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Abstract. This paper presents the derivation of an analytical expression for the dynamic active thrust
from c-φ (c = cohesion, φ = angle of shearing resistance) soil backfill on rigid retaining walls with wall
friction and adhesion. The derivation uses the pseudo-static approach considering tension cracks in the
backfill, a uniform surcharge on the backfill, and horizontal and vertical seismic loadings. The
development of an explicit analytical expression for the critical inclination of the failure plane within the
soil backfill is described. It is shown that the analytical expression gives the same results for simpler
special cases previously reported in the literature. 
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1. Introduction

For cohesionless soil backfills (φ soil backfills), the Mononobe-Okabe (M-O) expression is widely

used to calculate the total load acting against the back of a rigid retaining wall due to the combined

effect of static and seismic-induced inertial loads (Mononobe 1924, Okabe 1924, Mononobe and

Matsuo 1929, Seed and Whitman 1970, Zarrabi 1979, Bowles 1996, Kramer 1996, Das and Ramana

2011). This load is called the dynamic active thrust (or total dynamic active pressure) in the current

study consistent with earlier related papers by the first author. Analytical expressions for the

dynamic active thrust from cohesive soil backfills (c-φ soil backfills) have also been reported

(Okabe 1924, Saran and Prakash 1968, Richards and Shi 1994, Das and Puri 1996, Saran and Gupta

2003, Shukla et al. 2009, Greco 2010, Shukla and Zahid 2010, Shukla 2011). However, no

analytical expression is currently available in explicit form for the dynamic active thrust from c-φ

*Corresponding author, Associate Professor, E-mail: s.shukla@ecu.edu.au

 Technical Note
DOI: http://dx.doi.org/10.12989/gae.2012.4.3.209



210 Sanjay K. Shukla and Richard J. Bathurst

soil backfill that considers tension cracks in the backfill, a uniform surcharge at the backfill surface,

both horizontal and vertical seismic loadings, and wall friction and adhesion. This combination of

conditions is possible for conventional rigid retaining walls in the field. Therefore, this paper

presents the derivation of an analytical expression for the dynamic active thrust, considering all

these factors. Additionally, the development of an analytical expression in explicit form for the

critical inclination of the failure plane within the c-φ soil backfill for the active state is also

presented. 

2. Analytical derivation

Fig. 1 shows a trial failure wedge A1A2A3 consisting of c-φ soil backfill of weight W behind the

vertical back face A1A2 of a retaining wall of height H. The parameters related to the wall geometry,

soil backfill and applied loads are labelled in the figure. All the forces shown in the figure are

expressed per unit running length of the wall. It is assumed that the failure occurs along a plane

A2A3 that propagates from the bottom of the wall at an inclination α to the horizontal. The tension

crack zone extends to depth zc below the top surface of the backfill. The horizontal and vertical

seismic inertial forces, khW and kvW are also applied to the sliding wedge; the outward direction of

the horizontal inertia vector is the critical case for the dynamic active thrust. The critical case for

non-zero values of the vertical inertial force will vary depending on the magnitude of the horizontal

inertial value; therefore both vertically downward and upward cases have been taken by considering

positive and negative signs, respectively. Here kh and kv are the horizontal and vertical seismic

coefficients, respectively. A uniform surcharge placed at the top of the slope A1A3 (= B) applies a

Fig. 1 Forces acting on a trial failure wedge consisting of c-φ soil backfill with tension cracks behind a rigid
retaining wall in active state
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vertical pressure q per unit surface area together with horizontal and vertical seismic inertial forces,

khqB and kvqB, respectively. The force F is the resultant of the frictional component of the shear

force T and the normal force N acting on the failure plane. C is the total cohesive force on the

failure plane A2A3, and Ca is the total adhesive force mobilised along the wall-backfill interface

A1A2. Pae is the dynamic active thrust inclined at an angle δ to the normal to the back face of the

wall. 

From the geometry of Fig. 1, 

 (1)

The weight of the soil wedge A1A2A3 is 

 (2)

The total cohesive force mobilised along the failure plane A2A3 is

 (3)

where  is the average cohesion of the backfill defined as

 (4)

It should be noted that Eq. (4) is based on the assumption that the mobilized cohesive resistance

within the tension crack zone varies linearly from c at the bottom of the tension crack to zero at the

top of the tension crack (Lambe and Whitman 1979).

The average adhesion  of the soil backfill behind the wall can also be defined as

(5)

where ca is the adhesion between the wall back face and the soil backfill.

From Eqs. (4) and (5)

 (6)

where af is the adhesion factor with a value in the range [0, 1].

The total adhesive force mobilised along the wall-backfill interface A1A2 is

 (7a)

Using Eq. (6), Eq. (7a) becomes 

 (7b)
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the retaining wall occurs through friction and adhesion. The former is considered by the inclination

of the dynamic active thrust denoted by angle δ to the horizontal in the free-body diagram of the

backfill. The latter is considered by the adhesive force Ca given in Eq. (7b). Actual values of factor

af can be calculated using both ca and c from laboratory shear tests performed on project-specific

materials. However, for simplicity in routine design practice, one can assume that ca ≈ c. For the

case of cohesionless soil backfills when ca → 0 and c → 0, then af → 1 from Eq. (6), resulting in

Ca = 0 from Eq. (7b). This is the typical case for static and dynamic active thrust analyses for

cohesionless soil backfills. 

The maximum depth of tension crack zc can be selected based on field observation/experience or

it may be computed using the following expression based on Rankine theory (Taylor 1948, Lambe

and Whitman 1979, Terzaghi et al. 1996, Das 2008).

 (8)

Considering equilibrium of forces [↓+ and ↑−] in the vertical direction

 (9)

Substituting C and Ca from Eqs. (3) and (7b), respectively, Eq. (9) becomes

 (10)

Considering equilibrium of forces [→+ and ← −] in the horizontal direction

 (11)

Substituting C from Eq. (3), Eq. (11) becomes

 (12)

Eliminating F from Eqs. (10) and (12),

 (13)

where

 (14)

is the seismic inertia angle.

Eq. (13) is simplified as

 (15)

Substituting B and W from Eqs. (1) and (2), respectively, Eq. (15) reduces to
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 (16)

 

Using Eq. (4), Eq. (16) is expressed as

 

 (17)

or

 (18)

where

 (19a)

 (19b)

and

 (19c)

It should be noted that m1, m2 and m3 are dimensionless, and for given wall geometry, soil backfill

properties, surcharge, and seismic coefficients, their values are known.

Eq. (18) can be expressed as

 (20)

where

 (21a)

 (21b)

 (21c)

 (21d)

and

 (21e)

It should also be noted that a1, b1, c1, a2 and b2 are dimensionless, and for given wall geometry,

soil backfill properties, surcharge, and seismic coefficients, their values are known.
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or

or

 (22)

 
Eq. (22) is quadratic in tanα, which provides the critical value of inclination of the failure plane,

α = αc as

 (23)

Since αc will lie between 0o and 90o, tanαc cannot be negative; therefore ‘+’ or ‘−’ should be

considered accordingly based on specific values of a1, b1, c1, a2 and b2.

For real values of αc, the expression under the radical sign in Eq. (23) must be positive, that is

 (24)

 

Substituting α = αc into Eq. (20), the dynamic active thrust is obtained as

 (25)

It should be noted that Greco (2010) presented an equation similar to Eq. (25) based on the

approach by Shukla et al. (2009) but without describing the derivation steps in detail. The Greco

(2010) expression does not consider surcharge, vertically upward seismic inertial force and wall

adhesion. Shukla (2010) reported key observations with some minor corrections and explanations to

clarify details of the Greco solution. 
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  (27b)

and

 (27c)

Eq. (26) provides a general expression for the dynamic active thrust. The factors Kaeγ and Kaec are

the active earth pressure coefficients with earthquake/seismic effects associated with unit weight and

cohesion, respectively, and K is a tension crack factor.

3. Special cases

Case 1: c = 0, φ > 0, zc = 0; δ = 0, ca = 0, af → 1; kh = 0, kv = 0; q = 0

Eqs. (14), (19a-c) and (21a-e) give the following:

θ = 0; m1 = 1, m2 = 0, m3 = 0, a1 = 0, b1 = cosφ, c1 = sinφ, a2 = −sinφ, and b2 = cosφ. On

substitution of these values into Eq. (23), the critical value of inclination of the failure plane is

obtained as . For this value of αc, Eq. (27a) yields

 (28)

where Ka is the Rankine active earth pressure coefficient. Eq. (26) results in

 (29)

Eq. (29) is the well-known Rankine equation that gives the static active thrust (Pa) from a

cohesionless soil backfill. 

Case 2: c = cu, φ = 0, zc > 0; δ = 0, ca = 0, af → 0; kh = 0, kv = 0; q = 0

Eqs. (14), (19a-c) and (21a-e) give the following:
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b2 = 1. On substitution of these values into Eq. (23), the critical value of inclination of the failure

plane is obtained as αc = 45o. For this value of αc, Eqs. (27a-c) with Eq. (8) yield Kaeγ = 1, Kaec = 2

and K = 1, respectively. Eq. (26) becomes
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Eq. (30) is reported by Terzaghi et al. (1996) and Das (2008) and where γ is the saturated unit

weight of soil.

Case 3: c > 0, φ > 0, zc > 0; δ = 0, ca = 0, af → 0; kh = 0, kv = 0; q = 0

Eqs. (14), (19a-c) and (21a-e) give the following:

θ = 0, m1 = 1, m2 = 0, , cosφ, b1 = cosφ, cosφ

+ sinφ, a2 = −sinφ, and b2 = cosφ. Substitution of these values into Eq. (23) gives the critical value of

failure plane inclination αc = 45o + , which is the same as for Case 1. For this value of αc, Eqs. (27a-c)

with Eq. (8) yield  and K = 1, respectively. Eq.

(26) becomes

 (31)

 

Eq. (31) is the well-known Rankine equation for static active thrust (Pa) for the cohesive-frictional

soil backfills. 

Case 4: φ > 0, c = 0, zc = 0; δ > 0, ca = 0, af → 1; kh > 0, kv > 0; q = 0

This special case results in the M-O equation (Mononobe 1924, Okabe 1924, Mononobe and

Matsuo 1929), which is given below using the notation defined in Fig. 1.

 (32)

where

 (33)

It should be noted that Eq. (32) does not consider any surcharge or wall-backfill interface

adhesion. A comparison of Eq. (32) with Eq. (26) for this special case shows that KMO = Kaeγ ,

which is given by Eq. 27(a) in terms of αc obtained from Eq. (23) using the values of parameters

for this special case. From numerical calculations for a common set of parameters, it is found that

Eqs. (32) and (26) give the same values of Pae. Additionally, the value of αc for this special case is

also obtained from Eq. (23), which is not reported in the literature in exact form with all practical

parameters considered in this paper. Comparison with solutions to αc reported in the literature for a

common set of parameters (Okabe 1924, Zarrabi 1979, Bathurst et al. 2012) gives reasonable

agreement. 

The newly derived generalised expressions [Eqs. (23) and (26)] give the expressions presented

earlier by Shukla et al. (2009), Shukla and Zahid (2011) and Shukla (2011) for simplified problem

conditions. 

m3 = 
2c

γH
------- 1

zc

2H
-------–⎝ ⎠

⎛ ⎞cosφ a1 = 
2c

γH
------- 1

zc

2H
-------–⎝ ⎠

⎛ ⎞ c1 = 
2c

γH
------- 1

zc

2H
-------–⎝ ⎠

⎛ ⎞

φ

2
---

Kaeγ = 
1 sinφ–

1 sinφ+
------------------ = tan

2
45

o φ

2
---–⎝ ⎠

⎛ ⎞  = Ka, Kaec = 2 Ka

Pae = Pa = 
1

2
---KaγH

2 − 2 KacH + 
2c

2

γ
-------

Pae = 
1

2
--- 1 ± kv( )KMOγH

2

KMO = 
cos

2
θ φ–( )

cosθcos θ δ+( ) 1
sin φ δ+( )sin φ θ–( )

cos δ θ+( )
----------------------------------------------+

2
-------------------------------------------------------------------------------------------------------



An analytical expression for the dynamic active thrust from c-φ soil backfill 217

4. Conclusions

An improved explicit analytical expression [Eq. (26)] is derived in terms of seismic earth pressure

coefficients and a tension crack factor for calculating the dynamic active thrust from a c-φ soil

backfill acting at the back of a rigid retaining wall with uniform surcharge and wall-soil friction and

adhesion. An explicit expression [Eq. (23)] in exact form for the critical angle of inclination to the

horizontal of the failure plane is also presented which is an improvement over other solutions found

in the literature. These equations are useful for the calculation of destabilizing earth forces used in

the pseudo-static seismic analysis and design of conventional rigid retaining walls with simple

geometry, soil properties and boundary conditions. 
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