
 
 
 
 
 
 
 

Geomechanics and Engineering, Vol. 5, No. 5 (2013) 379-399 
DOI: http://dx.doi.org/10.12989/gae.2013.5.5.379                                                  379 

Copyright © 2013 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7         ISSN: 2005-307X (Print), 2092-6219 (Online) 
 
 
 

 
 
 
 

Winkler Springs (p-y curves) for pile design  
from stress-strain of soils: FE assessment of scaling 

coefficients using the Mobilized Strength Design concept 
 

Dj. Amar Bouzid1 S. Bhattacharya 2 and S.R. Dash 3 

 
1 Department of Civil Engineering, Faculty of Sciences and Technology, 

University of Médéa, Quartier Ain D’hab, Médéa 26000, Algeria 
2 Department of Civil Engineering, University of Bristol, Room 237, Queens Building, Bristol BS8 1TR, UK 

3 Department of Civil Engineering, Indian Institute of Technology, Bhubaneswar, India 
 

(Received November 29, 2012, Revised April 28, 2013, Accepted May 08, 2013) 
 

Abstract.  In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler 
springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to 
model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete 
non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative 
deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to 
construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test 
results i.e., undrained strength (su) and the strain at 50% yield stress (ε50). This approach may ignore various 
features for a particular soil which may lead to un-conservative or over-conservative design as not all the 
data points in the stress-strain relation are used. However, with the increasing ability to simulate 
soil-structure interaction problems using highly developed computers, the trend has shifted towards a more 
theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to 
construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the 
method, the stress-strain graph is scaled by two coefficient NC (for stress) and MC (for strain) to obtain the 
p-y curves. MC and NC are derived based on Semi-Analytical Finite Element approach exploiting the axial 
symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the 
application of the methodology. 
 

Keywords:    semi-analytical FE analysis; MSD; p-y curves; interface elements; laterally loaded single 
piles; strain energy 
 
 
1. Introduction 
 

The behavior of laterally loaded piles is a complex soil structure interaction problem that has 
received a considerable amount of attention over the last four decades mainly in the field of 
offshore engineering or earthquake geotechnical engineering due to large stakes involved, see for 
example (Hajialilue-Bonab et al. 2011, Adhikari and Bhattacharya 2011). The primary function of 
a pile or a group of piles is to transfer the external loads from the superstructure to the surrounding 
soil medium without causing excessive deflections at the top of the pile or piles. The analysis of 
                                                 
Corresponding author, Associate Professor, E-mail: d_amarbouzid@yahoo.fr 



 
 
 
 
 
 

Dj. Amar Bouzid, S. Bhattacharya and S.R. Dash 

such a problem is complicated because of the complex stress-strain behavior of the soil 
surrounding the piles. This problem could be solved rigorously using the 3D finite element (FE) or 
finite difference (FD) methods. However, the complexity of simulating the nonlinearities of the 
soil/pile interaction, the enormous effort of data preparation and the high computational cost 
render the 3-D FE analysis unfeasible and uneconomical for most cases. On the other hand, these 
rigorous methods can be used to validate the simplified easy-to-use Winkler spring models (also 
known as p-y methods) that are often employed in practice. The application and limitations of the 
Winkler spring model are discussed below. 

The simplest and practical way to solve a laterally loaded pile is to adopt a generalized Winkler 
spring model with a load transfer function called p-y curve, which defines the relationship between 
the soil reaction p (load per unit length of pile, Unit: kN/m) and the lateral displacement y (Unit: 
mm) along the pile. A number of different methods are in use to construct the p-y curves 
including: 

(a) Semi-empirical methods based on back analysis of field lateral load tests together with 
laboratory stress-strain curves obtained from triaxial tests, see for example (API 2001, DNV 
2001, McClelland and Focht 1958, Reese et al. 1974, 2000, Bowles 1996, Cox et al. 1974, 
Reese and Impe 2001). 

(b) Results from pressuremeter tests. The p-y curve, in this method is assumed to be directly 
related to the pressuremeter expansion curve (Bouafia 2007, Frank 2009). 

 

Obviously the Winkler model (Fig. 1) cannot fully captures the 3D aspect of soils, but it offers 
a practical tool for analysis and design. The fundamental assumption on which the technique of 
constructing a p-y curve is based is the similarity between the load deformation pattern of pile 
head and the stress-strain behaviour of the interacting soil from carefully chosen element testing 
(e.g., triaxial tests). The transformation of stress-strain curve to p-y curve is schematically shown 
in Fig. 2 where three parameters are required: MC, NC and D (pile diameter). MC and NC are similar 
to the concept of Mobilizable Strength Design (MSD) proposed by Osman and Bolton (Osman and 
Bolton 2005). At the depth considered, the behaviour of the soil-pile system is assumed to satisfy 
plane strain conditions. The pile, which is represented by a stack of circular discs in the analysis, is 
assumed to be rigid. 

 
 

 
    (a) (b) (c) 

Fig. 1 Single pile under lateral loading: (a) real vertical pile; (b) Winkler idealization; (c) p-y 
curves for lateral Winkler springs 
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Fig. 2 Schematic figure showing the procedure of obtaining p-y curve from stress-strain behaviour. 

Note MC and NC are the scaling coefficients to convert the stress-strain to p-y 

 
 
Non-linear Winkler springs or p-y curves for sand (under non-liquefied condition), soft clay, 

and stiff clay are available, see for example API (2001) or DNV code (DNV 2001). These 
standardised curves are semi-empirical and are well calibrated for offshore applications. However 
non-standardised soils (i.e., mixed soils which are not strictly sand or clay, intermediate soils, 
partially liquefied soil or fully liquefied soils) are often encountered in practice and in such cases 
p-y curves need to be derived from stress-strain characteristics of the soil. 

Fig. 3 shows the stress strain relationship for Bothkennar clay obtained from high quality 
stress-path cell at the University of Bristol. Fig. 4 shows the construction of p-y curve using API 
method which uses two values from the stress-strain graph: 

(a) Undrained strength (31 kPa for this case); 
(b) Strain which occurs at 50% failure stress in a laboratory undrained compression test 

denoted by ε50 which is 0.11% for the case considered here. 
 

It is recognized that the development of lateral resistance on a pile (i.e., p-y curve) should bear 
 
 

 
Fig. 3 Stress-strain data of Bothkennar clay obtained from triaxial tests 
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some resemblance to the stress-strain response in some laboratory shear test. Clearly, the p-y curve 
in this case does not capture the stress-strain characteristics in the sense that the high stiffness of 
the clay at small strain is not captured in the API formulation. As the determination of p-y curves 
relied mostly on empirical correlations, and with increasing ability to simulate problems using 
highly sophisticated computers, the trend has shifted towards a more theoretically sound basis. The 
objective of this paper is therefore to assess the transfer coefficients that allow to scale p-y curves 
starting from the stress-strain relationships determined experimentally in laboratory. The basic 
idea here comes from the fact that the shape of p-y curve is geometrically similar to the 
stress-strain curve of the soil material (Dash et al. 2008). This is, because the p-y curve is 
characterized by index properties of the soil and the pile dimensions. The index properties of the 
soil are basically a representation of its stress-strain behaviour. Semi-analytical Finite Element 
approach is employed here to find the parameters NC and MC (see Fig. 2) that permits scaling from 
stress-strain relationships to p-y curves. 

As the methodology followed to obtain the parameters NC and MC is restricted to linear 
elasticity, these values can be employed to scale stress-strain curve to p-y curve till elastic zone. 
Other empirical values obtained from the literature are used in the fully plastic conditions. 
Furthermore, in laterally loaded piles analysis, this procedure has some limitations in the sense that 
this p-y curve is suited for a deeper depth and may be unrealistic in the top part of the pile due to 
the wedge mechanism that develops. 

 
 

p-y curves for 0.5m dia pile in natural Bothkenner clay 
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Fig. 4 p-y curve for a 0.5 m diameter pile using the API method 

382



 
 
 
 
 
 

Winkler Springs (p-y curves) for pile design from stress-strain of soils 

2. Statement of the problem and semi analytical FE formulation 
 
A laterally loaded embedded disc is often taken as a representative model for the behavior of 

the soil around a short segment of a long pile under horizontal loading, well away from the effect 
of the tip and the ground surface. This model which occurs within a laterally loaded circular pile at 
sufficient depth below the ground level is often used to establish the p-y curves. The soil-pile 
interaction at a particular depth is considered (Fig. 5) with the following assumptions in the 
analysis. 

(a) Pile deflection ‘y’ is compatible with the strain distribution in the soil. 
(b) The stresses in the soil are in equilibrium with the reaction force on pile ‘p’. 
The basic idea comes from the fact that the loading on the soil is represented by a single 

pressure p which produces a single deformation y. 
 
2.1 Description of strain and displacement fields 
 
As the geometry of the pile-soil interaction is axisymmetric, it is convenient to adopt a 

cylindrical coordinate system for the semi-analytical FE formulation. The six strain components 
may be related to the three displacements components which are the radial displacement, ur, the 
axial displacement vz and the circumferential displacement wθ. The strain formulation thus yields 
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Following the standard procedure of Fourier series representation (Cook et al. 2001) one can 
write 

 
 

 
Fig. 5 Plane strain idealisation of pile-soil interaction at a particular depth of consideration 
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Fig. 6 Displacement components in radial coordinate 
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The index i stands for the harmonic number, and L is the total number of harmonic terms 
considered in the series. The single barred terms ūri, v̄zi, w̄θi are amplitudes of displacements that 
are symmetric with respect to the plane for θ = 0. The double barred terms u̿ ri, v̿ zi, w̿ θi are the 
amplitudes of displacements that are antisymmetric with respect to the plane for θ = 0. 

Only the first two terms in the Fourier series are needed in most practical situations. Problems 
for the first term (i.e., i = 0) are those related to purely axisymmetric problems and consequently 
well established in the literature. The second term for i = 1 is required when the loading pattern 
has a plane of symmetry. In this situation the components of displacement will reduce to 

  sin   ,cos   ,cos wwvvuu zzrr                      (4) 

The strains and stresses calculated at the Gauss points are themselves amplitudes. The actual 
values of stresses at various tangential locations are therefore found from the relationships 
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Where, the barred terms are the computed amplitudes. Similar expressions exist for the six 
components of strain. Although more work and storage are required than for a true 2D analysis, 
the fact that finite element discretisation is only required in radial plane means that band-width 
problems that occur with 3D elements are avoided. Thus the problem is easier for the analyst and 
is less demanding when considering computer resources. 

 
2.2 Interface elements 
 
In most problems of soil-structure interaction, relatively simple models may be adopted for 
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interfaces as they usually involve compressive contact stresses. For many problems it may be 
convenient to model interface behavior by merely refining a finite element mesh in the immediate 
vicinity of the interface. However, as the mesh remains continuous and adjacent elements are 
assigned with considerably different properties, occasional numerical singularities may occur 
constituting thus, the main drawback of this simple method. 

A joint element was thus formulated by Amar Bouzid et al. (2004) and Amar Bouzid (2011) to 
model soil/structure interfaces of axisymmetric solids of revolution subjected to non-axisymmetric 
loading using a semi-analytical analysis. To this end a six-noded interface element was formulated 
which can be combined with eight or nine-noded quadrilateral volume elements (Fig. 7). A brief 
outline of the interface formulation will be given here. 

According to the standard formulation of the displacement-based finite element method 
(Zienkiewicz and Taylor 1991), the stiffness matrix Kint of the interface element is given by the 
equation 

 A

T dABDBK   int                              (6) 

Where, B is the strain-displacement matrix, D is the constitutive matrix and A is the area of the 
interface element. The thickness of the interface element is taken to be zero. 

Since the interface element is a fictive location and is not a material itself, it represents only the 
interaction between two dissimilar materials. Hence, there will exist only a normal stress, σni, and 
shear stresses, τsni and τnθi, in this imaginary area. The displacement-stress relationships can be 
written as 

reli uD                                  (7) 
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The interface shear stiffness ks and the interface normal stiffness kn are in units of force per 
cube length. The vector of radial, axial and circumferential nodal displacement amplitudes in the 

 
 

 
Fig. 7 Zero thickness 6-noded interface element in an axisymmetric body showing the normal 

and shear stresses acting at the interface location 
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global coordinate system can be written as ūe = [ū1, v̄1, w̄1, ... ... , ū6, v̄6, w̄6]
T. As most interface 

stiffness matrices have been based on numerical integration, the present analytical formulation has 
the advantage to avoid spurious oscillations of stresses over interface area as it is accurately 
determined. 
 
 
3. Significance of the transfer coefficients MC and NC using of the mobilized shear 

strength design concept 
 
Osman and Bolton (2005) have proposed an interesting technique, called Mobilised Strength 

Design (MSD), for the evaluation of soil response to the structure loading in terms of 
load-deformation behaviour. The key feature of the MSD is that a single stress and a single strain 
are chosen to represent the behaviour of the soil mass under any given loading conditions. The 
representative stress is related to the applied load, and the representative strain is related to the 
applied displacement. If a stress-strain relationship is known for the soil, then this can be 
converted to an equivalent load-displacement relationship for the chosen problem. 

Clearly the MSD approach cannot be expected to describe the detailed response with great 
accuracy, as a number of approximations are involved, most importantly. 

(a) A single stress value cannot represent the stress state of the entire soil mass. 
(b) Likewise a single strain state cannot represent the strains in an entire soil mass. 
 

Nevertheless, as demonstrated by Osman and Bolton, the approach lies within the tradition of 
robust engineering applications for two fundamental reasons: firstly, the MSD can provide a 
realistic estimate of load-deformation behaviour, and secondly, it has the very significant benefit 
that no very complex calculations are needed. These authors proposed a simple plasticity method 
for the prediction of undrained settlement of shallow foundations in a clayey soil. In principle, 
their problem is similar to the problem of laterally loaded piles, as they also searched for a 
relationship between a load on a foundation and the settlement (which is a vertical displacement). 
The definitions of MC and NC are illustrated in Fig. 2. 

 
3.1 FE evaluation of the mobilized shear strain 
 
The soil-pile interaction at a particular depth is represented by a plane strain 2D model. 

Assuming the soil and pile are initially in equilibrium, any incremental work done by pile 
movement is equal to the total stain energy in the system. The pile is considered as very rigid with 
respect to soil, so that all the strain energy is assumed to be in the soil. 

The engineering shear strain εs can be defined as the difference between the major and the 
minor principal strains 

31  s                                 (8) 

Following Osman and Bolton, the average shear strain mobilized in the deforming soil can be 
calculated from the spatial average of the shear strain in the whole volume of the deformation zone. 
This mobilized shear strain can be associated with the pile displacement as follows 
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As the semi-analytical FE approach is used in this paper, the Eq. (9) can be re-written as 
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where, 22
31 )( rrs    . 

The strain components are expressed in the circumferential direction with cosine and sine 
functions. Hence, the maximum shear strain will have the following form in terms of amplitudes 
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where, the barred terms are amplitudes. Some algebraic manipulations will lead to the following 
equation 
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In integrating Eq. (12) we are facing an elliptic integral of second kind for which it is difficult 
to obtain a closed form solution. In order to overcome this problem and to compute the mobilized 
shear strain two cases should be considered 
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where, |J | is the determinant of the Jacobian matrix. 
Because the root function is positive and periodic of π / 2, the integral with respect to the 

circumferential direction can be evaluated as 
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22 sin1  is called complete elliptic integral of second kind 

symbolized by E(k), where k stands for the modulus and π / 2 is the amplitude. There is no closed 
form solution for this integral. However, an approximate solution has been found (Byrd and 
Friedman 1971) 
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So, the final expression of the mobilized shear strain (Eq. (13)) will be 
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Now the integral of the third term in Eq. (18) over a quarter of the circumference is a complete 
elliptic integral of second kind. Hence 
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This equation is also easy to compute using Gauss quadrature. 
 
3.2 FE evaluation of the mobilized shear strength, MC and NC 
 
Displacements and stresses around a rigid disc, that has either perfectly smooth or perfectly 

rough interfaces with the surrounding medium, have been established in the past, see for example 
(Baguelin et al. 1977, Amar Bouzid and Vermeer 2009). Unfortunately, displacements in both 
analytical and numerical analyses were found to be model size dependent. However, it is quite 
unrealistic that when the outside model radius Rm increases towards infinity, the displacements 
tend similarly to infinity. Consequently, there are infinite values for NC and MC (see Fig. 2 for the 
definition) as they rely upon displacements. 

As far as finding rational values for NC and MC is concerned, it necessary to find a reasonable 
boundary distance which allows to determine unique values for these coefficients. Using upper 
bound theorem, the boundary which corresponds to lowest NC can be considered as the effective 
zone of influence and consequently NC and MC can be estimated for this soil boundary. The value 
of MC depends essentially on the value of the Mobilised Shear Strain given by Eqs. (16) or (20b). 
Once the latter is computed, MC will be easily calculated by the following equation, which is 

y

D
M mobsC ,                           (21) 

The loading acting on the pile can be associated with the mobilized shear strength 

mobCDNp                                (22) 

where, NC is a capacity coefficient and τmob is the mobilised shear strength. NC normally referred to 
as lateral bearing capacity factor in pile foundation design. 

Starting from the basic idea that the total strain energy in the system is equal to the work done 
by external agencies, and the mobilized shear strength is related to the mobilized shear strain by 
the shear modulus G, one can write 

Upy 
2

1
                                (23) 

and 

mobsmob G ,                                (24) 

where, G = E / 2(1 + v). 
Substituting Eqs. (23) and (24) in Eq. (22), the expression for NC will have the following form 

mobs
c GDy

U
N

,   

 2


                             (25) 

Unlike the parameter MC, which depends only on εs,mob, the bearing capacity factor NC depends 
on the mobilized shear strain and the total deformation energy in the system as well, which can be 
clearly seen in the Eq. (25). 

The expression of total strain energy in the deforming soil is given by 

dvU rrzzrzrzzzrr  )(
2

1
 



                 (26) 
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As the nodes belonging to the top and bottom boundaries are restrained against vertical 
movement, the problem becomes a plane strain one. Hence, only, σr, σθ and τθr survive in Eq. (26). 
Consequently, the latter becomes 

dvU rrrr  )(
2

1
 



                          (27) 

Eq. (27), can be re-written in a more compact form 

dvDU T    
2

1
 



                              (28) 

where, D is the medium elasticity matrix. 
By specifying the integral boundaries, the Eq. (28) becomes 

    


1

1

1

1
      

2

1 


 JdddrDU T                     (29) 

Furthermore, all terms of the product εT D ε contain either the term cos2θ or sin2θ in their 
expressions. Hence, the integration with respect to the angular position θ yields the value of π. The 
Eq. (29) will have the final form 

  


1

1

1

1
     

2
JddrDU T 

                      (30) 

where, ε̄  is the strain amplitudes vector. 
Now substituting Eq. (30) along with expression that gives the mobilized shear strain [Eq. (16) 

or Eq. (20b)] in Eq. (25), it is easy to evaluate the bearing capacity factor NC. 
 

 
4. Computational experiments 
 

4.1 Mesh adopted, FE characteristics and computed results 
 
Taking advantage of symmetry, only half of the domain was meshed for the 3D semi-analytical 

FEM study (Fig. 8). The mesh used for the study, depicted in r – z space, is shown in Fig. 8. It 
consists of a horizontal disc of soil of unit thickness with an external radius of Rm. Eight-noded 
isoparametric elements were used to model the soil and the rigid disc. To model the loading of the 
rigid disc, lateral displacements were imposed at all nodes modeling the disc. Special pile-soil 
interface elements were implemented since this is required for modeling the smoothness and the 
roughness of the interface separating the disc from the surrounding medium. The boundary 
conditions imposed on the mesh are: 

(a) Nodes at the boundary region bc of the mesh are fixed in all directions. 
(b) Nodes on the boundaries ab and dc are prevented from moving vertically. Consequently, 

we are confined in this study to a problem in which no separation can occur. 
 

Semi-analytical finite element computations have been carried out in an elastic, isotropic soil   
characterized by parameters presented in Table 1. The deformation characteristics of the rigid disc 
have been taken as Ed = 1010 kN/m2 and vd = 0.25 for Young’s modulus and Poisson’s ratio 
respectively. 
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Fig. 8 Mesh used in the semi-analytical FE computation 

 
 

Table 1 Soil and disc characteristics used in the semi-analytical FE computations 

Item Symbol Value 

Disc diameter D 1.0 m 

Young’s modulus of disc Ed 1010 kN/m2 

Poisson’s ratio of disc vd 0.25 

Young’s modulus of soil Es 100000 kN/m2 

Poisson’s ratio of soil vs 0.499 

Slice thickness T 1.0 m 

 
 

Table 2 Nc and Mc values as obtained from the semi-analytical FE computations 

Boundary (Rm / rd) 
NC MC 

Smooth interface Rough interface Smooth interface Rough interface 

1.5 13.96 28.26 12.13 18.54 

2.0 11.26 19.84 4.33 6.45 

2.25 11.23 18.66 3.15 4.60 

2.50 11.48 18.09 2.44 3.50 

2.75 11.86 17.89 1.97 2.79 

2.85 12.04 17.86 1.83 2.59 

3.0 12.34 17.90 1.65 2.29 

4.0 14.46 19.11 0.95 1.28 

5.0 17.19 21.10 0.65 0.86 

6.0 19.83 23.39 0.49 0.63 

7.0 22.50 25.83 0.38 0.49 

8.0 25.19 28.35 0.31 0.39 

9.0 27.90 30.93 0.26 0.33 

10.0 30.61 33.55 0.23 0.28 
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The rough interface between the rigid disc and the surrounding medium has been simulated by 
either prescribing large values for the interface stiffness coefficients (kn = 1012 kN/m3 and ks = 1012 
kN/m3) or fully removing the interface formulation from the FE code by using a conventional 
analysis in which soil and disc are tied together at the shared nodes. For simulating a smooth 
interface, finite element analyses were carried out by imposing a shear stiffness of ks = 0.0 and a 
large value for the normal stiffness, kn = 1012 kN/m3. The displacement applied to the inner disc 
(i.e., modelled pile) was 0.001 m. 

The solutions for NC and MC for different outer rigid boundaries of the soil are plotted in Fig. 9 
and are presented in Table 2. Fig. 9(b) shows the non convergence of MC with outer boundary. 
This aspect is also reported in the literature, see for example (Baguelin et al. 1977, Chaudhry 
1994). This is may be due to the fact that a 3D problem is being simulated in a 2D. Also the load 
dispersion is not taken into account. 

Considering that the velocity field is proportional to the displacement field, the upper bound 
solution can be sought for the optimal extent of the outer rigid boundary at the lowest occurring 
value of NC. The solution, hence, gives the optimal boundary of 2.25rd for the smooth pile-soil 
interface which increases to 2.85rd for rough interface. The value of MC corresponding to the 
optimal boundary is 3.15 for smooth interface and 2.59 for rough interface. 
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Fig. 9 (a) NC and (b) MC values for a nearly incompressible elastic soil for different outer 
rigid boundaries, Rm = 1.5rd to 10rd 
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4.2 Comparison of semi-analytical FE solution with other numerical and analytical 
procedures 

 
To verify the above Semi-Analytical FE results, the solution is repeated with a complete 

numerical FE model using COMSOL Multiphysics® (COMSOL 2009). A 2D pile-soil interaction 
was modelled in a plane strain environment. Mesh optimization, parametric study and model 
verification were performed before analyzing the pile-soil problem. The material was modelled as 
linear elastic with a non-slip boundary with the pile (which corresponds to a rough pile-soil 
interface). The exterior boundary was fixed, and a defined displacement was applied on the outer 
surface of the pile. A triangular mesh was adopted (Fig. 10(a)) with Lagrange-quadratic elements. 
The material properties assigned to the model were as specified in Table 1. The pile deflection was 
modeled as rigid displacement of the inner boundary. 

As described in Section 3.2, the value of NC and MC are based on the mobilized strain in the 
deformation field. In the FE model, the mobilized strain was calculated by averaging the 
engineering strain over the entire volume of the soil considered as given in Eq. (9). The boundary 
corresponding to the lowest value of NC was considered as the effective zone of influence and the 
single representative value of NC and MC were obtained. Fig. 10(b) plots the strain (engineering 
shear strain) field due to the displacement of inner boundaries and the displacement vectors for a 
representative boundary zone where Rm= 2.85rp. As expected higher shear strains are observed 
orthogonal to the displacement vector and a flow around mechanism is apparent. 

Using Eqs. (9), (21) and (25), the NC and MC values were obtained from the FE solution for 
different soil boundary zones. These values were then compared with the Semi-analytical FE 
solution described in Section 3.2 and are shown in Figs. 11 and 12. In addition to FE results 
carried out in this study, solutions by Einav and Randolph (2005) and Martin and Randolph (2006) 
are also included in the figures for comparison. Einav and Randolph used an upper bound solution 

 
 

(a) (b) 

Fig. 10 (a) Pile-soil interaction mesh in numerical FE model in COMSOL; (b) Elastic strain field due 
to inner rigid disk displacement of 0.001 m for nearly incompressible soil (Extent of rigid soil 
boundary, Rm = 2.85rp) 
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Fig. 11 Comparison of NC values obtained by different solutions for different outer rigid 

boundaries, Rm = 1.5rd to 8rd 
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Fig. 12 Comparison of MC values obtained by different solutions for different outer rigid 

boundaries, Rm = 1.5rd to 8rd 
 
 

Table 3 Summarizes the results of MC and NC from the analysis presented in this paper which will be used in 
the next section for the construction of the p-y curves 

 MC NC 

Linear elastic soil with smooth interface 3.15 11.23 

Linear elastic soil with rough interface 2.59 17.89 

Rigid plastic with rough interface 2.60 9.00 

 
 
using the method of strain path in the flow field derived from classical fluid mechanics theories 
with strain softening behavior of an incompressible material. However, Martin and Randolph 
employed an upper bound plasticity solution for a perfectly plastic material. Four important points 
are worth noting from the examination of these figures: 

(a) A perfect agreement is observed between the semi-analytical FE results and those of 
conventional FE solutions provided by COMSOL for the entire range of the relative 
boundary distances considered. 
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(b) For both analyses the lowest value of NC which is approximately 17.86 occurs at the same 
relative boundary distance Rm/rd = 2.85. 

(c) FE results are in very close agreement with the solution provided by Einav and Randolph. 
(d) Solutions by Martin and Randolph is lower than the other results, which is probably due to 

the consideration of a perfectly plastic material. 
 

Comparisons of MC values between semi-analytical FE solutions, COMSOL results and those 
of other methods reported in the literature are illustrated in Fig. 12. At the first sight, Fig. 12 shows 
a perfect agreement between the semi-analytical FE solutions and COMSOL results. If we 
consider as effective influence zone the relative boundary distance at which the lowest value of NC 
occurred (Rm/rd = 2.85 in Fig. 11) both analyses provided the nearly same value of Mc = 2.59. This 
is in very close agreement with the solution by Klar (2008). 
 
 
5. Example of constructing p-y curve from stress-strain curve using MC and NC values 

 
This section of the paper demonstrates the application of MSD concept for the construction of 

p-y curve from stress-strain of the soil shown in Fig. 3. MC and NC values were obtained for both 
smooth pile-soil interface and rough pile-soil interface for elastic medium. MC and NC thus 
obtained are 3.15 and 11.23 for smooth interface and 2.59 and 17.89 for rough interface. As these 
values are obtained for an elastic medium, they can be used to scale stress-strain curve to p-y curve 
till elastic zone. The solution for fully plastic condition, i.e., MC = 2.6 (Matlock 1970) and NC = 9 
(Randolph and Houlsby 1984) may be used after the occurrence of maximum shear stress. 
However if the changeover of NC or MC happens abruptly, there will also be abrupt change in the 
shape of p-y curve, which must be avoided for convergence of numerical solution. 

The proposed scheme is therefore to assume that the soil is elastic till half of the maximum 
shear stress where NC can be taken as 11.23 (smooth interface) or 17.86 (rough interface). 

 
 

 
Fig. 13 Construction of p-y curves using different methods 
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Subsequently, NC can be gradually reduced to 9 from half the shear stress to the maximum shear 
stress. After the maximum shear stress is reached, NC can be kept constant as 9 for rest of the stress 
values. MC can be conveniently taken as 2.6 throughout the range. Fig. 13 shows five p-y curves 
for a concrete pile of diameter 0.5 m. Two simplified p-y curves, for smooth and rough pile-soil 
interface, using constant values of MC and NC throughout the scaling of stress-strain is constructed. 
The p-y curve as suggested by API guidelines was also prepared for comparison, which does not 
distinguish between smooth or rough pile-soil interfaces. 

To demonstrate the effect of different p-y curve as constructed above in pile response, a 
numerical study is carried out for a concrete pile of 0.5 m diameter and 30 m long embedded in 
uniform Bothkennar clay. For the pile, the grade of concrete is considered to be 4000 psi (Fck = 30 
MPa) and the grade of steel reinforcement is ASTM A615 Grade 60 (Fy = 420 MPa). The pile is 
reinforced with 8 longitudinal bars of 14 mm diameter and lateral ties of 6 mm diameter at a 
spacing of 150 mm. This exercise has some limitations in the sense that while uniform clay 
throughout the depth may be possible but this p-y curve (which is suited for a deeper depth) may 
be unrealistic in the top part of the pile due to the wedge mechanism that develops. However, this 
numerical exercise is carried out to demonstrate the effect of the shape of the p-y curve and 
therefore the use of the same p-y curve is considered throughout the depth. The p-y curves are 
assigned as the backbone load-deformation curve for soil springs lumped at 0.25 m interval all 
along the height of the pile. The schematic of the numerical model is shown in the Fig. 14. A 
lateral load was applied at the pile top and this load was increased gradually which is similar to the 
push-over type of analysis. The load-deflection pattern of the pile head thus obtained for different 
p-y curves is plotted in the Fig. 15 below. Few points may be noted: 

 
 

 

Pile

Cross section of pile

Diameter: 0.5m 
Material: Concrete 

Lateral Force, 
 F 

 
Fig. 14 SAP model of the pile 
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Pile head load-deformation response 

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
y (m)

F
 (

k
N

)

Reducing Mc and Nc for smooth pile-soil interface
Reducing Mc and Nc for rough pile-soil interface
Constant Mc and Nc for smooth pile-soil interface
Constant Mc and Nc for rough pile-soil interface
API p-y curve

 
Fig. 15 Lateral load versus pile head deflection for different types of p-y curves 

 
 
(a) Ultimate load capacity is similar for the three p-y curves (API and the proposed ones with 

reduced MC and NC) for pile head deflection of 5% of pile diameter i.e., 25 mm. The p-y 
curves with constant MC and NC values over predict the ultimate load capacity. 

(b) The slope of the lateral load–pile head deflection curve provides an estimate of the pile 
head stiffness and these values are necessary for carrying out dynamic analysis of various 
structures i.e., monopile supported wind turbines. Fig. 15 suggests that API underestimates 
the pile head stiffness. While this can be viewed as conservative for predicting 
deformation of the foundation but this may predict lower natural frequency of a 
pile-supported structure. 

 
 

6. Conclusions 
 

A method is proposed to construct a continuous p-y curve for a pile from stress-strain data of a 
representative soil. The proposed method has the advantage of retaining most of the features of 
stress-strain relationship. This is in contrast to the commonly used method of construction where 
two values are taken from a stress-strain data (undrained strength and the strain at 50% of the 
failure stress) to construct the p-y curve. The method is based on MSD (Mobilized Strength 
Design) concept where the stress-strain axis is scaled differently to obtain the p-y curve. The stress 
axis is scaled using NC to obtain p and the strain axis is scaled using a factor MC to obtain y. 

Potentially, a three-dimensional finite element analysis could be used to analyze most 
complicated soil/structure interaction problems. However, analysis of such problems usually 
demands the discretization of the continuum in all three dimensions leading to very large sets of 
algebraic equations to solve and requiring a substantial human effort to process data. As an 
alternative, a semi-analytical FE approach is used to get the scaling factors MC and NC where the 
quantities of interest are expanded in Fourier series. Both smooth and rough interfaces were 
considered. Semi-Analytical FE results for a rough disc were found to be in good agreement with 
those of other numerical and analytical procedures. 
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The presented problem has both a practical and a theoretical significance in geotechnical 
engineering. The theoretical significance is obvious and the practical significance is that the 
present approach gives the engineers a strong tool to derive p-y curves from their experimentally 
established soil stress-strain relationships. This may provide a better prediction of pile head 
stiffness required for dynamic analyses and deformation under working loads. 
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