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Abstract. A new prediction model is derived for the uplift capacity of suction caissons using a hybrid
method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA. The predictor
variables included in the analysis are the aspect ratio of caisson, shear strength of clayey soil, load point
of application, load inclination angle, soil permeability, and loading rate. The proposed model is developed
based on well established and widely dispersed experimental results gathered from the literature. To verify
the applicability of the proposed model, it is employed to estimate the uplift capacity of parts of the test
results that are not included in the modeling process. Traditional GP and multiple regression analyses are
performed to benchmark the derived model. The external validation of the GP/SA and GP models was
further verified using several statistical criteria recommended by researchers. Contributions of the parameters
affecting the uplift capacity are evaluated through a sensitivity analysis. A subsequent parametric analysis
is carried out and the obtained trends are confirmed with some previous studies. Based on the results, the
GP/SA-based solution is effectively capable of estimating the horizontal, vertical and inclined uplift
capacity of suction caissons. Furthermore, the GP/SA model provides a better prediction performance than
the GP, regression and different models found in the literature. The proposed simplified formulation can
reliably be employed for the pre-design of suction caissons. It may be also used as a quick check on
solutions developed by more time consuming and in-depth deterministic analyses.

Keywords: suction caissons; uplift capacity; genetic programming; simulated annealing; nonlinear model-
ing.

1. Introduction

A suction caisson is a steel tube closed at the top and open at the bottom. It serves as an anchor

by penetrating the seafloor bottom sediments. Suction caissons are the most widely-used anchorage

systems in offshore structures. This is because of their relatively easier installation process and

lower cost compared with the conventional driven pile foundations (Colliat et al. 2002). In addition,

suction caissons provide greater resistance to lateral loads than other alternatives. A typical sketch
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of a suction caisson is shown in Fig. 1. The first step of penetration of suction caisson into the

seabed is due to its self weight. The rest penetration is made by means of suction created by

pumping water out of the caisson.

These systems, also called “buckets”, “skirted foundation” and “suction anchors”, were first introduced

by Senpere and Auvergne (1982) as mooring anchors for a storage tanker in an offshore project in

Denmark. Some of the suction caissons design considerations are listed below:

• Submerged weight of caisson and ballast if applied

• Suction pressure created across the caisson under tensile loading

• Weight of the soil plug inside the caisson

• Skin friction

• Soil shear strength at the caisson base

Some of the following advantages make the use of suction caissons reasonable:

i. Suction caissons are simple steel fabrications that can be designed to be lighter than the steel 

required for an equivalent pile foundation. 

ii. The installation method is potentially much quicker and simpler than that for the other solutions. 

A foundation incorporation suction caisson can be deployed and installed within a matter of 

hours as a single simple operation. The installation is not significantly weather dependent. 

iii. The installation method requires only a simple marine spread including a crane of sufficient 

capacity to lift units into place. Additional costs of ancillary equipment, such as pile driving 

hammer spreads, grouting spreads and consumables required by the other installation methods, 

can remarkably be saved.

Uplift capacity is a critical issue in the performance analysis of suction caissons. The increased

use of suction caissons implies the need to develop comprehensive mathematical models to assess

their uplift capacity. Genetic algorithm (GA) is a powerful stochastic search and optimization method

based on the principles of genetics and natural selection. GA has been shown to be suitably robust

Fig. 1 A typical sketch of suction caisson
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for a wide variety of complex geotechnical problems (e.g. Simpson and Priest 1993, McCombie and

Wilkinson 2002, Levasseur et al. 2009). Genetic programming (GP) (Koza 1992, Banzhaf et al. 1998)

is an alternative approach for behavior modeling of geotechnical engineering tasks. GP is a developing

subarea of evolutionary algorithms inspired from the Darwin’s evolution theory. It may generally be

defined as a specialization of GA where the solutions are computer programs rather than fixed-

length binary strings. The main advantage of GP over the conventional statistical methods and other

soft computing tools is its ability to generate prediction equations without assuming prior form of

the existing relationship. The developed equations can easily be manipulated in practical circum-

stances. In contrast with artificial neural networks (ANNs) and GAs, application of GP in the field

of civil engineering is quite new and original. Classical GP and its variants have recently been used

to derive greatly simplified formulas for civil engineering problems (e.g. Johari et al. 2006, Javadi

et al. 2006, Baykasoglu et al. 2008, Cabalar and Cevik 2009, Alavi and Gandomi 2010, Gandomi et

al. 2010). Recent studies have also shown that the GP-based techniques possess some obvious

superiority than ANNs in dealing with geotechnical problems (e.g., Rezania and Javadi 2007,

Kayadelen et al. 2009). 

Simulated annealing (SA) is a general stochastic search algorithm used for solving optimization

problems. The Metropolis algorithm, the foundation of SA, was proposed by Metropolis et al.

(1953) to simulate the annealing process. This algorithm was first applied to optimization problems

by Kirkpatrick et al. (1983) and Cerny (1985). SA is very useful for solving several types of

optimization problems with nonlinear functions and multiple local optima. Folino et al. (2000) and

Deschaine et al. (2000) combined GP and SA to make a hybrid algorithm with better efficiency.

The SA strategy was used to decide the acceptance of a new individual. It was shown that

introducing this strategy into the GP process improves the profitably of GP. Applications of the

hybrid GP/SA technique to solve problems in civil engineering are conspicuous by their near

absence. Recently, Alavi et al. (2010a) utilized this hybrid method to formulate the flow number of

asphalt mixes.

The GP/SA approach is useful in characterizing the complex behavior of suction caissons by

directly extracting the knowledge contained in the experimental data. The main purpose of this

paper is to utilize GP/SA to obtain a generalized relationship between the uplift capacity of suction

caissons and several influencing parameters. A reliable database of previously published experimental

results is used for developing the model. The performance of the GP/SA model is further compared

with that of the tree-based GP, regression and several models found in the literature. 

2. Review of previous studies

Several investigations on the complex behavior of suction caissons are reported in the literature.

On the basis of these researches, different empirical and theoretical models are proposed. A large

number of field tests on small-scale and full-scale caissons are performed to determine the caissons

installation characteristics and their axial and lateral load capacities (e.g. Hogervorst 1980, Tjelta

1995). Geotechnical centrifuge tests are carried out on model suction caissons for simulating the

stress conditions and soil response at field scale (Clukey et al. 1995, Randolph et al. 1998).

Laboratory tests are conducted by some researchers on model suction caissons under 1 g and

controlled laboratory conditions (e.g. El-gharbawy et al. 1999, Rao et al. 1997, Byrne and Houlsby

2002). Despite providing valuable geotechnical information, the field tests and laboratory testing of
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model caissons are quite costly, time-consuming and subjected to various limitations.

Detailed studies are done to investigate the suction caisson behavior involving extensive axisym-

metric and three-dimensional numerical simulations (e.g., Erbrich and Tjelta 1999, Sukumaran and

McCarron 1999, Deng and Carter 1999a, b, 2002, Maniar 2000). Finite element method (FEM)

analysis was the approach considered to estimate the capacity of suction caisson under different

loading and drainage conditions. Recently, plastic limit analysis (PLA) has been applied to the

analysis of suction caissons subjected to a variety of loading conditions. Aubeny et al. (2001, 2003,

2005) and Aubeny and Murff (2005) applied PLA to obtain simplified limit solutions for the

capacity of suction caissons. The ultimate load capacity calculated from PLA provides useful

benchmarks for evaluating the accuracy of the FEM solutions. 

There are some other researches that deal with the estimation of the uplift capacity of suction

caissons using artificial neural network (ANN). Rahman et al. (2001) employed a three-layered

back-propagation ANN with Levenberg-Marquardt optimization for the prediction of uplift capacity.

Pai (2005) proposed a hybrid neuro-genetic network (NGN) model for the uplift capacity prediction.

In the NGN model, the multilayer feed forward neural network was used as its host architecture and

genetic algorithms was employed to determine its weights. Recently, Rezania et al. (2008) presented

a new evolutionary polynomial regression (EPR) method for the analysis of the uplift capacity of

suction caissons. A transparent and structured representation of the system was generated using

EPR.

3. Genetic programming

GP is a symbolic optimization technique that creates computer programs to solve a problem using

the principle of Darwinian natural selection (Koza 1992). The breakthrough in GP then came in the

late 1980s with the experiments on symbolic regression. GP was introduced by Koza (1992) as an

extension of GA. Most of the genetic operators used in GA can also be implemented in GP with

minor changes. The main difference between GP and GA is the representation of the solution. GA

creates a string of numbers that represent the solution. The GP solutions are computer programs

represented as tree structures and expressed in a functional programming language (like LISP)

(Koza 1992). In other words, in GP, the evolving programs (individuals) are parse trees that can

vary in length throughout the run rather than fixed-length binary strings. Essentially, this is the

beginning of computer programs that program themselves (Koza 1992). Since GP often evolves

computer programs, the solutions can be executed without post-processing, while coded binary

strings typically evolved by GA require post-processing. The traditional optimization techniques,

like GA, are generally used in parameter optimization to evolve the best values for a given set of

model parameters. GP, on the other hand, gives the basic structure of the approximation model

together with the values of its parameters (Javadi and Rezania 2009). GP optimizes a population of

computer programs according to a fitness landscape determined by a program ability to perform a

given computational task. The fitness of each program in the population is evaluated using a fitness

function. Thus, the fitness function is the objective function GP aims to optimize (Torres et al.

2009).

This classical GP approach is referred to as tree-based GP. A population member in tree-based GP

is a hierarchically structured tree comprising functions and terminals. The functions and terminals

are selected from a set of functions and a set of terminals. For example, the function set F can
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contain the basic arithmetic operations (+, −, ×, /, etc.), Boolean logic functions (AND, OR, NOT,

etc.), or any other mathematical functions. The terminal set T contains the arguments for the

functions and can consist of numerical constants, logical constants, variables, etc. The functions and

terminals are chosen at random and constructed together to form a computer model in a tree-like

structure. An example of a tree representation of a GP model is illustrated in Fig. 2.

Creation of the initial population is a blind random search for solutions in a large space of

possible solutions. Once a population of models is created at random, the GP algorithm evaluates

the individuals, selects individuals for reproduction, and generates new individuals by mutation,

crossover and direct reproduction (Koza 1992). During the crossover procedure, a point on a branch

Fig. 2 Tree representation of a GP model ( )X1 3/X2+( )

Fig. 3 Typical crossover operation in GP

Fig. 4 Typical mutation operation in GP
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of each solution (program) is selected at random and the set of terminals and/or functions from each

program are then swapped to create two new programs (see Fig. 3). The evolutionary process

continues by evaluating the fitness of the new population and starting a new round of reproduction

and crossover. During this process, the GP algorithm occasionally selects a function or terminal

from a model at random and mutates it (see Fig. 4). The best program that appeared in any

generation, the best-so-far solution, defines the output of the GP algorithm (Koza 1992). In the

following subsections, the coupled algorithm of GP and SA, GP/SA, is briefly described. 

3.1 Hybrid genetic programming-simulated annealing algorithm 

In this paper, GP with a SA-based selection strategy is employed for developing the prediction

models. In this coupled algorithm, the SA strategy is used to select new individuals (Folino et al.

2000, Deschaine et al. 2000, Francone 2004). The GP system used in this study is linear genetic

programming (LGP) (Brameier and Banzhaf 2001, 2007). LGP is a new subset of GP with a linear

structure similar to the DNA molecule in biological genomes. The main characteristic of LGP in

comparison with the traditional tree-based GP is that expressions of a functional programming

language (like LISP) are substituted by programs of an imperative language (like C/C++) (Brameier

and Banzhaf 2001). Fig. 5 presents a comparison of the program structures in LGP and tree-based

GP. As shown in Fig. 5(a), a linear genetic program can be seen as a data flow graph generated by

multiple usage of register content. That is, on the functional level the evolved imperative structure

denotes a special directed graph. As can be observed from Fig. 5(b), in tree-based GP, the data flow

is more rigidly determined by the tree structure of the program (Brameier and Banzhaf 2001). In the

LGP system utilized here, an individual program is interpreted as a variable-length sequence of

simple C instructions.

LGP allows structurally non-effective codes to coexist with effective codes in programs (Brameier

and Banzhaf 2001). An instruction of a linear genetic program is called “effective” at its position if

it affects the program output. The non-effective codes in genetic programs represent instructions

without any influence on the program behavior. These codes act as a protection reducing the effect

of variation on the effective code. Because of the program structure in LGP, the non-effective codes

can be detected and eliminated much easier than in tree-based GP and other comparable interpreting

systems (Francone and Deschaine 2004). Thus, the linear genetic code is interpreted more efficiently.

Another feature of the LGP system is that the non-effective codes can be removed before a linear

genetic program is executed during fitness calculation. This is done by copying all effective

instructions to a temporary program buffer and results in an enormous acceleration in the LGP

Fig. 5 Comparison of the GP program structures: (a) LGP, (b) Tree-based GP (after Alavi et al. 2010b)
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execution speed. Moreover, almost all computer architectures represent computer programs in a

linear fashion. In other words, computers do not naturally run tree-shaped programs. Hence, slow

interpreters have to be used as part of tree-based GP. Conversely, by evolving the binary bit patterns

in LGP, the use of an expensive interpreter (or compiler) is avoided. Consequently, LGP can run

several orders of magnitude faster than comparable interpreting systems (Poli et al. 2007). The

enhanced speed of LGP, and therefore GP/SA, permits conducting many runs in realistic timeframes.

This leads to deriving consistent, high-precision models with little customization (Francone and

Deschaine 2004, Deschaine et al. 2000).

3.1.1 The SA algorithm

SA makes use of the Metropolis algorithm (Metropolis et al. 1953) for the computer simulation of

annealing. Annealing is a process in which a metal is heated to a high temperature and then is

gradually cooled to relieve thermal stresses. During the cooling process, each atom takes a specific

position in the crystalline structure of the metal. By changing the temperature, this crystalline

structure changes to a different configuration. An internal energy, E, can be measured and assigned

to each state of crystalline structure of the metal which is achieved during the annealing process. At

each step of the cooling process, if the temperature does not decrease quickly the atoms are allowed

to adjust to a stable equilibrium state of least energy. It is evident that changing of the crystalline

structure of a metal, through the annealing, is associated with a changing of the internal energy as

ΔE. However, as the metal temperature drops down gradually, the overall trend of changing internal

energy follows a decreasing process but sometimes the energy may increase by chance. The

probability of acceptance of an increase in internal energy by ΔE is given by Boltzmann's

probability distribution function as follows

(1)

where T is the temperature of the metal in Kelvin’s temperature scale and K is the Boltzmann's

constant. The crystalline structure of a metal achieves near global minimum energy states during the

process of annealing. This process is simulated by SA to find the minimum of a function in a

certain design space. The objective function corresponds to the energy state and moving to any new

set of design variables corresponds to a change of the crystalline structural state.

3.1.2 The GP/SA algorithm

Considering the above explanations for GP and SA, the coupled GP/SA algorithm uses the

following main steps to evolve a computer program (Deschaine et al. 2000, Francone 2004):

I. A single program is initially created at random. This is the “parent” program for the first

repetition of the learning cycle.

II. The parent program is copied.

III. A search operator, crossover or mutation, transforms the copy of the parent program. The

transformed copy is called “child” program or “offspring” program. The crossover operator

produces two children programs. But only one of these programs is compared with the parent

as a candidate to replace the parent program. 

IV. The fitness value of the both parent and child program is calculated.

V. Based on the fitness value of the child and parent program, the SA algorithm decides whether

to replace the parent program with the child program. If the child has better fitness than the

P ΔE( ) = e

ΔE–

KT
----------
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parent, the child always replaces its parent. If the child has worse fitness than the parent, the

child replaces the parent probabilistically. The probability of replacement depends on how

much worse the fitness of the child is than the parent and also on the SA temperature, T. As

the annealing process continues, T is gradually reduced at each nth iteration. This means that,

for the program, the probability of replacing a worse child to a better parent gets lower and

lower as the run continues. If the child program replaces the parent program then the child

program becomes the new parent for the next cycle. Alternatively, if the parent program is not

replaced by the child, it remains as the parent program for the next cycle. 

VI. If the termination or convergence conditions are satisfied the process is terminated. Otherwise,

the process is continued going step III.

A comprehensive description of the GP/SA algorithm involved parameters can be found in

(Francone 2004).

4. Modeling of uplift capacity of suction caissons

The suction caisson capacity is provided due to the active and passive pressure mobilized as a

result of the horizontal translation of the caisson. In deeper suctions, the lateral resistance is

afforded by soil flow around the caisson. Therefore, the obtained holding capacity depends on the

suction pressure applied, soil conditions at site, load attachment point, and anchor geometry. This

paper considers the feasibility of using the GP/SA approach to obtain a prediction equation for the

uplift capacity. The most important factors representing the uplift capacity behavior were selected

based on the literature review (Deng and Carter 1999a, b, 2002, Rahman et al. 2001, Pai 2005,

Rezania et al. 2008) and after a trial study. Consequently, the uplift capacity formulation was

considered to be as follows

(2)

where,

Q (kPa) : Uplift capacity of suction caisson

L/d : Embedded length of caisson to its diameter

D/L : Relative depth of lug to which caisson force is applied, where D is the distance from

the lateral force point of application to the soil surface

θ (Rad) : Angle that chain force makes with the horizontal given by

(3)

Su (kPa): Undrained soil shear strength at depth of caisson tip

Tk = k/v : Non-dimensional loading rate parameter, where k is the soil permeability and v is the

loading rate (steady velocity) at which caisson is pulled from the ground

L/d, D/L and θ represent the caisson geometry and load attachment point. Su and Tk denote the

soil conditions at the site. The significant influence of these parameters in determining Q is well

understood. As the embedment length of the caisson (L/d) increases, the skin friction component

proportionately increases due to the inclination in the caisson and passive earth pressure. The

Q = f
L

d
----, 

D

L
----, sin θ( ), Su, Ln Tk( )⎝ ⎠

⎛ ⎞

θ = tan
1– Vertical components of the ultimate inclined load

Horizontal components of the ultimate inclined load
------------------------------------------------------------------------------------------------------------------------------⎝ ⎠

⎛ ⎞
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resistance changes from the passive earth pressure to skin friction by changing the inclination (θ )

from 0o to 90o. For the inclined loading conditions, both components contribute to the uplift

capacity (Rao et al. 2006). The effect of the load application point (D/L) on the uplift capacity has

rarely been investigated by researchers. Deng and Carter (2000) showed that the maximum inclined

uplift capacity of suction caissons is usually obtained when the load is applied at a depth of

approximately 0.63 times the length of the caisson. In clayey types of soil, increases in Su cause an

improvement in the skin friction (due to increase in cohesion) and passive resistance. Deng and

Carter (1999a) defined a term, called bottom breakout resistance factor, for the evaluation of the

uplift capacity of suction caisson under partially drained conditions. This term incorporates the

effect of Tk as an indicator of the resistance developed at the bottom of the caisson. 

The best model was chosen on the basis of a multi-objective strategy as follows:

i. The simplicity of the model, although this was not a predominant factor.

ii. Providing the best fitness value on the learning set of data.

iii. Providing the best fitness value on a validation set of data.

The first objective can be controled by the user through the parameter settings (e.g., program

size). The other objectives were controlled via coefficient of determination (R2), mean squared error

(MSE) and mean absolute error (MAE). R2, MSE and MAE are given in the form of formulas as

follows

 (4)

 (5)

 (6)

4.1 Experimental database and data preprocessing 

The database contains 62 experimental test results from 12 independent studies. It includes

laboratory model-scale, centrifugal and field test results gathered by Rahman et al. (2001). The data

used in this study are for the clayey soils covering a range of loading rates. The slow and high rates

respectively correspond to fully drained conditions and undrained loading cases. The intermediate

loading rates correspond to partial drainage conditions. The database consists of the measurements

of several variables such as L/d, D/L, θ (Rad), Su (kPa), Tk, and Q (kPa). To visualize the distribution

of the samples, the data are presented by histogram plots (Fig. 6). The complete list of the data is

presented in Table A.1 of Appendix A.

Overfitting is one of the principal problems in machine learning generalization. It is a case in

which the error on the learning set is driven to a very small value, but when new data is presented

to the model, the error is large. An efficient approach to prevent overfitting is to test other

R
2
 = 

Σi 1=

n
hi hi–( ) ti t

i–( )( )
2

Σi 1=

n
hi hi–( )

2

Σi 1=

n
ti t

i–( )
2

-----------------------------------------------------------

MSE = 

hi ti–( )2 
i 1=

n

∑

n
---------------------------

MAE = 

hi ti–  
i 1=

n

∑

n
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individuals from the run on a validation set to find a better generalization (Banzhaf et al. 1998).

This technique was used in this study for improving the generalization of the models. For this

purpose, the available data sets were randomly divided into learning, validation and testing subsets.

The learning data were used for training (genetic evolution). The validation data were used to

specify the generalization capability of the evolved programs on the data that were not included in

the learning process (model selection). In other words, the learning and validation data sets were

used to select the best evolved programs and included in the training process. Thus, they were

categorized into one group referred to as training data. The testing data were finally used to

measure the performance of the models obtained by GP/SA on data that played no role in building

the models. This technique provides decent results as long as the models perform well on the

learning data sets (Banzhaf et al. 1998). In order to obtain a consistent data division, several

combinations of the training and testing sets were considered. Of the 62 data, 41 data vectors were

used for the learning process and 10 data were taken as the validation data. The remaining 11 sets

were used for the testing of the derived models.

Some of the employed variables may be fundamentally interdependent. The first step in the

analysis of interdependency of the data is to make a careful study of what it is that these variables

are measuring, noting any highly correlated pairs. High positive or negative correlation coefficients

Fig. 6 Histograms of the variables used in the model development
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between the pairs may lead to poor performance of the models. This interdependency can cause

problems in analysis as it will tend to exaggerate the strength of relationships between the variables.

This is a simple case commonly known as the problem of multi-collinearity (Dunlop and Smith

2003). Thus, the correlation coefficients between all possible pairs were determined. The correlation

coefficients between the pairs are shown in Table 1. As can be seen in this table, there are not high

correlations between the predictor variables.

Although normalization is not strictly necessary in the GP-based analyses, better results are

usually reached after normalizing the variables. This is mainly due to influence of unification of the

variables, no matter their range of variation. Thus, both input and output variables were normalized

between 0 and 1. Selection of the optimal method for normalizing the data was based on controlling

several normalization methods (Swingler 1996). The ranges, normalized values and statistics of

different input and output parameters involved in the model development are given in Table 2.

4.2 GP/SA-based formulation for uplift capacity of suction caissons

The available database was used for the development of the GP/SA prediction model. Various

parameters are involved in the GP/SA predictive algorithm. The parameter selection will affect the

model generalization capability of GP/SA. The parameter settings are shown in Table 3. Several

runs were conducted to come up with a parameterization of GP/SA that provided enough robustness

and generalization to solve the problem. The GP/SA parameters were changed for different runs.

The proper number of temperature levels depends on the number of possible solutions. It sets the

number of temperature levels that the GP/SA algorithm uses until the run is terminated. Number of

iterations per temperature level sets the number of times a new child program is created from the

Table 1 Correlation coefficients between all pairs of the explanatory variables

Variable L/d Su Ln(Tk) sin(θ) D/L

L/d 1.000 −0.091 −0.325 0.225 0.366
Su −0.091 1.000 −0.438 −0.668 0.099
Ln(Tk) −0.325 −0.438 1.000 0.289 −0.204
sin(θ) 0.225 −0.668 0.289 1.000 −0.417
D/L 0.366 0.099 −0.204 −0.417 1.000

Table 2 Descriptive statistics of the variables used in the model development

Parameters Range Standard deviation Skewness Kurtosis Mean Normalized form

Inputs
L/d 0.23−4 0.77 1.09 2.86 1.59 (L/d)/5
D/L 0−0.69 0.17 2.89 7.07 0.06 D/L
θ (Rad) 0−π /2 0.60 −1.58 0.58 0.4π sin(θ)
Su (kPa) 1.8−38 10.0 1.35 1.03 11.75 Su/50
Tk E-5−0.04 0.01 4.25 16.8 22E-4 Ln(Tk)/−15

Output
Q (kPa) 10.1–387.2 81.67 1.74 3.51 90.06 Q / 400
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parent program at each temperature level. Three levels were set for the number of temperature

levels parameter and two levels were used for the number of iterations. Temperature in the SA

algorithm is just a number that controls the probability that a mutated child program will replace the

parent program. Start and stop temperatures are respectively the values that a program uses for

temperatures at the first and last temperature levels in a run. The initial and maximum program size

parameters directly influence the size of the search space and the number of solutions explored

within the search space. These parameters are measured in bytes. Two optimal values were set for

the maximum program size as tradeoffs between the running time and the complexity of the

evolved solutions. It is notable that the crossover rate parameter in the GP/SA algorithm sets the

balance between the uses of the search operators (crossover and mutation). A value of 50% means

that 50% of time the used search operator will be the crossover operator. The mutation operator will

therefore be employed in the other 50% of time by the GP/SA algorithm (Francone 2004). Two

levels were considered for the crossover rate. Basic arithmetic operators and mathematical functions

were also utilized to get the optimum models. The values of the other involved parameters were

selected based on some previously suggested values (Alavi et al. 2010a) and also after performing

many preliminary runs and checking the performance. There are 3 × 2 × 2 × 2 = 24 different

combinations of the parameters. All of these combinations were tested and 10 replications for each

combination were performed. Therefore, the total number of runs was equal to 24 × 10 = 240. The

GP/SA algorithm was implemented using Discipulus (Conrads et al. 2004) software. In order to

find models with minimum error, each run was performed with large numbers of temperature levels

and iterations. The program was run until there was no longer significant improvement in the

performance of the models or the runs terminated automatically. Each run was observed while in

progress for overfitting. For this aim, situations were checked in which the fitness of the samples

for the learning of GP/SA was negatively correlated with the fitness on the validation data sets. To

Table 3 Parameter settings for the GP/SA algorithm

Parameter Settings

Number of temperature levels 1000, 3000, 10000
Number of iterations per temperature level 1000, 2000
Start temperature 5
Stop temperature 0.01
Fitness function error type Squared error 
Crossover rate (%) 50, 95
Homologous crossover (%) 95
Probability of randomly generated parent in crossover (%) 99
Block mutation rate (%) 30
Instruction mutation rate (%) 30
Data mutation rate (%) 40
Offspring choice rate (%) 50
Replacement scaling factor 1
Maximum program size 128, 256
Initial program size 80
Function set +, −, ×, /, , sin, cos 
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evaluate the fitness of the evolved programs, the average of the squared raw errors was used. For

the runs showing signs of overfitting, the GP/SA parameters were progressively changed so as to

reduce the computational power available to the GP/SA algorithm until the observed overfitting was

minimized. The resulting run was then accepted as the production run. The programs with the best

performance on both of the learning and validation data sets were finally selected as the outcomes

of each run.

The GP/SA-based formulation of the uplift capacity of suction caissons, Q, is as given below

(7)

where, 

x1 = (L/d)/5

x2 = D/L

x3 = sin(θ)

x4 = Su/50

x5 = Ln(Tk)/−15

Comparisons of the measured versus predicted uplift capacity values are shown in Fig. 7. The

number of temperature levels and iterations were respectively equal to 3000 and 1000 for the

optimal run. This run took 5 min and 32 s on a Pentium 4 personal computer with 3.00 GHz of

processor speed and 1 Gb of memory. The number of the computer programs evolved and evaluated

by the GP/SA algorithm during the conducted run was equal to 6,015,479. The final GP/SA

program obtained at the end of the learning process in C++ is also given in Appendix B. This

program can be run in any C++ environment. The resulting code may be linked to the optimizer

and compiled or it may be called from the optimization routines (Deschaine 2000). 

4.3 Tree-based GP-based formulation for uplift capacity of suction caissons

A tree-based GP analysis was performed to compare the hybrid GP and SA technique (GP/SA)
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Fig. 7 Measured versus predicted uplift capacity using the GP/SA model: (a) training data, (b) testing data
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with a classical GP approach. After developing and controlling several models with different

combinations of the input parameters, the best tree-based GP model was selected and presented as

the optimal model. Various parameters involved in the traditional GP predictive algorithm are

shown in Table 4. The parameters were selected based on some previously suggested values (Johari

et al. 2006) and also after a trial and error approach. A large number of generations were tested to

find a model with minimum error. A tree-based GP software, GPLAB (Silva 2007) in conjunction

with subroutines coded in MATLAB, was used in this study. 

The formulation of the uplift capacity of suction caissons, Q, for the best results by the tree-based

GP algorithm, is as given below

Table 4 Parameter settings for the tree-based GP algorithm

Parameter Settings

Function set +, −, ×, /
Population size 100-1000
Maximum tree depth 10
Total generations 4000
Initial population Ramped half-and-half
Sampling Tournament
Expected no. of offspring method Rank 89
Fitness function error type linear error function
Termination Generation 40
Minimum probability of crossover 0.1
Minimum probability of mutation 0.1
Real max level 30
Survival mechanism Keep best

Fig. 8 Measured versus predicted uplift capacity using the tree-based GP model: (a) training data, (b) testing
data
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(8)

in which x1, ..., x5 respectively represent L/d, D/L, θ, Su, and Tk in their normalized forms shown in

Table 2. Comparisons of the measured versus predicted uplift capacity using the tree-based GP

model are shown in Fig. 8. 

4.4 LSR-based formulation for uplift capacity of suction caissons

A multivariable least squares regression (LSR) (Ryan 1997) analysis was performed to have an

idea about the predictive power of the GP/SA technique, in comparison with a classical statistical

approach. The method of LSR is extensively used in regression analysis primarily because of its

interesting nature. Under certain assumptions, LSR has some attractive statistical properties that

have made it as a member of the most powerful and popular methods of regression analysis. LSR

minimizes the sum-of-squared residuals for each equation, accounting for any cross-equation

restrictions on the parameters of the system. If there are no such restrictions, this technique is

identical to estimating each equation using single-equation ordinary least squares. Eviews software

package (Maravall and Gomez 2004) was used to perform the regression analysis. The major task

was to determine the LSR-based equation connecting the input variables to the output variable as

(9)

where a denotes coefficient vector. The LSR-based formulation of Q in terms of L/d, D/L, θ, Su and

Tk is as given below

(10)

Comparisons of the measured versus predicted uplift capacity using the LSR model are shown in

Fig. 9. 
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Fig. 9 Measured versus predicted uplift capacity using the LSR model: (a) training data, (b) testing data
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5. Performance analysis and model validity

Based on a logical hypothesis (Smith 1986, Kasabov 1996), if a model gives a correlation

coefficient (R) > 0.8, and the error (e.g., MSE or MAE) values are at the minimum, there is a strong

correlation between the predicted and measured values. The model can therefore be judged as very

good. It can be observed from Fig. 7 that the GP/SA model with high R and low MSE and MAE

values predicts the target values with a high degree of accuracy. The performance of the model on

the testing data is better than that on the training (learning and validation) data. The GP/SA model

has produced better results than the tree-based GP model. This indicates that applying the SA

strategy to the GP process (GP/SA) has improved the efficiency of the traditional GP. The GP/SA

model and also the tree-based GP solution significantly outperform the LSR-based model. It is

notable that empirical modeling using the statistical regression techniques has significant limitations.

Most commonly used regression analyses can have large uncertainties. It has major drawbacks

pertaining to the idealization of complex processes, approximation, and averaging widely varying

prototype conditions. In most cases, the best models developed using the commonly used statistical

approaches are obtained after controlling a few equations established in advance. Thus, such models

cannot efficiently consider the interactions between the dependent and independent variables. On the

other hand, GP/SA introduces completely new characteristics and traits. One of the major

advantages of the GP/SA approach over the traditional regression analyses is its ability to derive

explicit relationships without assuming prior forms of the existing relationships. The best solutions

(equations) evolved by this technique are determined after controlling numerous preliminary models,

even millions of linear and nonlinear models. For instance, the proposed model for the estimation of

the uplift capacity was selected among over 1,102,983,797 programs evolved and evaluated by the

GP/SA method during the conducted 240 runs. 

It is known that the models derived using the ANN, GP/SA, or other GP-based approaches, in

most cases, have a predictive capability within the data range used for their calibration. Thus, the

amount of data used in the training process of these techniques is an important issue, as it bears

heavily on the reliability of the final models. To cope with this limitation, Frank and Todeschini

(1994) argue that the minimum ratio of the number of objects over the number of selected variables

for model acceptability is 3. It is also suggested that considering a higher ratio equal to 5 is safer. In

the present study, this ratio is much higher and is equal to 62/5 = 12.4. Furthermore, new criteria

recommended by Golbraikh and Tropsha (2002) were checked for the external validation of the GP/

SA and tree-based GP models on the testing data sets. It is suggested that at least one slope of

regression lines (k or k') through the origin should be close to 1. Also, the performance indexes of

m and n should be lower than 0.1. Recently, Roy and Roy (2008) introduced a confirm indicator of

the external predictability of models (Rm). For Rm > 0.5, the condition is satisfied. Either the squared

correlation coefficient (through the origin) between predicted and experimental values (Ro2), or the

coefficient between experimental and predicted values (Ro'2) should be close to R2, and to 1. The

validation criteria and the relevant results obtained by the models are presented in Table 5. As it is

seen, the models satisfy the required conditions. The above facts ensure that the derived models, in

particular the GP/SA formulation, are strongly valid, have the prediction power and are not chance

correlations. 

Performance statistics of the uplift capacity prediction models obtained by means of GP/SA,

traditional GP, LSR, ANN (Rahman et al. 2001), NGN (Pai 2005), EPR (Rezania et al. 2008) and

FEM (Deng and Carter 1999a, b, 2002) for the testing data sets are presented in Table 6. A
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comparison of the predictions made by these models is also visualized in Fig. 10. The FEM-based

equations used to generate independent predictions of the uplift capacity are summarized in (Rahman

et al. 2001). It can be observed from Table 6 and Fig. 10 that the proposed GP/SA solution has a

better generalization capability than the FEM, ANN, NGN and EPR models. The MAE value of the

GP/SA model is slightly higher than that of the FEM-based solution. 

The task faced by GP/SA and other GP-based approaches is mainly the same as that faced by the

ANN-based methods. GP and ANNs are machine learning techniques that can effectively be applied

to the classification and approximation problems. They directly learn from raw experimental (or

field) data presented to them in order to extract the subtle functional relationships among the data,

even if the underlying relationships are unknown or the physical meaning is difficult to be

explained. Contrary to these methods, most conventional empirical and statistical methods like FEM

need prior knowledge about the nature of the relationships among the data. Classical constitutive

models rely on assuming the structure of the model in advance, which may be suboptimal.

Therefore, the GP and ANN-based approaches are well-suited to modeling the complex behavior of

most geotechnical engineering problems with extreme variability in their nature (Shahin 2009). In

spite of similarities, there are some important differences between GP and ANNs. ANNs suffer

from some shortcomings including lack of transparency and knowledge extraction. That is, they do

Table 5 Statistical parameters of the models for external validation

Item Formula Condition GP/SA Traditional GP

1 0.8 < R 0.998 0.982

2 0.85 < K < 1.15 1.040 1.114

3 0.85 < K' < 1.15 0.957 0.880

4 m < 0.1 −0.002 −0.012

5 n < 0.1 −0.001 −0.006

6 0.5 < Rm 0.954 0.863

where , 0.997 0.976

, 0.996 0.971

hi: Actual output value for the ith output; ti: Predicted output value for the ith output; : Average of actual
outputs; : Average of predicted outputs; n: Number of sample.
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not explicitly explain the underlying physical processes. The knowledge extracted by ANNs is

stored in a set of weights that cannot properly be interpreted. Due to the large complexity of the

network structure, ANNs do not give a transparent function relating the inputs to the corresponding

outputs. The main advantage of GP over ANNs is that GP generates a transparent and structured

representation of the system being studied. An additional advantage of GP over ANNs is that

determining the ANN architecture is a difficult task. The structure and network parameters of ANNs

(e.g. number of inputs, transfer functions, number of hidden layers and their number of nodes, etc.)

should be identified a priori, which is usually done through a time consuming trial and error

procedure. In GP, the number and combination of terms are automatically evolved during model

calibration (Shahin 2009, Javadi and Rezania 2009). A notable limitation of GP and its variants is

that these methods are parameter sensitive. The performance of the GP/SA algorithm can be

improved by using any form of optimally controlling the parameters of the run (e.g., GAs). 

However, one of the goals of introducing the expert systems, such as the GP-based approaches,

into the design processes is better handling of the information in the pre-design phase. In the initial

steps of design, information about the features and properties of targeted output or process are often

imprecise and incomplete (Kraslawski et al. 1999). Nevertheless, it is idealistic to have some initial

estimates of the outcome before performing any extensive laboratory or field work. The GP/SA

approaches employed in this research are based on the data alone to determine the structure and

parameters of the models. Thus, the derived models can particularly be valuable in the preliminary

design stages. For more reliability, the results of the GP/SA-based analyses are suggested to be

treated as a complement to conventional computing techniques. In any case, the importance of

engineering judgment in interpretation of the obtained results should not be underestimated. In order

to develop a sophisticated prediction tool, GP/SA can be combined with advanced deterministic

geomechanical models. Assuming the geomechanical model captures the key physical mechanisms,

it needs appropriate initial conditions and carefully calibrated parameters to make accurate predictions.

Table 6 Performance statistics of the prediction models for the uplift capacity

No. Reference L/d D/L
θ

(Rad)
Su

 (kPa)
Tk

Q

 (kPa)
QFEM

(kPa)
QANN

(kPa)
QNGN

(kPa)
QEPR

(kPa)
QLSR

(kPa)
QTraditional GP

(kPa)
QGP/SA

(kPa)

1 Singh et al. (1996) 0.75 0 π/2 6 4E-02 21.5 18 21.4 11.9 32.2 20.4 18.2 27.5

2 Rao et al. (1997) 1 0 π/2 1.8 1E-04 11.1 12.3 21.3 52.2 15.4 21.3 11.8 9.5

3 Rao et al. (1997) 2 0 π/2 2.6 1E-04 21.9 49 27.6 48.4 19.4 17.6 21.5 26.2

4 Rao et al. (1997) 2 0 π/2 3.6 1E-04 33.6 49.6 33.7 53.1 26.4 25.9 29.9 36.1

5 Rao et al. (1997) 2 0 π/2 5.8 1E-04 46.4 50.9 48.8 65.5 42.7 44.2 48.8 57.5

6 Rao et al. (1997) 1.5 0 π/2 5.8 1E-04 38.1 47.5 45.7 75.7 44.8 49.4 43.6 47.7

7 Hogervorst (1980) 1.32 0 0 38 1E-04 134.9 132.5 94.2 131.7 128.2 174.0 103.6 140.8

8 Hogervorst (1980) 1.32 0 0 38 1E-04 133.1 132.5 94.2 131.7 128.2 174.0 103.6 140.8

9 Hogervorst (1980) 1.84 0 π/2 15.8 1E-04 154.3 161.5 157.3 135.3 149.0 143.8 148.5 143.2

10 Randolph et al. 
(1998)

2.31 0.68 11π/
180

21.6 1E-04 370.4 351 367.1 256.7 326.5 249.9 322.0 342.1

11 El-Gharbawy and 
Olson (1998)

4 0.47 5π/12 5.2 1E-05 48.1 46 57.2 138.7 70.9 160.5 92.7 55.8

R2 0.992 0.971 0.851 0.991 0.759 0.965 0.995

MSE 141.04 315.68 2377.16 254.50 2637.39 571.07 123.71

MAE 8.49 11.01 34.66 10.81 33.55 15.97 8.72
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An idea could be to calibrate the geomechanical parameters by the use of GP/SA which takes into

account historic data sets as well as the laboratory or field test results. This allows integrating the

uncertainties related to in-situ conditions which the geomechanical model does not explicitly

account for. GP/SA provides a structured representation for the constitutive material model that can

readily be incorporated into the finite element or finite difference analyses. In this case, it is

possible to use a suitably trained GP-based material model instead of a conventional (analytical)

constitutive model in a numerical analysis tool such as finite element code or finite difference

software (like FLAC). It is notable that the numerical implementation of ANNs in the finite element

analyses has already been presented by several researchers (e.g., Javadi et al. 2005). This strategy

has led to some qualitative improvement in the application of finite element method in engineering

practice (Javadi and Rezania 2009).

Fig. 10 A comparison of the uplift capacity predictions made by different models (Note: SD = Standard Deviation)
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6. Sensitivity analysis

Sensitivity analysis is of utmost concern for selecting the important predictor variables. The

contributions the input parameters were evaluated through a sensitivity analysis. For this aim,

frequency values of the variables were obtained. A frequency value equal to 1.00 for an input

indicates that this variable has been appeared in 100% of the best thirty programs evolved by GP/

SA. This is a common methodology for the sensitivity analysis in the GP-based studies (Francone

2001, Alavi et al. 2010a). The frequency values of the input parameters are presented in Fig. 11.

According to these results, the uplift capacity of suction caissons is more dependent on L/d and Su

compared with D/L, θ and Tk. The lower sensitivity of the uplift capacity to D/L and θ may be due

to the poor distribution of the data for these variables.

The sensitivity analysis results are expected cases from the geomechanical viewpoint. L/d determines

the likely failure mechanism of a caisson and Su represents the soil resistance. There are earlier

findings for the uplift capacity that are in agreement with this observation (Rahman et al. 2001).

7. Parametric analysis

For further verification of the proposed GP/SA model, a parametric analysis was performed in this

study. The parametric analysis investigates the response of the predicted uplift capacity from the

GP/SA model to a set of hypothetical input data. The methodology is based on the change of only

one predictor variable at a time while the other variables are kept constant at the average values of

Fig. 11 Contributions of the input parameters in the GP/SA model
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their entire data sets. These variables are presented to the prediction equation and the uplift capacity

is calculated. This procedure is repeated using another variable until the model response is tested for

all predictor variables. Figs. 12(a)-(f) present the tendency of the uplift capacity predictions to the

variations of L/d, θ, Su, Tk, and D/L. 

The results of the parametric analysis indicate that increases in L/d cause amplification in the

uplift capacity. This is mainly due to the additional skin friction and passive resistance acting on the

extended portion of the embedment length of the caisson (Rao et al. 2006). Deng and Carter (2000)

showed that the ultimate load for a suction caisson subjected to vertical uplift loading is positively

correlated with L/d. As the load inclination changes from the horizontal to vertical direction, the

uplift capacity decreases. It is notable that for θ = 0o, the resistance is due to the passive earth

pressure of the soil and the skin friction cannot act on the system. For vertical load on caisson (θ =

90o), the resistance is only due to the skin friction. Consequently, as the loading direction changes

from horizontal to vertical, the resistance component changes from the passive earth pressure to the

skin friction (Rao et al. 2006). Rao et al. (2006) showed that the pullout capacity decreases as the

load inclination changes from θ = 0o (horizontal) to θ = 90o (vertical).

As other researchers argued (e.g., Deng and Carter 2000, Rahman et al. 2001, Rao et al. 2006),

the uplift capacity increases when Su increases (Fig. 12(c)). This is mainly attributed to the

improvement of the passive resistance due to the increased soil shear strength. The uplift capacity

slightly decreases when Tk increases. The obtained trends seem to be rational since Tk is the ratio of

the permeability of the soil to the loading rate at which the caisson is pulled from the ground. Deng

and Carter (1999a) found that Tk is negatively related to the uplift capacity. As it is seen in Figs.

12(a)-(d), the uplift capacity increases with the increases in the D/L values. In this context, similar

trends were reported by Rahman et al. (2001). Also, Deng and Carter (2000) found that the

Fig. 12 Parametric analysis of the uplift capacity in the GP/SA model
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normalized horizontal capacity increases when D/L increases up to an optimal value equal to 0.63

and thereafter it starts decreasing.

8. Conclusions

In this work, an empirical model was derived for assessing the complex behavior of the uplift

capacity of suction caissons by means of the hybrid GP/SA method. Traditional GP and linear

regression analyses were performed to have an idea about the predictive power of GP/SA. A

reliable database of previously published uplift capacity test results was used for developing the

models. The following conclusions may be drawn based on the results presented:

• The developed GP/SA solution gives reliable estimates of the horizontal, vertical and inclined

uplift capacity of suction caissons. The validity of the derived model was tested for a part of test

results beyond the training data domain. Furthermore, the GP/SA prediction model efficiently satisfies

the conditions of different criteria considered for its external validation. The validation phases

confirm the efficiency of the model for its general application to the uplift capacity estimation.

• The proposed model produces considerably better outcomes over the traditional GP and regression

models. Also, the GP/SA model possesses superiority over the FEM, ANN, NGN, and EPR

models. Contrary to the FEM models, the GP/SA-based formulation of the uplift capacity simultane-

ously handles all different cases (soil drainage conditions, loading rates and loading types).

• Using the derived GP/SA model, the uplift capacity can readily be estimated from the parameters

related to the caisson geometry, load attachment point and soil conditions (L/d, D/L, θ, Su, Tk).

Thus, there is no need to go through sophisticated and time-consuming laboratory, centrifugal, or

field tests for determining the uplift capacity. The accuracy of the results strongly confirms that

L/d, D/L, θ, Su and Tk can be regarded as efficient representatives of the uplift capacity behavior.

• The straightforward GP/SA model was derived from tests with fairly wide range properties.

Thus, it can reliably be used for practical pre-planning and pre-design purposes. 

• An expected finding from the results of the sensitivity analysis is that the aspect ratio of the

caisson and the undrained shear strength are the most important parameters governing the uplift

capacity behavior.

• A general criticism about the GP-based models is that they are only randomly formed functions

which are not based on the physical processes. This ambiguity was illuminated by the parametric

analysis. The results of the parametric analysis are soundly in agreement with the underlying

physical relations governing the behavior of the uplift capacity. This consistency guarantees that

the derived GP/SA model is a meaningful combination of the predictor variables.

• The correlation derived using GP/SA is basically different from the conventional constitutive

models based on first principles (e.g., elasticity and plasticity theories). One of the distinctive

features of GP/SA-based model is that it is based on the experimental data rather than assump-

tions made in developing the conventional models. Consequently, as more data becomes available,

this model can be improved by re-training GP/SA, without repeating the development procedures

from the beginning.

• The GP/SA method is particularly practical for the situations where good experimental data are

available, the behavior is too complex, or the conventional constitutive models are unable to

effectively describe various aspects of the behavior.

Further research can focus on hybridizing GP with other optimization algorithms such as Ant Colony
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or Tabu Search. Introducing these strategies into the GP process can improve the performance of GP.

With regard to the predictor variables, effects of shear strength gradient and anisotropy, surface

roughness of skirt, or soil sensitivity (i.e. effect of remoulding) may directly be included into the

analysis.
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Appendix A 

Table A.1 Experimental database used for the model development

Reference L/d D/L θ (Rad) Su (kPa) Tk Q (kPa)

Hogervorst (1980) 1.32 0 0 38 1.00E-05 134.9
1.32 0 0 38 1.00E-05 133.1
1.32 0.1 0 38 1.00E-05 149
1.32 0.1 0 38 1.00E-05 145.5
1.32 0 π /2 14.3 1.00E-05 144.6
1.32 0 1.57 14.3 1.00E-05 176.3
1.32 0 π /2 14.3 1.00E-05 149.9
1.84 0 π /2 15.8 1.00E-05 154.3
1.84 0 π /2 15.8 1.00E-05 160.5
1.84 0 π /2 11 1.00E-05 105.8
1.84 0 π /2 11 1.00E-05 86.4
1.84 0 π /2 11 1.00E-05 88.2
1.84 0 π /2 11 1.00E-05 92.6

Larsen (1989) 0.23 0.05 0 31 1.00E-05 128.3
0.23 0 0 24 1.00E-05 72
0.68 0 0 24 1.00E-05 21.3

El-Gharbawy and Olson (1998) 4 0.47 5π /12 5.2 1.00E-05 48.1
4 0.47 5π /12 5.2 1.00E-05 54.9
4 0 π /2 5.2 1.00E-05 48.8

Fuglsang and Steensen-Bach (1991) 2 0 π /2 9 1.00E-05 90.1
2 0 π /2 7 1.00E-05 80.2
2 0 π /2 7.5 1.00E-05 70.5
2 0 π /2 8.5 1.00E-05 75.3
2 0 π /2 8.3 1.00E-05 71.7
2 0 π /2 6 1.00E-05 62.7
2 0 π /2 6 1.00E-05 66.3
2 0 π /2 25 1.00E-05 244.1
2 0 π /2 20.5 1.00E-05 209.4
2 0 π /2 22.5 1.00E-05 214.9

Fuglsang and Steensen-Bach (1991) 2 0 π /2 24 1.00E-05 245.3
2 0 π /2 22.5 1.00E-05 204.9
2 0 π /2 10.5 1.00E-05 90.4
2 0 π /2 7.8 1.00E-05 64.5

Keaveny et al. (1994) 1.4 0 0 9 1.00E-05 37
1.4 0.5 0 9 1.00E-05 70.5
1.4 0.56 π /18 5.5 1.00E-05 71.8

Singh et al. (1996) 0.75 0 π /2 6 4.00E-02 21.5
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Table A.1 Continued

Reference L/d D/L θ (Rad) Su (kPa) Tk Q (kPa)

Singh et al. (1996) 0.75 0 π /2 6 4.00E-02 21.5
0.75 0 π /2 6 4.00E-03 26
0.75 0 π /2 6 4.00E-04 31
0.75 0 π /2 2.5 4.00E-02 10.1
0.75 0 π /2 2.5 4.00E-03 13.2
0.75 0 π /2 2.5 4.00E-04 15.7
1.5 0 π /2 6 4.00E-02 23
1.5 0 π /2 6 4.00E-03 26.6
1.5 0 π /2 6 4.00E-04 32.2

Rao et al. (1997) 1 0 π /2 1.8 1.00E-04 11.1
1 0 π /2 2.4 1.00E-04 15.2
1 0 π /2 3.6 1.00E-04 26.4
1 0 π /2 5.8 1.00E-04 35.6

1.5 0 π /2 1.8 1.00E-04 12.9
1.5 0 π /2 2.4 1.00E-04 18.7
1.5 0 π /2 3.6 1.00E-04 28.8
1.5 0 π /2 5.8 1.00E-04 38.1
2 0 π /2 1.8 1.00E-04 15.6
2 0 π /2 2.6 1.00E-04 21.9
2 0 π /2 3.6 1.00E-04 33.6
2 0 π /2 5.8 1.00E-04 46.4

Watson and Randolph (1997) 0.4 0 π /2 6.8 1.00E-05 75
0.7 0 π /2 13.7 1.00E-05 135

Randolph et al. (1998) 0.43 0 4π /9 4.2 1.00E-05 48.7
2.31 0.68 11π /180 21.6 1.00E-05 370.4
2.31 0.69 π /12 23.9 1.00E-05 387.2
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Appendix B

The optimum GP/SA program can be compiled in any C++ environment. (Note: v[0], ..., v[4]

respectively represent L/d, Su, Tk, θ, and D/L in their normalized forms shown in Table 2. f [0] is the

normalized output parameter.)

(float v[])  { double f[8];

double tmp = 0;  l11: f[0]*=v[3];

f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;  l12: f[0]−=0.5;

f[0]=v[0];  l13: f[0]−=v[1];

l0: f[1]−=f[0];  l14: f[0]+=v[4];

l1: f[0]−=f[1];  l15: f[0]−=f[1];

l2: tmp=f[1]; f[1]=f[0]; f[0]=tmp;  l16: f[0]*=v[1];

f[0]*=f[1];  l17: f[0]+=v[4];

l3: f[0]−=−1;  l18: f[0]/=2;

l4: f[1]−=f[0];  l19: f[0]+=v[2];

f[1]/=f[0];  l20: f[0]*=v[1];

l5: f[0]−=v[1];  l21: f[0]+=v[1];

l6: f[0]/=v[0];  l22: f[0]+=f[0];

l7: f[0]−=2;  l23: f[0]*=v[0];

l8: f[0]/=v[2];  l24:

l9: f[0]*=f[1];  l25:

l10: f[1]/=f[0];  return f[0];}

tmp=f[1]; f[1]=f[0]; f[0]=tmp;




