, 3 - transversally isotropic) 

 
 

The coefficient ψ is calculated for η = B/2a = 0,79285 ratio, where 2a is diameter of the 
cylinder and B is the width of loading. Given decimal ratio is taken because it corresponds to the 
actual construction of a radial press. The coefficient ψ is calculated for k = 2,3 since k = 1 
corresponds to isotropic medium. However, the values of the coefficient ψ for k = 1 are also shown 
in Fig. 4, so the influence of anisotropy could be comparatively seen. Expression (84) can be used 
for practical purposes, that is for determination of the modulus of elasticity in radial direction Er if 
parameter zr EEk  and deformation measured on the spot are known. In this case from Eq. 
(84) we get 

arr uu
u

pa
E  0

0

    ,                          (85) 

 

Similarly, the next problem could also be solved. Namely, if the known quantities are: radial 
displacement ”u”, actual deformations measured on the spot by radial press, and modulus of 
elasticity Er, then the parameter k is determined via the coefficient ψ 

Verification of obtained coefficients ψ is given by comparison of the calculated values of ψ 
with the results of measurements conducted in the tunnel of the Hydro Power Plant Mavrovo (H.E. 
Mavrovo), in former Yugoslavia, now FYROM (Former Yugoslav Republic of Macedonia). 
Measurements were made due to the partial uniform loading distributed along the tunnel axis, 
applied by the radial press, as presented by Lazarević and Kujundžić (1954). Together with the 
theoretical curves (k = 1 for the homogeneous isotropic and k = 2, 3 for the transversally isotropic 
medium), the curve obtained from measurements in the tunnel of the H.E. Mavrovo is also given 
in Fig. 5. As may be seen, measured values of ψ generally comply quite well with the theoretical 
ones. Values of measured ψ fall between the theoretical curves for k = 2 and k = 3, in the area 
where the partial loading is applied, indicating the corresponding ratio of modulii of elasticity and 
transverse isotropy at the particular tunnel location. Measured values of ψ in the area away from 
the loading, further along the axis of the tunnel, are somewhat bellow the theoretical 
curves.Obtained differencies in ψ away from the applied loading might be within the measurement 
error of the instruments, due to various reasons, e.g., temperature effects, and are of no practical 
consequence since the deformations at unloaded area are relatively small. Also, there are no 
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Fig. 5 Comparative analysis of theoretical solutions and experimental measurements 

(k = 1 – isotropic; k = 2, 3 - transversally isotropic) 

 
 
Table 1 Numerical data 

Partial uniform load intensity p = 300 kPa 

Isotropic rock mass data γ = 28 kN/m3,  v = 0.3,  E = 20 GPa 

Transversally isotropic rock mass data (radial) γ = 28 kN/m3,  vr = 0.30,  Er = 20 GPa 

Transversally isotropic rock mass data (axial) vz = 0.33,  Ez = 18 GPa 

Geometric characteristics H = 100 m,  r0 = 2.0 m,  r = 0.2 m 

 
 

 
Fig. 6 Partially loaded contour - radial stresses 
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Fig. 7 Partially loaded contour - tangential stresses 

 
 
measured data at distances of approximatelly 1.7a and more from the loading (2a is the tunnel 
diameter). 

Besides the given deformation analysis and comparison with measured data, the comparative 
analysis of the radial and tangential stresses (σr, σφ) for isotropic (Lukić et al. 2010) and for 
transversally isotropic medium, considered in this work, is also given, see Figs. 6 and 7. 

The radial and tangential stresses have been computed for the cylindrical cavity using the 
following data, see Table 1. 
 
 
3. Conclusions 

 
This paper presents an analysis of the aspects of cylindrical cavities in rock mass and its 

potential applications. Analyzing the results shown in diagram (Fig. 4), for the ratio of modules of 
elasticity k = 1,2 and 3, it could be seen that for k > 1 the coefficient ψ has a lower value when 
compared to k = 1 which represents the change of the coefficient ψ for homogenous and isotropic 
medium. It is logical, because the case k > 1 means that Er > Ez, so the lower value of deformation 
is to be expected in radial direction. In other words, because of the higher modulus of elasticity in 
radial direction compared to the modulus of elasticity in axial direction, mass resists to 
deformation more, that is, the capacity for deformation of the mass is lower. Apart from the 
previous, the family of curves for k > 1 tend to 0 more slowly than those for k < 1. This is because 
for k > 1, Ez < Er and the other way around. 

Comparison of theoretical predictions of radial displacements with available experimental 
measurements in the tunnel of the hydro power plant Mavrovo in Macedonia is performed. 
Measurement data are, practically, in a complete agreement with predicted values. Also, 
comparative calculations of the radial and tangential stresses around the partially loaded 
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cylindrical cavity surrounded by the isotropic and transversally isotropic mediums are given and 
presented in Figs. 6 and 7. 
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