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Abstract. This paper presents the results of analytical and numerical analyses of the effects of perform-
ing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the
assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has
been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and
deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay.
Closed-form solutions are obtained which allow the determination of the principal effective stresses and
the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical
state is not equal to the mean of the other two principal stresses, except when the clay is initially
isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by
means of the Almansi finite strain approach. Results are compared with published data which were
determined using finite element and finite difference methods.

Keywords: undrained cylindrical expansion; plane strain; modified Cam clay; stress-strain curves; analyt-
ical and numerical analyses; comparisons.

1. Introduction

The undrained expansion of spherical and cylindrical cavities in a clay deposit is a problem that is

of interest to geotechnical engineers. Solutions to this problem have been obtained for a number of

ideal materials and these have been used to model cone penetration tests and pressuremeter tests,

and the installation of driven piles (Carter et al. 1979, Yu 2000). Hill (1950) has presented a

comprehensive finite (natural, logarithmic, or true) strain solution of stresses and displacements for

the expansion of spherical and cylindrical cavities in a Tresca material. Yu (2000) expanded Hill’s

solution and showed that his result was valid for any value of Poisson’s ratio, and therefore, for

Tresca material, was more general than that of Gibson and Anderson (1961). In addition, Yu (2000)

presented an exhaustive review of spherical and cylindrical cavity solutions. Palmer (1972) showed

that the result of a single pressuremeter test in clay was sufficient to determine a complete stress-

strain relation in plane strain. The only restrictive assumption necessary was that the deformation is

under undrained condition; there was no restriction to infinitesimal strains or to simple elastic
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perfectly plastic soils. Similar solutions were presented by Baguelin et al. (1972) and Ladanyi

(1972).

The assumptions of plane strain in the vertical direction and axially symmetrical deformation

considerably simplify the analysis of the expansion of a long cylindrical cavity. However, as more

complex models are used to represent the soil, then the more remote becomes the possibility of

obtaining closed-form solutions (Carter et al. 1979, Wood 2007). For example, the problem of the

expansion of spherical and cylindrical cavities in modified Cam clay was approached up to recently,

by using numerical methods, since it was thought that closed-form solutions could not be obtained

(Yu 2000). However, Silvestri and Abou-Samra (2011) determined a finite strain closed-form

solution for the expansion of a spherical cavity in modified Cam clay. 

In the spherically symmetrical problem both the shape of the plastic boundary and the strain path

are determined by symmetry alone (Hill 1950). In the special problem of the expansion of long

cylindrical cavities, that is the subject of the present paper, only the shape of the plastic boundary is

known before hand. The strain path for every individual particle has to be calculated, along with the

stresses, step by step as the cylindrical cavity expands (Hill et al. 1947, Hill 1950).

In this paper, a method is presented which may be employed whenever the soil can be modelled

using modified Cam clay. The first part of the paper presents existing closed-form solutions of the

stress-strain relationships of modified Cam clay sheared undrained. The second part gives analytical

expressions for the principal effective stresses generated during shearing in plane strain and

undrained conditions. The third part presents the stresses, pore water pressures, and deformations

that occur around an expanding cylindrical cavity. The analysis is applied to an example presented

by Carter et al. (1979) and Randolph et al. (1979). Comparisons are made with both the elastic

perfectly plastic solution of Gibson and Anderson (1961) and numerical results which were obtained

by means of the finite element (Carter et al. 1979) and finite difference (Itasca 1995) methods.

2. Modified Cam clay

2.1 Soil model

Only a brief introduction of the modified Cam clay model is presented in this paper. Interested

readers may refer to the textbook by Wood (2007) for an in-depth treatment. The Cam clay model

requires the specification of five parameters, and values for all of them may be obtained from

standard laboratory tests. These parameters are

λ = the slope of the isotropic virgin consolidation line in v − lnp' space;

κ = the slope of the isotropic swelling line in v − lnp'  space;

Γ = the value of the specific volume for p' = 1 kPa on the critical state line in v − lnp' space;

M = the slope of the stress ratio q/p' at critical state; M = 6sinφ'/(3−sinφ'), with

φ' = friction angle of clay; and

G' = the elastic shear modulus.

In the above, v is the specific volume, and the mean effective stress p' and the deviator stress q

are given by

(1)p′ = σ1′ σ2′ σ3′+ +( )/3
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(2)

where , ,  are the effective principal stresses. In addition to the above-listed parameters, a

full description of the soil requires the knowledge of the initial in situ stresses. For stress levels

within the yield surface, deformations are governed by the elastic bulk modulus K' = vp'/κ and the

shear modulus G' = 3(1−2v')K'/2(1 + v'), where v' = Poisson’s ratio of soil skeleton. Yielding occurs

whenever the stresses obey the following criterion

(3)

where  is a hardening parameter which defines the intersection of the current ellipsoidal yield

locus and the p' axis. As the material yields and hardens, plastic flow is determined by an

associated flow rule. Fig. 1 illustrates the essential features of the model. An effective stress path

(ESP) obtained from a consolidated undrained triaxial test is also shown in this figure. The test begins

at point A  and ends at point B ,

where K0 is the coefficient of lateral earth pressure at rest,  is the initial in situ vertical effective

stress, , and  defines the intersection of the effective stress path and the p' axis

The equation of the effective stress path is

(4a)

in which ηi = in situ stress ratio . This equation may be also written as

q = 
1

2
------- σ1′ σ2′–( )2 + σ2′ σ3′–( )2 + σ3′ σ1′–( )2[ ]

1/2

σ1′ σ2′ σ3′

f = q
2−M

2
p′ pc′ p′–( ) = 0
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Fig. 1 Modified Cam clay model
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. (4b)

The Cam clay yield and effective stress path surfaces are assumed to be formed by rotation about

the mean effective stress axis (or space diagonal ) and sections through these

surfaces at constant mean effective stress p' are consequently circles. It is assumed that although

failure can be better approximated by a Mohr-Coulomb criterion with constant friction angle φ', than

by a von Mises criterion, both pre-failure and failure responses are considered to be governed by

the Cam clay expanding surfaces.

2.2 Deviator stress-strain relationships of modified Cam clay

Peri  and Ayari (2002) obtained the deviatoric stress-strain relationship of normally consolidated

Cam clay sheared undrained by combining the elastic and plastic strain components. For constant

Poisson’s ratio, their expression reads

(5)

where εq = deviatoric strain = , and ε1, ε2, ε3 are the finite

(natural, logarithmic, or true) principal strains.

Silvestri and Abou-Samra (2009) also obtained stress-strain relationships for normally consolidated

Cam clay sheared undrained for ηi = 0 and for both constant Poisson’s ratio v' and constant shear

modulus G'. Their expression for constant shear modulus G' becomes

(6)

for the general case of .

Regarding the choice of the shear modulus G', the use of a constant value (i.e., Eq. (6)) results in

a conservative model (Carter et al. 1979).

3. Theoretical considerations

3.1 Axially symmetrical stresses and deformations around the cylindrical cavity

The effective stress path in q − p' space is described by Eqs. (4). However, each principal effective

stress cannot be found in general from the expressions in Eqs. (4). In order to determine these

stresses, it is convenient to consider cylindrical coordinates r, θ, z. Let the total principal stresses in

the radial, tangential, and axial (vertical) directions in the medium surrounding the cavity be

denoted by σr, σθ, σz, the corresponding effective stresses by , , , and the finite (natural)

strains in the same directions by εr, εθ, εz. Fig. 2 presents the idealized geometry and the stresses

q
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acting in the soil around the cylindrical cavity. The initial total stresses are σri = σθi and σzi. The

corresponding initial effective stresses are  =  =  and . The total principal strain

increments dεr, dεθ, dεz are given by the following expressions in the case of modified Cam clay

 (7a)

 (7b)

 (7c)

where dβ is a nonnegative proportionality factor, and , ,  are the

deviator stresses. In addition, while the first term on the right-hand side of each equation represents

the elastic strain increment, the second term refers to the plastic strain increment. The plastic strain

increment components  are found from the associated flow rule (Mendelson 1968)

 (8)

where g is the plastic potential which is equal to the yield function f in Eq. (3) and  is the

effective stress tensor.

The principal effective stress increments , , are found directly from Eqs. (7), yielding

 (9a)

(9b)

(9c)
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Fig. 2 Initial and current conditions around cylindrical cavity
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where the bulk modulus .

The expansion takes place in plane strain in the vertical direction (i.e., dεz = 0) and in undrained

conditions (i.e., dεr + dεθ = 0 or dεr = −dεθ). As a result, Eqs. (9) become

(10a)

(10b)

(10c)

The proportionality factor dβ is found by adding Eqs. (10) together, yielding

(11)

because  = − , resulting in

(12)

Substitution of this expression into Eqs. (10) leads to

(13a)

(13b)

(13c)

The vertical effective stress is found from Eq. (13c). Rearrangement of this equation gives

(14)

But, since , Eq. (14) becomes

(15)

which can easily be integrated in order to determine Sz and consequently, . Two cases

are considered

a) G' constant and K' stress dependent

Since K' = vp'/k, Eq. (15) reads

(16)

which, after integration, becomes
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2p′ pc′–( ) + 6G′Sr[ ]

dσθ′ = 2G′dεθ − dβ K′M2
2p′ pc′–( ) + 6G′Sθ[ ]

dσz′ = −dβ K′M2
2p′ pc′–( ) + 6G′Sz[ ]
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where  is the initial vertical effective stress, and  is the

initial mean effective stress, with  and  being the initial radial and

tangential effective stresses, respectively, as shown in Fig. 2. As a result, the vertical effective stress

, or 

(18)

The effective radial and tangential stresses,  and , are determined by substituting the

expression for  in Eqs. (1) and (2), and letting , , . The stresses are

(19a)

and

(19b)

where the deviator stress q is given by either Eq. (4a) or Eq. (4b).

The maximum shear stress, , is found from Eqs. (19). It is given by

(20)

b) v' or G'/K' constant

Since , Eq. (15) becomes

(21)

which, after integration, leads to

(22)
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σri′ = σθi′ = K0σzi′, σri′ σθi′

σz′ = p′ + Sz

σz′ = p′ σzi′ pi′–( )+
pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

6G′k

vM
2
p
c
′

-----------------

σr′ σθ′
σz′ σ1′ = σr′ σ2′ = σz′ σ3′ = σθ′

σr′ = p′−
σzi′ pi′–

2
-------------------⎝ ⎠

⎛ ⎞ pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

6G′k

vM
2
p
c
′

-----------------

 + 
1

2
---

4

3
---q

2−3 σzi′ pi′–( )2
pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

12G′k

vM
2
p
c
′

-----------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1/2

σθ′ = p′−
σzi′ pi′–

2
-------------------⎝ ⎠

⎛ ⎞ pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

6G′k

vM
2
p
c
′

-----------------

− 
1

2
---

4

3
---q

2−3 σzi′ pi′–( )2
pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

12G′k

vM
2
p
c
′

-----------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1/2

τ = σr′ σθ′–( )/2

τ = 
1

2
---

4

3
---q

2−3 σzi′ pi′–( )2
pi′ 2p′ pc′–( )
p′ 2pi′ pc′–( )
------------------------------

12G′k

vM
2
p
c
′

-----------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1/2

G′/K′ = 3 1 2v′–( )/2 1 v′+( )

dSz

Sz

------- = 
9 1 2v′–( )dp′

M
2

1+v′( ) 2p′ pc′–( )
-----------------------------------------------

Sz = Szi

2p′ pc′–

2pi′ pc′–
--------------------⎝ ⎠

⎛ ⎞

9

2M
2

----------
1 2v′–

1+v′
---------------⎝ ⎠
⎛ ⎞

Szi = σzi′−pi′ σz′

σz′ = p′ + σzi′ pi′–( )
2p′ pc′–

2pi′ pc′–
--------------------⎝ ⎠

⎛ ⎞

9

2M
2

----------
1 2v′–

1+v′
---------------⎝ ⎠
⎛ ⎞



26 Vincenzo Silvestri and Ghassan Abou-Samra

Substitution of this equation into Eqs. (1) and (2) permits the determination of the remaining

principal stresses, , , as before. The stresses are

 (24a)

and

(24b)

where, once again, the deviator stress q is given by either Eq. (4a) or Eq. (4b).

The maximum shear stress, , is equal to

(25)

Remarks

Close examination of either Eq. (17) or Eq. (22) indicates that if the initial deviator stress Szi = 0,

which corresponds to an initial isotropic stress state, with = = = , or K0 = 1, then the

current deviator stress Sz is also zero and, consequently, . Thus, 

throughout the shearing process, because . The principal

stresses , ,  may be found either from Eqs. (23) and (24) by noting that = 0,

or directly from the equation of the effective stress path (i.e., either Eq. (4a) or Eq. (4b)), for

. Indeed, since , the shear stress τ equals q/  from Eq. (2). Also, the

mean effective stress  from Eq. (1). Thus, the principal effective stresses

can be determined throughout the shearing process from the following expressions

(26a)

(26b)

(26c)

In addition, the principal effective stresses at critical state are given by
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(27b)

(27c)
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be stressed that Eqs. (26) and 27 are valid only for the case of K0 = 1.

3.2 Maximum shearing strains

The maximum shearing strain , because = 0 and  in plane strain and

undrained conditions.

Initial anisotropic stress state ( )

The shearing strain γ is determined by summation or integration of the strain increment dεr
(= −dεθ) in Eq. (10a) or Eq. (10b). The result is

a) For G' constant and K' stress dependent,

(28a)

where the shear stress τ is given by Eq. (20). Note also that dp' is negative in Eq. (28a), since p'

decreases during shearing. The derivation of Eq. (28a) is shown in the appendix.

b) For v' or G'/K' constant,

(28b)

where the shear stress τ is given by Eq. (25). Again, the increment dp' is negative in Eq. (28b). The

derivation of Eq. (28b) is also shown in the appendix.

Initial isotropic stress state (K0 = 1)

As mentioned previously, the vertical effective stress  is always equal to  or to p'

in this case (See Eq. (26c)). The shear stress from Eqs. (26a) and (26b). The shearing strain

, since εz = 0 and εr = −εθ. Thus, Eqs. (5) and (6) allow to obtain in closed form

the corresponding shear stress-shear strain relationships. These are

a) For G' constant and K' stress dependent,

(29a)

and

b) For v' or G'/K' constant,

(29b)

where the shear stress  and the mean effective stress .

3.3 Total radial stress and excess pore pressures

As strains of finite magnitude are considered in the analysis, it will be in order to distinguish the

distance r of a point in the unstrained condition in the medium surrounding the cylindrical cavity

and the corresponding distance r' of the same material element in the strained condition, similarly

the cavity radius a before, and a' after the distortion has occurred. 

The finite (natural, logarithmic, or true) tangential strain εθ is given by
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(30)

Consequentely, the maximum shearing strain γ, which equals 2εθ, becomes

(31)

Since the expansion takes place in undrained and plane strain conditions, the following relation

(32)

holds among the radii. The equation of equilibrium

(33)

leads to (See, for example, Nadai 1950 and Yu 2000)

(34)

because  from Eqs. (31) and (32). The total radial stress σr is determined by

integration of Eq. (34), resulting in 

(35a)

At the cavity interface, the radial stress  is given by

(35b)

where , with u0 = initial pore water pressure, and  is the cavity shear

strain. Eq. (35) must be evaluated numerically because the function  is complex. The total

tangential stress σθ is obtained by subtracting 2τ from the total radial stress σr.

Although the finite (natural) strain theory is particularly attractive because of its physical inter-

pretation, prediction of the limit expansion pressure is not possible, for the upper limit of the

integral in Eq. (35b) must be extended to infinity. In such case, another strain definition has to be

used in order to form strain tensors and express the rheological properties of the material (Baguelin

et al. 1978). In particular, the Almansi (or Euler) strains can be employed. The Almansi tangential

strain α which is defined as

(36)

becomes

(37)

at the wall of the cavity.
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Combining Eqs. (32) and (37) shows that the shear strain . Consequently, Eqs.

(35) become

(38a)

and

(38b)

because . The limit expansion pressure σrf is found from Eq. (38b), by simply

extending the upper limit α0 of the integral to 0.5. Indeed, Eq. (37) indicates that α0 = 0.5 for

. In such case the shearing strain γa mobilized at the cavity interface is also equal to

infinity.

The limit pore pressure uf may be found by substracting the radial effective stress at critical state

 from the limit expansion pressure σrf.

Remarks

a) Initial isotropic stress state (K0 = 1)

As discussed previously, the principal effective stresses , ,  can be found directly from

the equation of the effective stress path in q − p' plane, because . The shear

stress . As for the shearing strain γ, it is given directly by Eqs. (29).

Consequently, the radial stresses σr and σra are obtained by substitution of the values of τ and γ in

Eqs. (35). It should be again noted that evaluation of the radial stresses must be carried out

numerically.

b) Finite strain approach

As mentioned above, the Almansi finite strain approach was used to obtain the limit expansion

pressure by simply extending the upper limit α0 of the integral in Eq. (38b) to α0 = 0.5. The finite

(natural, logarithmic, or true) strain approach expressed by Eq. (35b) could also have been used,

except that the upper limit γa of the integral would have had to be extended to . This could

have resulted in difficulties for the numerical evaluation of the integral in Eq. (35b). However,

because Eqs. (35b) and (38b) are equivalent they yield the same result, except that Eq. (38b) is

more easily amenable to numerical integration.

The shear strain γ used in the present study is based upon the finite (natural, logarithmic, or true)

strain approach, as expressed by Eq. (31). Because this approach is related to that of the Almansi

strain (i.e., Eq. (36)), it was quite simple to derive Eqs. (38) from Eqs. (35).

Concerning the Almansi strain approach used to obtain the limit expansion pressure, it was also

employed by Baguelin et al. (1978) for the analysis of the pressuremeter test in clay, and by De

Souza Coutinho (1990) for the analysis of the expansion of cylindrical cavities in sand.

Yu (2000) used the natural strain approach for the numerical analysis of the expansion of a

cylindrical cavity in London clay, which was modelled as modified Cam clay. However, in his

analysis, the vertical effective stress  was obtained from the other two stress components 

and , by using the plane strain condition in the vertical direction. This condition requires both

the elastic and plastic vertical strain increments to be zero.

As for Gibson and Anderson (1961), they used the small (engineering) strain approach for the

elastic phase of the deformation, and the Almansi strain approach for the plastic phase of deformation.

Finally, Palmer (1972) used the Almansi strain approach throughout the expansion process.

γ = ln 1/ 1 2α–( )[ ]

σr =  
0

α
∫

τdα

α
--------- + σri

σra =  
0

α
0

∫
τdα

α
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dγ/ e
γ

1–( ) = dα/α

a′/a = ∞

σrf′

σr′ σθ′ σz′
σz′ = 0.5 σr′ σθ′+( ) = p′

τ = σr′ σθ′–( )/2 = q/ 3

γa = ∞

σz′ σr′
σθ′
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4. Application and comparison

The method developed in the previous sections was applied to the problem analysed by Carter et

al. (1979) and Randolph et al. (1979). The results are compared firstly with those reported by these

authors which were obtained by means of the finite element method, and secondly with those

reported by Itasca (1995) which were determined using the finite difference method. 

Carter et al. (1979) and Randolph et al. (1979) considered the plane strain expansion of a

cylindrical cavity in remoulded Boston Blue clay, which was modelled as modified Cam clay. The

soil properties were: v = 2.16, K0 = 0.55, , , initial pore water pressure

u0 = 0, M = 1.2 (or φ' = 30o), λ = 0.15, κ = 0.03, Λ = (λ − κ)/λ = 0.8 and G' = 74Su with Su = undrained

shear strength.

For illustration purposes, the in situ effective normal stresses in the present study were given the

values, = 300 kPa, = 165 kPa, yielding = (1 + 2K0) /3 = 210 kPa, Szi =

= 90 kPa, qi = (1−K0) = 135 kPa and = 0.643. 

The effective stress path in q − p' plane is shown in Fig. 3. The hardening parameter  is found

to be 270 kPa The parameter  equals 257 kPa. The effective stress path begins at = 210 kPa,

qi = 135 kPa and ends at = 147.6 kPa, = 177.1 kPa. The undrained shear

strength Su would be equal to qf /  or 102.3 kPa, if and only if one retained the assumption that

 = 0.5 , with , ,  being the principal effective stresses at critical state.

For direct comparison with the results obtained by Carter et al. (1979) and Randolph et al. (1979),

the shear modulus G' was taken equal to 74 Su or 74 × 102.3 = 7570 kPa. Eqs. (18) and (19) were

used to obtain the principal effective stresses , , . For example, let it be required to

σri′ = σθi′ = 1.65Su σz′ = 3Su

σzi′ σri′ = σθi′ pi′ σzi′ σzi′−pi′
σzi′ ηi = qi/pi′

pc′
p0′ pi′

pf′ = 2
Λ–
p0′ qf = Mpf′

3

σzf′ σrf′ σθf′+( ) σrf′ σzf′ σθf′

σz′ σr′ σθ′

Fig. 3 Yield curve and effective stress path
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determine these stresses when p' = 180 kPa and q = 161.7 kPa. Application of Eq. (18) gives  =

230.5 kPa for = 90 kPa, M = 1.2, v = 2.16, k = 0.03, = 270 kPa, and = 210 kPa.

Eqs. (19) result in = 237.3 kPa and = 72.3 kPa. In addition, the shear stress 

= 82.5 kPa from Eq. (20). Also, the principal stresses at critical state are = 245.2 kPa,

= 156.5 kPa, and = 41.2 kPa, leading to = 102.0 kPa, as also postulated

by Carter et al. (1979) on the basis of Su = qf / . The vertical effective stress  is found to be

equal to 0.55 , which is different from the commonly assumed value of 0.5 ,

encountered in ideal plasticity. Furthermore, the factor which multiplies the sum 

depends on the in situ stress state: the lower the value of K0, the higher the value of this factor, as

shown next.

By normalizing the principal effective stresses with respect to the corresponding value of p', it

becomes possible to draw the effective stress path on the π-plane, that is, the plane which is

perpendicular to the space diagonal , as shown in Fig. 4. The coordinates x, y used to

draw the path are given by (See, for example, Mendelson 1968)

(39a)

(39b)

The effective stress path begins at point A (x = 0, y = 0.525), corresponding to = = 165 kPa,

= 300 kPa, and = 210 kPa. It ends at point B (x = 0.977, y = 0.074) for = 245.2 kPa,

= 156.5 kPa, = 41.2 kPa, and = 147.6 kPa. Also  = /2 = 102.0 kPa.

An effective stress path which begins at an isotropic stress state represented by 

= 257 kPa (i.e., for K0 = 1), is also shown in Fig. 4. The path begins at point A' (x = 0, y = 0) and

ends at point B'(x = 0.98, y = 0) corresponding to = 249.9 kPa, = = 147.6 kPa, and =

σz′
Szi = σzi′−pi′ pc′ pi′

σr′ σθ′ τ = σr′ σθ′–( )/2

σrf′
σzf′ σθf′ τf = σrf′ σθf′–( )/2

3 σzf′
σrf′+σθf′( ) σrf′+σθf′( )

σrf′+σθf′( )

σr′=σθ′=σz′( )

x = 
σr′ σθ′–

2p′
-------------------

y = 
2σz′ σθ′– σr′–

6p′
----------------------------------

σr′ σθ′
σzi′ pi′ σrf′
σzf′ σθ′ p′ = pf′ τf σrf′ σθf′–

σri′=σθi′=σzi′=pi′=p0′

σrf′ σzf′ pf′ σθf′

Fig. 4 Effective stress paths on π-plane
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45.3 kPa, implying that = 0.5  and = 102.3 kPa. In addition, the vertical

effective stress  is equal to 0.5  throughout the shearing process in this case.

An additional effective stress path corresponding to K0 = 0.4 or = 3(1 − K0)/(1 + 2K0) = 1 has

been included in Fig. 4 for comparison purposes. The initial stress state is represented by

= qi = 168.5 kPa for = 280.9 kPa, = = 0.4 = 112.4 kPa, and = 112.4

kPa. The principal effective stresses , ,  were again determined from Eqs. (18) and (19).

The stress path begins at point A'' (x = 0, y = 0.816) and ends at point B'' (x = 0.980, y = 0.117)

corresponding to = 239.3 kPa, = 158.1 kPa, = 34.8 kPa, and = 147.6 kPa. As a

result, = /2 = 102.3 kPa. Again, this is equal to = 102.3 kPa. In addition, =

0.58 .

Examination of the end points of the effective stress paths shown in Fig. 4 indicates that they are

all located on the same circle (i.e., a von Mises criterion), as they should be since qf is constant

(= 177.1 kPa) for these paths.

The maximum shear stress versus the finite (natural, logarithmic, or true) shear straincurve,

obtained for K0 = 0.55 is shown in Fig. 5. While the maximum shear stress, , was

calculated by means of Eq. (20), the shearing strain γ was found from Eq. (28a). The initial slope G'

of the curve is equal to 7570 kPa. The ultimate value of τ, that is, τf = 102.0 kPa. The deviator

stress at failure qf which corresponds to τf = 102.0 kPa is equal to 177.1 kPa, as shown in Fig. 3.

Such value of qf compares well with qf = 176. kPa deduced from Carter et al. (1979) and qf = 177.8

kPa found from the numerical results given by Itasca (1995).

In Fig. 5 is also shown for comparison purposes the stress-strain curve obtained from the elastic

perfectly plastic approach of Gibson and Anderson (1961), for G = 7570 kPa and τf = 102.0 kPa. It

appears that the latter relationship is relatively close to that obtained using modified Cam clay for

the case studied.

The total radial stress σra acting at the cavity interface was determined by means of Eq. (38b). It

is presented in normalized form, σra/τf, in Figs. 6 and 7 as function of the cavity ratio a'/a. This

σzf′ σrf′ σθf′+( ) τf = qf / 3

σz′ σr′ σθ′+( )
ηi

pi′ σzi′ σri′ σθi′ σzi′ Szi = σzi′−pi′
σr′ σθ′ σz′

σrf′ σzf′ σθf′ pf′
τf σrf′ σθf′– qf / 3 σzf′

σr′ σθ′+( )

τ = σr′ σθ′–( )/2

Fig. 5 Stress-strain curves for K0 = 0.55
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ratio, which is equal to  from Eq. (31), and to [1/(1 − 2α0)]
1/2 from Eq. (37), reaches a value of

2 for γa = 1.386 or α0 = 0.375. The normalized pore water pressure, u/τf, is also reported in Figs. 6

and 7. The results are also compared with the curves obtained by Carter et al. (1979) and Itasca

(1995) in Figs. 5 and 6, respectively. Examination of the relationships shown indicates that there is

good agreement between the results obtained in this study and the numerical analyses reported by

the latter investigators.

e
γ
a
/2

Fig. 6 Comparison of normalized pore pressure and total radial stress at the cavity interface with results
obtained by Carter et al. (1979)

Fig. 7 Comparison of normalized pore pressure and total radial stress at the cavity interface with results
reported by Itasca (1995)



34 Vincenzo Silvestri and Ghassan Abou-Samra

Fig. 8 presents the radial stress σra and the excess pore water pressure u generated at the cavity

interface as a function of the logarithm of the Almansi tangential strain α0. The limit values of the

radial stress σra and the pore pressure u acting at the cavity interface were determined by extending

the upper limit α0 of the integral in Eq. (38b) to α0 = 0.5, yielding σrf = 684 kPa or 6.74τf and

Fig. 8 Pore pressure and total radial stress response at the cavity interface as function of the Almansi
tangential strain α0

Fig. 9 Stress distributions after cavity expansion for a'/a = 2 and comparison with results obtained by Carter
et al. (1979)
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uf = 429 kPa or 4.33τf, with τf = 102.0 kPa. Such values compare well with  and

 (Carter et al. 1979), and  and  (Itasca 1995), respectively.

In Fig. 8 are also shown for comparison purposes, the corresponding relationships obtained using

the elastic perfectly plastic approach of Gibson and Anderson (1961), for G = 7570 kPa and τf = 102

kPa. Examination of the curves reported in Fig. 8 indicates that in the plastic region the excess pore

pressure given by the elastic perfectly plastic relationship is practically equal to that obtained from

modified Cam clay. In addition, the limit radial pressure σrf and the excess pore pressure uf which

are given by σrf = σri + Su ln[1 + ln(G/τf)] and uf = Su ln(G/τf) for the elastic perfectly plastic model

are equal, respectively, to σrf = 706.3 kPa or 6.92τf and uf = 439.3 kPa or 4.31 τf.

It is also interesting to observe that the slopes of the relationships deduced from modified Cam

clay shown in Fig. 8, that is, dσra/dlnα0 and du/dlnα0, are approximately equal to one for strains

 corresponding to  or .

Figs. 9 and 10 present the distributions of the effective stresses around the cylindrical cavity when

the cavity ratio a'/a = 2. The results are compared first with those obtained by Carter et al. (1979) in

Fig. 9, and second with those reported by Itasca (1995) in Fig. 10. The curves reported by Carter et

al. (1979) had to be shifted horizontally because the initial radius of the cavity was chosen to be r/

. Examination of the curves shown in these two figures indicates once again that the results

obtained in this study compare well with those reported by the latter authors. The good agreement is

due in large part to the fact that the end point of the stress path for K0 = 0.55 is relatively close to

that found for K0 = 1, as shown in Fig. 4.

5. Conclusions

The following main conclusions are drawn on the basis of the contents of this paper.

σrf 6.6≈ τf

uf 4.2≈ τf σrf 7.0≈ τf uf 4.5≈ τf

α0 0.025≥ a′/a 1.026≥ γa 0.051≥

3

Fig. 10 Stress distributions after cavity expansion for a'/a = 2 and comparison with results reported by Itasca
(1995)
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The principal stresses , ,  generated around an expanding cylindrical cavity are

determined from the modified Cam Clay stress-strain relationships. It is shown that the vertical

effective stress  is not equal, in general, to the mean of the other two principal stresses,  and

, at critical state. However,  is always equal to  when shearing commences

from an isotropic stress state.

The stress-strain relationships are applied to the expansion of a cylindrical cavity in remoulded

Boston Blue clay. The results compare well with those obtained from finite element and finite

difference studies by Carter et al. (1979) and Itasca (1995), respectively.
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Appendix

Derivation of Eqs. (28a) and (28b)
Eqs. (10a) and (10b) allow determination of the shear strain increment , that is,

(A1)

But, as  from Eq. (12), and

,

then Eq. (A1) becomes

(A2)

a) Equation 28a (G' constant)
Since K' = vp'/κ, Eq. (A2) reduces to

(A3)

Integration of this equation yields

(A4)

This is Eq. (28a).
b) Equation 28b (G'/K' constant) 
Since G' = 3(1 − 2v')K'/2(1 + v') and K' = vp'/κ, Eq. (A2) reduces to 

(A5)

Integration of this equation gives

(A6)

This is Eq. (28b).
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