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1. Introduction 
 

In the last two decades, the use of composite structures 

has increased steadily in many kinds of engineering 

application including automotive, civil engineering, 

aerospace, mechanical, underwater, ships and other 

industrial applications (Vel et al. 2005). The considerable 

advantages offered by composite structures over 

conventional structures are to present high strength-to-

weight and stiffness-to-weight ratios, which make them 

ideally, suited for use in weight-sensitive structures 

(Sturzenbecher and Hofstetter, 2011, Ozturk, 2015). These 

structural elements are subjected to transverse forces, in-

plane forces, and dynamic forces. Therefore, a number of 

studies have been performed to analyze the bending, 

buckling, and vibration behavior of composite structures 

due to the increased relevance of the composites structural 

components in the design of engineering structures. Since 

the early 1800s, various plates theories have been 

developed to predict more accurately their dynamic 

responses. The sources of plate theories can be classified 

into three main categories i.e., classical plate theory (CPT), 

first-order shear deformation plate theory (FSDT) and 

higher-order plate theory (HSDT) (Abualnour et al. 2018).  
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The classical plate theory (Kirchhoff 1850a, b) ignores the 

transverse shear strain and is appropriate just to investigates 

thin plates. As a consequence it under predicts vertical 

displacements and over predicts natural frequencies. 

However, it is not appropriate for the moderately thick and 

thick plates, which require that the transverse and normal 

strain should be taken into account. The first-order shear 

deformation plate theory (Reissner 1945, Mindlin 1951) 

overcomes this problem by taking into account this effect. 

Many studies have been devoted for free vibration analysis 

of classical composite and orthotropic plates using first-

order shear deformation plate theory (Chen and Liu 1990, 

Hashemi and Arsanjani 2005, Kshirsagar and Bhaskar 2009, 

Sadoune et al. 2014, Bellifa et al. 2016, Bouderba et al. 

2016, Youcef et al. 2018). Since these models violate the 

equilibrium conditions at the top and bottom surfaces of the 

plate, and needs a shear correction factor which is hard to 

find as it depends on the geometries, material properties and 

boundary conditions of each problem (Ferreira et al. 2009, 

Thai and Kim 2012, Abualnour et al. 2018). To surmount 

the disadvantages of the first-order shear deformation plate 

theory, a number of higher-order shear deformation plate 

theories (HSDT), by applying a nonlinear variation of high 

order axial displacement in power series of the coordinate 

normal to the middle plane, have been proposed and it is not 

necessary to introduce the notion of shear correction factor. 

Many polynomial such as third-order shear deformation 

plate theory (Nelson and Lorch 1974, Krishna Murty 1977, 

Lo et al. 1977a, b, Levinson 1980, Kant 1982, Bhimaraddi 

and Stevens 1984, Reddy 1984, Hanna and Leissa 1994, 
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Abstract.  In this current work a quasi 3D “trigonometric shear deformation theory” is proposed and discussed for the dynamic 

of thick orthotropic plates. Contrary to the classical “higher order shear deformation theories” (HSDT) and the “first shear 

deformation theory” (FSDT), the constructed theory utilizes a new displacement field which includes “undetermined integral 

terms” and presents only three “variables”. In this model the axial displacement utilizes sinusoidal mathematical function in 

terms of z coordinate to introduce the shear strain impact. The cosine mathematical function in terms of z coordinate is 

employed in vertical displacement to introduce the impact of transverse “normal deformation”. The motion equations of the 

model are found via the concept of virtual work. Numerical results found for frequency of “flexural mode”, mode of shear and 

mode of thickness stretch impact of dynamic of simply supported “orthotropic” structures are compared and verified with those 

of other HSDTs and method of elasticity wherever considered. 
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Matsunaga 2008, Reddy 2011, Talha and Singh 2010, 

Bourada et al. 2012, Jha et al. 2013, Eltaher et al. 2013, 

Zidi et al. 2014, Ahmed 2014, Ait Amar Meziane et al. 

2014, Ait Yahia et al. 2015, Zemri et al. 2015, Mahapatra et 

al. 2015, Kar et al. 2016, Bounouara et al. 2016, Becheri et 

al. 2016, Baseri et al. 2016, Mohammadimehr et al. 2016, 

Raminnea et al. 2016, Javed et al. 2016, Janghorban 2016, 

Rahmani et al. 2017, Fahsi et al. 2017, Yazid et al. 2018) 

and non polynomial such as sinusoidal, hyperbolic and 

exponential shear deformable plate theory (Levy 1977, 

Stein 1990, Touratier 1991, Soldatos 1992, Karama 2003, 

Zenkour et al. 2010a, 2011, Zenkour and Sobhy 2010, 2011, 

Ghugal and Sayyad 2011, Mantari 2012, Bouderba et al. 

2013, Tounsi et al. 2013, Sobhy 2014, Ait Atmane et al. 

2015, Sayyad and Ghugal 2015, Belkorissat et al. 2015, Al-

Basyouni et al. 2015, Mahi et al. 2015, Akavci 2016, 

Bousahla et al. 2016, Laoufi et al. 2016, Beldjelili et al. 

2016, Saidi et al. 2016, Ghorbanpour Arani et al. 2016, Wu 

and Chiu 2011, Ahouel et al. 2016, Boukhari et al. 2016, 

Hebali et al. 2016, Mehar and Panda 2017, Menasria et al. 

2017, Zidi et al. 2017, Khetir et al. 2017, Klouche et al. 

2017, Chikh et al. 2017, El-Haina et al. 2017, Mouffoki et 

al. 2017, Sekkal et al. 2017a, Bellifa et al. 2017a, 

Besseghier et al. 2017, Hirwani et al. 2017a, b, Hachemi et 

al. 2017, Abdelaziz et al. 2017, Mehar et al. 2017, Sahoo et 

al. 2017, Zine et al. 2018, Sobhy and Zenkour 2018) are 

developed for the bending and dynamic analysis of 

homogenous and laminated thick rectangular plates. A 

critical review of more works on the development of 

structures models can be found in (Noor and Burton 1989, 

Vasil’ev 1992, Kant 1993, Liew et al. 1995, Ghugal and 

Shimpi 2002, Wanji and Zhen 2008, Kreja 2011, Khandan 

et al. 2012). Recently, some studies are presented with 

considering shear and normal strains effects, in the open 

literature such as (Zenkour et al. 2010b, Fekrar et al. 2014, 

Belabed et al. 2014, Bousahla et al. 2014, Hebali et al. 

2014, Bourada et al. 2015, Hamidi et al. 2015, Meradjah et 

al. 2015, Larbi Chaht et al. 2015, Sobhy and Radwan 2017, 

Zenkour and Sobhy 2015, Bennoun et al. 2016, Draiche et 

al. 2016, Sekkal et al. 2017b, Benahmed et al. 2017, 

Bouafia et al. 2017, Benchohra et al. 2018, Bouhadra et al. 

2018, Karami et al. 2018a, b, Younsi et al. 2018).  

This paper aims to improve the plate theory developed 

by Tounsi and his co-workers (Hebali et al. 2016) by 

including the so-called stretching effect. Using the proposed 

theory, both for vibration problem of orthotropic square and 

rectangular plates are investigated. The displacement model 

contains undetermined integral terms in addition to CPT 

terms. The numbers of variables are lower as that of 

conventional HSDTs. Equations of motion are derived from 

the Hamilton’s principle. Analytical solutions are obtained 

for orthotropic plate, and accuracy is verified by comparing 

the obtained results with those reported in the literature. 
 

 

2. Orthotropic plate under consideration 
 

In this work, a rectangular plate of length a, width b, 

and a constant thickness h is considered for investigation. 

The structure occupies (in O – x – y – z right-handed 

Cartesian coordinate system) a region 

0  ;    0  ;    / 2 / 2x a y b h y h      
 

(1) 

 

2.1 Assumptions made in theoretical formulation 
 

The displacement field of the proposed theory is 

constructed based on the following suppositions: 

1. The displacement components u and v are the axial 

displacements in x and y-directions respectively and w is the 

vertical displacement in z-direction. These displacements 

are small in comparison with the plate thickness. 

2. The axial displacement u in x -direction and v in y-

direction each consist of two parts: 

a) Displacement component analogous to displacement 

in CPT of bending; 

b) Displacement component due to shear deformation 

which is considered to be sinusoidal in nature with respect 

to thickness coordinate and is formulated by using the 

integral term. 

3. The vertical displacement w in z -direction is 

supposed to be a function of x, y and z coordinates. 

The body forces are ignored in the investigation. 

 

2.2 The displacement field 
 
Based upon the before mentioned assumptions and 

including the effect of transverse normal stress (thickness 

stretching effect), the displacement field of the proposed 

plate theory can be described as 

 
(2a) 

 

(2b) 

 
(2c) 

The coefficients k1 and k2 depends on the geometry. It 

can be observed that the kinematic in Eq. (2) uses only three 

unknowns (w0, θ and ϕξ). In this work, the proposed HSDT 

is obtained by putting  
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2.3 Strain displacement relationship 
 
Nonzero strains of the five variable plate model by 

employing displacement field expressed by Eq. (2) are 

expressed as follows 

 

(4) 

where 

142



 

Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory 





























































yx

w

y

w

x

w

k

k

k

b
xy

b
y

b
x

0
2

2
0

2

2
0

2

2

,  


















































 dy
x

kdx
y

k

k

k

k

k

k

s
xy

s
y

s
x

  21

2

1







,  

0 2

0

1

 

 

yz

xz

k dy
y

k dx
x













 
      

   
       




,  

0
z  

 

(5) 

It can be observed from Eq. (4) that the transverse shear 

strains (γxz, γyz) are equal to zero at the upper (z=h/2) and 

lower (z=-h/2) surfaces of the plate. A shear correction 

coefficient is, hence, not required. 

The integrals used in the above equations shall be 

resolved by a Navier type procedure and can be expressed 

as follows 

 
(6) 

where the coefficients Aʹ and Bʹ are considered according to 

the type of solution employed, in this case via Navier 

method. Therefore, Aʹ, Bʹ, k1 and k2 are expressed as follows 

 
(7) 

where α and β are defined in expression (20b). 

 

2.4 Stress-strain relationship 
 
For elastic and orthotropic materials, the constitutive 

relations can be written as (Karami et al. 2018c) 
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(8) 

where Cij are the reduced stiffness coefficients as given by 

Jones (1975) are as follows 

 

(9) 

 

2.5. Equations of motion 
 

Hamilton’s principle is utilized herein to obtain the 

equations of motion. The principle can be analytically 

written as (Taibi et al. 2015, Attia et al. 2015, 2018, Houari 

et al. 2016, Bellifa et al. 2017b, Benadouda et al. 2017, 

Bakhadda et al. 2018, Meksi et al. 2018, Kaci et al. 2018, 

Belabed et al. 2018, Fourn et al. 2018, Mokhtar et al. 2018) 

 

T

dtKU

0

 )  (0 

 

(10) 

where δU is the variation of strain energy; and δK is the 

variation of kinetic energy. The variation of strain energy is 

written explicitly by 
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(11) 

where A is the area of top surface and the stress resultants 

N, M, and S are expressed by 
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(12) 

Substituting Eq. (4) into Eq. (8) and the subsequent 

results into Eq. (16), the stress resultants can be written in 

terms of generalized displacements (w0, θ and φz) as 

 

(13a) 

 

(13b) 

where 
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(14b) 

The variation of kinetic energy is given by 

 

(15) 

where dot-superscript convention indicates the          

differentiation with respect to the time variable t; ρ is the 

mass density; and (Ii, Ji, Ki) are mass inertias expressed by  
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(16c) 

The equations of motion can be obtained by substituting 

the equations for δU and δK from Eqs. (11) and (15) into 

Eq. (10), integrating by parts and collecting the coefficients 

of δw0, δθ, and δϕξ  

 

 

 

(17) 

Substituting Eq. (13) into Eq. (17), the equations of 

motion of the present quasi-3D sinusoidal shear 

deformation theory can be written in terms of displacements 

(w0, θ, ϕξ) as 

 

(18a) 

 

(18b) 

 
(18c) 

where dij, dijl and dijlm are the following differential 

operators 

 
(19) 

 

 

3. Analytical solutions 
 

In this part, a simply supported rectangular plate is 

considered with length a and width b. Using the Navier 

solution procedure, the following expressions of 

displacements (w0, θ, ϕξ) are taken 
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(20) 

with 

am /   and 
bn / 

 

where 1i , (Wmn, Xmn, Ymn) are the unknown 

maximum amplitudes of displacement, and ω is the 

frequency of vibration. 

Substituting Eq. (20) into Eq. (18), the analytical 

solutions can be determined by 
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where 
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(22) 

The orthotropic plate has following material properties 

as given by Srinivas et al. (1970) 

 

(23) 

The density (ρ) of material can be taken as any arbitrary 

value for calculation of frequencies. 
 

 

4. Numerical results and discussion 
 

In the present work dynamic investigation of simply 

supported orthotropic plate for thickness ratio 10 is 

examined. The results computed using the proposed quasi 

3D trigonometric shear deformation are compared with 

exact results and those of other HSDT results existing in 

literature wherever applicable. Following non-dimensional 

form is employed for the purpose of presenting the results 

in this work. 

11Q
hmn


 

 
(24) 

(20b) 

(22) 
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Results determined for frequencies of bending mode, 

thickness shear mode and thickness stretching mode are 

compared and discussed with the corresponding results of 

CPT, FSDT, Reddy’s theory and exact theory (Srinivas 

1970) and the trigonometric shear deformation theory 

(Ghugal and Sayyad 2011). 

 

4.1 Bending frequency ( w ) 
 

Table 1 demonstrates comparison of bending 

frequencies for all modes of dynamic for square plate 

(b/a=1). It can be observed from Table 1 that the proposed 

theory provides excellent values of frequencies for all 

modes of vibration. The proposed theory, Reddy’s theory 

(Reddy 1984), Ghugal and Sayyad’s theory (2011) and 

Mindlin’s theory (1951) predicts exact result of bending 

 

 

 

frequency for fundamental mode i.e. m = 1, n = 1. 
Table 2 shows a comparison study of bending frequency 

for the rectangular plate (b/a =√2). From Table 2 it can be 

seen that the proposed theory with only three unknown 

shows an excellent agreement with Ghugal and Sayyad’s 

theory (2011) containing a higher number of unknowns. In 

case of rectangular plate, CPT overestimates the results of 

bending frequency as compared to those of other HSDTs 

because of the neglect of transverse shear deformation and 

thickness stretching effects in the CPT. 
 

4.2 Thickness shear mode frequency (  ) 
 

From the Table 1 it can be seen that, for square plate 

(b/a = 1) the proposed theory provides a good results of 

thickness shear mode frequency for all modes of vibration 

Table 1 Comparison of natural frequencies of simply-supported orthotropic square plate (b/a=1, h/a=0.1) 

(m,n) 
Exact(a) Present Ref(b) Ref(c) FSDT CPT 

w      w      w        w      w      w  

(1,1) 0.0474 1.3077 1.6530 0.0477 1.5116 5.2542 0.0474 1.2999 1.6448 5.2662 0.0474 1.3086 1.6550 0.0474 1.3159 1.6647 0.0497 

(1,2) 0.1033 1.3331 1.7160 0.1041 1.6745 5.2529 0.1033 1.3290 1.7105 5.2269 0.1033 1.3339 1.7209 0.1032 1.3410 1.7307 0.1120 

(1,3) 0.1888 1.3665 1.8115 0.1903 1.7987 5.2511 0.1888 1.3638 1.8052 5.1530 0.1888 1.3772 1.8210 0.1884 1.3841 1.8307 0.2154 

(1,4) 0.2969 1.4372 1.9306 0.2990 1.9228 5.2491 0.2969 1.4281 1.9249 5.0416 0.2969 1.4379 1.9466 0.2959 1.4445 1.9562 0.3599 

(2,1) 0.1188 1.4205 1.6805 0.1198 1.5133 5.2512 0.1190 1.4168 1.6728 5.3073 0.1189 1.4216 1.6827 0.1187 1.4285 1.6922 0.1354 

(2,2) 0.1694 1.4316 1.7509 0.1723 1.6740 5.2498 0.1697 1.4277 1.7462 5.2692 0.1695 1.4323 1.7562 0.1692 1.4393 1.7657 0.1987 

(2,3) 0.2475 1.4596 1.8523 0.2525 1.8227 5.2480 0.2480 1.4562 1.8418 5.1904 0.2477 1.4603 1.8622 0.2459 1.4671 1.8717 0.3029 

(2,4) 0.3476 1.5068 1.9749 0.3545 1.9657 5.2461 0.3482 1.5039 1.9701 5.0764 0.3479 1.5076 1.9912 0.3463 1.5142 2.0004 0.4480 

(3,1) 0.2180 1.5777 1.7334 0.2198 1.6442 5.2465 0.2191 1.5744 1.7274 5.3706 0.2184 1.5789 1.7361 0.2178 1.5857 1.7452 0.2779 

(3,2) 0.2624 1.5651 1.8195 0.2678 1.7645 5.2451 0.2637 1.5612 1.8068 5.3367 0.2629 1.5658 1.8255 0.2619 1.5727 1.8343 0.3418 

(3,3) 0.3320 1.5737 1.9289 0.3413 1.9033 5.2434 0.3337 1.5701 1.9203 5.2653 0.3326 1.5744 1.9395 0.3310 1.5812 1.9418 0.4470 

(4,1) 0.3319 1.7179 1.8458 0.3343 1.8383 5.2404 0.3351 1.7119 1.8437 5.4552 0.3330 1.7189 1.8583 0.3311 1.7265 1.7267 0.4773 

(4,2) 0.3707 1.6940 1.9447 0.3778 1.9256 5.2392 0.3743 1.6890 1.9351 5.4284 0.3720 1.6947 1.9514 0.3696 1.7022 1.9588 0.5415 

Table 2 Comparison of natural frequencies of simply-supported orthotropic rectangular plate (b/a =√2, h/a=0.1) 

(m,n) 
Present Ref(b) Ref(c) FSDT CPT 

w      w        w      w      
w  

(1,1) 0.0377 1.4405 5.2544 0.0376 1.3036 1.6420 5.2701 0.0378 1.3045 1.6437 0.0377 1.3118 1.6533 0.0390 

(1,2) 0.0670 1.5903 5.2537 0.0653 1.3162 1.6738 5.2577 0.0676 1.3169 1.6786 0.0669 1.3242 1.6882 0.0701 

(1,3) 0.1131 1.6901 5.2227 0.1066 1.3376 1.7224 5.2208 0.1142 1.3382 1.7336 0.1132 1.3453 1.7433 0.1210 

(1,4) 0.1737 1.7775 5.2515 0.1768 1.3680 1.7835 5.1582 0.1750 1.3686 1.8054 0.1739 1.3755 1.8151 0.1903 

(2,1) 0.1105 1.4708 5.2514 0.1104 1.4194 1.6683 5.3106 0.1104 1.4206 1.6696 0.1100 1.4276 1.6790 0.1225 

(2,2) 0.1378 1.5800 5.2507 0.1371 1.4235 1.7054 5.2989 0.1377 1.4243 1.7094 0.1362 1.4313 1.7188 0.1533 

(2,3) 0.1807 1.6928 5.2496 0.1728 1.4344 1.7583 5.2614 0.1804 1.4348 1.7696 0.1779 1.4417 1.7790 0.2032 

(2,4) 0.2371 1.7979 5.2483 0.2136 1.4540 1.8209 5.1955 0.2366 1.4543 1.8456 0.2333 1.4611 1.8550 0.2711 

(3,1) 0.2114 1.6203 5.2467 0.2114 1.5831 1.7171 5.3729 0.2110 1.5852 1.7172 0.2102 1.5920 1.7262 0.2575 

(3,2) 0.2362 1.6900 5.2460 0.2365 1.5697 1.7691 5.3634 0.2352 1.5713 1.7704 0.2329 1.5782 1.7792 0.2870 

(3,3) 0.2754 1.7809 5.2449 0.2701 1.5650 1.8326 5.3277 0.2735 1.5658 1.8400 0.2695 1.5728 1.8488 0.3352 

(4,1) 0.3267 1.8218 5.2407 0.3269 1.8376 1.7267 5.4560 0.3262 1.8370 1.7289 0.3246 1.8439 1.7371 0.4381 

(4,2) 0.3491 1.8694 5.2400 0.3500 1.8967 1.7047 5.4500 0.3475 1.8947 1.7066 0.3442 1.9020 1.7143 0.4661 
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as compared to that of exact theory and other HSDTs.  
The comparison of thickness shear mode frequency for 

rectangular plate (b/a =√2) is demonstrated in Table 2. The 

frequencies determined by present model are in good 

agreement with those of other HSDTs. 
 

4.3 Thickness stretch mode frequency (  ) 

 
In Table 1 and 2 results of frequency of thickness 

stretching mode of vibration are provided for square and 

rectangular plates. The results of this frequency by other 

HSDTs are not available in the literature because of the 

neglect of thickness stretching effect in these models. The 

results compared with those obtained by Ghugal and 

Sayyad’s theory (2011) confirm a good agreement between 

the two theories. 

 

 

5. Conclusions 
 

A new three variable trigonometric plate theory is 

developed in this study for dynamic analysis of orthotropic 

plates. Following conclusions are drawn from the present 

study: 

1. The frequencies computed by the proposed theory for 

bending and thickness shear modes of vibration for all 

modes of vibration are in good agreement with the exact 

values of frequencies for the square plate (b/a = 1). 

2. The frequencies of bending and thickness shear 

modes of vibration computed by the present model are in 

good agreement with those of HSDT for rectangular plate 

(b/a =√2). 

3. The present theory with only three unknowns is 

capable to provide frequencies of thickness stretching mode 

of vibration and the obtained results are in excellent 

agreement with those of Ghugal and Sayyad’s theory (2011) 

containing four unknowns. 

4. The present theory is not only accurate but also 

simple in predicting the vibration analysis of orthotropic 

plates. 
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