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1. Introduction 
 

Functionally graded materials (FGMs) are a class of 

composites that have continuous variation of material 

properties from one surface to another and thus eliminate 

the stress concentration found in laminated composites. A 

typical FGM is made from a mixture of two material 

phases, for example, a ceramic and a metal. The reason for 

the increasing use of FGMs in a variety of aerospace, 

automotive, civil, and mechanical engineering structures is 

that their material properties can be tailored to different 

applications and working environments. Now, FGMs are 

developed for general use as structural components in 

extremely high temperature environments. Several studies 

have been performed to analyze the mechanical or the 

thermal or the thermomechanical responses of FG plates 

and shells. 

Tai et al. (2011) used levy-type solution for buckling 

analysis of orthotropic plates based on two variable refined 

plate theory. Tai et al. (2012) developed the Levy-type 

solution for free vibration analysis of orthotropic plates 

based on two variable refined plate theory. Sobhy et al. 

(2013) studied the buckling and free vibration of 

exponentially graded sandwich plates resting on elastic 

foundations under various boundary conditions. Tahouneh  
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(2014) studied the free vibration analysis of bidirectional 

functionally graded annular plates resting on elastic 

foundations using differential quadrature method. Belabed 

et al. (2014) used an efficient and simple higher order shear 

and normal deformation theory for functionally graded 

material (FGM) plates. Hamidi et al. (2015) proposed a 

sinusoidal plate theory with 5-unknowns and stretching 

effect for thermomechanical bending of functionally graded 

sandwich plates. Hebali et al. (2014) used a new quasi-3D 

hyperbolic shear deformation theory for the static and free 

vibration analysis of functionally graded plates. Farahani et 

al. (2015) investigated the vibration of sumberged 

functionally graded cylindrical shell based on first order 

shear deformation theory using wave propagation method. 

Deng et al. (2015) studied the analysis of thermally induced 

vibration of cable-beam structures. Gao et al. (2015) used 

the refined theory of 2D quasicrystal deep beams based on 

elasticity of quasicrystals. Al-Basyouni et al. (2015) 

investigated size dependent bending and vibration analysis 

of functionally graded micro beams based on modified 

couple stress theory and neutral surface position. Benferhat 

et al. (2016) studied the effect porosities on Static analysis 

of the FGM plate. Meziane et al. (2014) proposed an 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under 

various boundary conditions. Recently Tai et al. (2014) 

used levy Solution for free vibration analysis of functionally 

graded plates based on a refined plate theory. Merazi et al. 

(2015) used a new hyperbolic shear deformation plate 

theory for static analysis of FGM plate based on neutral 
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surface position. Benbakhti et al. (2016) used a new five 

unknown quasi-3D type HSDT for thermomechanical 

bending analysis of FGM sandwich plates. Ghorbanpour et 

al. (2017) studied the vibration analysis of functionally 

graded nanocomposite plate moving in two directions. 

Hadji et al. (2017) studied the wave propagation in 

functionally graded beams using various higher-order shear 

deformation beams theories. Houari et al. (2017) 

investigated a novel quasi-3D hyperbolic shear deformation 

theory for Functionally Graded thick rectangular Plates on 

elastic foundation. 

This work aims to develop an efficient and simple 

refined shear deformation theory for the free vibration 

analyses of functionally graded plates under various 

boundary conditions. Equations of motion are derived from 

the Hamilton’s principle. In this study the plates are 

considered of the type having two opposite sides simply-

supported, and the two other sides having combinations of 

simply-supported, clamped, and free boundary conditions. 

Comparison studies are performed to verify the validity of 

the present results. The effects of boundary condition and 

aspect ratio, and thickness ratio on the natural frequencies 

of FG plates are studied and discussed in detail. 
 

 

2. Theoretical formulation 
 

2.1 Plate construction 
 

Consider a FG rectangular plate occupying the region 

     2/,2/,0,0 hhxbxa   from the coordinate system 

(x; y; z) as shown in Fig. 1. This plate is made of an 

isotropic material with material properties varying smoothly 

in the z (thickness) direction only. We assume that the 

composition is varied from the bottom to the top surfaces, 

i.e. the bottom surface  2/hz   of the plate is metal 

rich whereas the top surface  2/hz   is ceramic-rich. 

The mechanical properties of FGM such as Young’s 

modulus E and mass density ρ can be expressed as 
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where the subscripts m and c represent the metallic and 

ceramic constituents, respectively; and p is the volume 

fraction exponent. The value of k equal to zero represents a 

fully ceramic plate, whereas infinite p indicates a fully 

metallic plate. The variation of Poisson’s ratio v is generally 

small and it is assumed to be a constant for convenience. 

The linear constitutive relations of a FG plate can be written 

as 

 

(2) 

 

Fig. 1 Geometry of rectangular FG plate and coordinates 
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2.2 Displacement field  
 

The displacement field, taking into account the shear 

deformation effect, is presented for FGM structures as 
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(4) 

where u0 and v0 are the mid-plane displacements of the plate 

in the x and y directions, respectively; wb and ws are the 

bending and shear components of transverse displacement, 

respectively. It should be noted that unlike the FSDT, this 

theory does not require shear correction factors. 

In this work, the present refined shear deformation plate 

theory is obtained by setting 
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(5) 

It can be seen that the displacement field in Eq. (4) 

introduces only four unknowns (u0, v0, wb and ws). The 

nonzero strains associated with the displacement field in 

Eq. (4) are 

 

(6) 

where 
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(7a) 
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2.3 Equations of motion 
 

Hamilton’s principle is herein utilized to determine the 

equations of motion 

 

t

dtTU
0
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(8) 

where δU is the variation of strain energy and δT is the 

variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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(9) 

where A is the top surface and the stress resultants N, M, 

and S are defined by 

 

(10) 

The variation of kinetic energy of the plate can be 

expressed as 

 

(11) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density given by Eq. (1); and (Ii, Ji, Ki) are mass 

inertias expressed by  
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By substituting Eqs. (9) and (11) into Eq. (8), the 

following can be derived 

 

(13) 

Substituting Eq. (6) into Eq. (2) and the subsequent 

results into Eq. (10), the stress resultants are obtained in 

terms of strains as following compact form 

 

(14) 

in which   
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and stiffness components are given as 
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Introducing Eq. (14) into Eq. (13), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

wb and ws) and the appropriate equations take the form 

 

(17a) 

 

(17b) 

 

(17c) 

 

(17d) 

Clearly, when the effect of transverse shear deformation 

is neglected ws, Eq. (17) yields the equations of motion of 

FG plate based on the CPT. 
 

2.4 Exact solutions for FGM plates 
 

The determination of frequency is of fundamental 

importance in the design of many structural components. 

An exact closed-form solution to Eq. (17) can be 

constructed when the plate is of a rectangular geometry 

with the following edge conditions, displacements. 
 

2.4.1 Boundary conditions 
The present vibration problem accounts for various 

cases of boundary conditions at the opposite edges x=0 and 

a, i.e., these plate edges are simply-supported (S), clamped 

(C), free (F) or a combination of these boundary conditions. 

While the edges y=0 and b are invariably simply-supported 

(i.e., 0 s

y

b

yysb MMNwwu ). The boundary 

conditions on the edges perpendicular to x-axis take the 

form 

Simply supported (S) 

0 s

x

b

xxsb MMNwwv
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and free (F)  
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2.4.2 Displacements 
Rectangular plates are generally classified in accordance 

with the type support used in the absence of the body forces 

and lateral loads. The solution of the system of partial 

differential Eqs. (18) under conditions (18) may be 

expressed as 
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(19) 

where Umn; Vmn; Wbmn; and Wsmn are arbitrary parameters to 

be determined subjected to the conditions that the solution 

in Eqs. (19) satisfies the differential Eqs. (17), bn /   

and m and n are mode numbers. ( )ˈ  denotes the partial 

differentiation with respect to x. The function F(x) is a 

continuous arbitrary function, which satisfy at least the 

geometric boundary conditions given in (18), and represents 

approximate shapes of the deflected surface of the plate.  

This function, for the different cases of boundary 

conditions, takes the following forms (Reddy 2004) 

 

(20) 

Substituting Eqs. (19) into Eq. (17), one obtains 
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where 

 

(22) 

in which 

 

(23) 

 

 

3. Results and discussion 
 

Two types of FG plates of Al/Al2O3 and Al/ZrO2 are 

used in this study which their material properties are listed 

in Table 1. For convenience, a two-letter notation is used to 

describe the boundary conditions of the remaining edges. 

For instance, FC indicates that one edge is free (F) and the 

other is clamped (C). For verification purpose, the obtained 

solutions are compared with those available in open 

literature and those computed independently for the first 

time based on CPT, FSDT, and HSDT of Reddy. For all 

calculations, the shear correction factor and Poisson’s ratio 

are taken as 5/6 and 0.3, respectively. For convenience, 

following natural frequency parameter is used 

Table 1 Material properties of FG plate used in this study 

 

Properties 

 

Metal Ceramic 

Aluminum 

(Al) 

Alumina 

(Al2O3) 

Zirconia 

(ZrO2) 

E(GPa) 70 380 200 

ρ(kg/m3) 2702 3800 5700 

 
 

 

(24) 

 

3.1 Comparison Studies 
 

The first example is carried out for simply supported 

Al/ZrO2 square plates with different values of thickness 

ratio a/h and power law index p. Table 2 shows the 

comparison of fundamental frequency parameters   

obtained in this study with those given by Vel and Batra 

(2004) based on 3-D theory, Matsunaga (2008) based on 2-

D theory, Pradyumna and Bandyopadhyay (2008) based on 

HSDT, Hosseini-Hashemi et al. (2011b) based on Reddy’s 

theory, Hosseini-Hashemi et al. (2011a) based on FSDT and 

Tai et al. (2014) based on a refined plate theory. It can be 

seen that for the plate with p = 0, i.e., fully ceramic 

isotropic plate, the results of present theory are well 

agreement with those of 3-D, HSDT, and FSDT solutions. 

However, for FG plate with non-zero values of p, the results 

of present theory and other shear deformation theories are 

higher than those obtained by 3-D exact solutions of Vel 

and Batra (2004). The reason for this feature may be due to 

the way to estimate the material properties of FG plates. In 

Vel and Batra (2004), the material properties at a point were 

estimated from the local volume fractions using Mori-

Tanaka scheme (Mori and Tanaka 1973), whereas in present 

and other studies, the material properties are assumed to 

vary through the thickness of the plate with a power law 

distribution of the volume fractions of the two materials. 

The CPT overestimates the frequency of FG plates 

compared to the shear deformation theories and 3-D 

solutions. The difference between CPT and shear 

deformation theories and 3-D solutions is more 

considerable for thick plates. 

For example, the difference between the CPT and the 

present theory, for fully ceramic plate, increases from 

2.59% to 19.75% when the a/h ratio is decreased from 10 to

10 . It is observed that there is an excellent agreement 

between the results obtained by present theory and Reddy’s 

theory (Hosseini-Hashemi et al. 2011b), and the results 

computed independently in this study based on FSDT and 

HSDT coincide with those reported in open literature. It 

should be noted that the present theory involves four 

unknowns as against five unknowns in the case of FSDT 

and HSDT of Reddy. 

The next comparison is carried out for SS Al/Al2O3 

square plates. Frequency parameters 
^

  are shown in Table  
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Table 2 Comparison of fundamental frequency parameter   of 

SS Al/ZrO2 square plate 

Theory 

p=0 p=1 a/h=5 

10/ ha  a/h=10 a/h=5 a/h=10 a/h=20 p=2 p=3 p=5 

3-D (Vel and Batra 

2004) 
0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

HSDT (Matsunaga 

2008) 
0.4658 0.0578 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281 

HSDT (Pradyumna and 

Bandyopadhyay 2008) 
0.4658 0.0578 0.2257 0.0613 0.0157 0.2237 0.2243 0.2253 

HSDT (Hosseini-

Hashemi et al. 2011b) 
0.4623 0.0577 0.2276 0.0619 0.0158 0.2256 0.2263 0.2272 

FSDT (Hosseini-

Hashemi et al. 2011a) 

0.4618 

 
0.0577 0.2276 0.0619 0.0158 0.2264 0.2276 0.2291 

HSDTa 0.4623 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2272 

FSDTa 0.4618 0.0577 0.2276 0.0619 0.0158 0.2264 0.2276 0.2291 

CPTa 0.5535 0.0592 0.2479 0.0634 0.0159 0.2473 0.2497 0.2526 

Tai et al. 2014 0.4623 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2272 

Present 0.4622 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2272 

a Results from Tai and Ho (2014) 
 

 

3. It can be seen that the results obtained by present theory 

are good agreement with those reported by Matsunaga 

(2008) based on 2-D theory, Hosseini-Hashemi et al. 

(2011b) based on HSDT, and Hosseini-Hashemi et al. 

(2011a) based on FSDT. Also, the results computed 

independently in this study based on FSDT, HSDT and the 

refined plate theory of Tai et al. (2014) coincide with those 

reported in the literature. The results also indicate that the 

CPT overestimates the natural frequency of FG plates, and 

the difference between the CPT and present theory is 

considerable for thick plate at higher modes of vibration. 

The variations of fundamental frequency parameter   

with respect to power law index p and thickness ratio a/h 

are shown in Fig. 2 and 3, respectively. Compared to the 

refined plate theory of Tai et al. (2014), it can be observed 

that the frequency obtained using the present theory is in 

good agreement with those given by the refined plate theory 

of Tai et al. (2014) for all values of power law index p and 

thickness ratio a/h and various boundary conditions. 

 

3.2 Parameter Studies 
 

After verifying the accuracy of the present solution, 

parameter studies are carried out to investigate the effects of 

variations of power law index, thickness ratio, and aspect 

ratio on natural frequency of Al/Al2O3 plates. Based on the 

present solutions, the variations of fundamental frequency 

parameters   of FG plates with respect to power law 

index p, thickness ratio a/h and aspect ratio b/a are 

illustrated in Figs. 4-6, respectively. Furthermore, 

comprehensive results are tabulated in Tables 5-8 for 

Al/Al2O3 plates with different boundary conditions. 

In each table, the aspect ratio b/a are taken to be 0.5, 1 and 

2, while three different values of thickness ratios a/h are 

examined. In addition, six arbitrary values of the power law 

index p are considered. The following points can be 

noticeable from Figs. 4-6 and Tables 5-8: 

-Regardless of boundary condition, thickness ratio, and 

aspect ratio, the frequency parameter drops as the power 

law index increases. A prominent drop in frequency occurs  

Table 3 Comparison of natural frequency parameter 
^

  of SS  

Al/Al2O3 square plate 

a/h Mode Method 

Power law index, p 

0 0.5 1 4 10 

5 

1 

HSDT (Matsunaga, 2008) 0.2121 0.1819 0.1640 0.1383 0.1306 

HSDT (Hosseini-Hashemi et al. 

2011b) 
0.2113 0.1807 0.1631 0.1378 0.1301 

FSDT (Hosseini-Hashemi et al. 

2011a) 
0.2112 0.1805 0.1631 0.1397 0.1324 

HSDTa 0.2113 0.1807 0.1631 0.1378 0.1301 

FSDTa 0.2112 0.1805 0.1631 0.1397 0.1324 

CPTa 0.2314 0.1959 0.1762 0.1524 0.1467 

Tai et al. (2014) 0.2113 0.1807 0.1631 0.1378 0.1301 

Present 0.2113 0.1807 0.1631 0.1379 0.1301 

2 

HSDT (Matsunaga 2008) 0.4658 0.4040 0.3644 0.3000 0.2790 

HSDT (Hosseini-Hashemi et al. 

2011b) 
0.4623 0.3989 0.3607 0.2980 0.2771 

FSDT (Hosseini-Hashemi et al. 

2011a) 
0.4618 0.3978 0.3604 0.3049 0.2856 

HSDTa 0.4623 0.3989 0.3607 0.2980 0.2771 

FSDTa 0.4618 0.3978 0.3604 0.3049 0.2856 

CPTa 0.5535 0.4681 0.4198 0.3603 0.3481 

Tai et al. 2014 0.4623 0.3989 0.3607 0.2980 0.2771 

Present 0.4622 0.3989 0.3607 0.2982 0.2772 

10 

1 

HSDT (Matsunaga 2008) 0.0577 0.0492 0.0443 0.0381 0.0364 

HSDT (Hosseini-Hashemi et al. 

2011b) 
0.0577 0.0490 0.0442 0.0381 0.0364 

FSDT (Hosseini-Hashemi et al. 

2011a) 
0.0577 0.0490 0.0442 0.0382 0.0366 

HSDTa 0.0577 0.0490 0.0442 0.0381 0.0364 

FSDTa 0.0577 0.0490 0.0442 0.0382 0.0366 

CPTa 0.0592 0.0502 0.0452 0.0392 0.0377 

Tai et al. 2014 0.0577 0.0490 0.0442 0.0381 0.0364 

Present 0.0577 0.0490 0.0442 0.0381 0.0364 

2 

HSDT (Matsunaga, 2008) 0.1381 0.1180 0.1063 0.0904 0.0859 

HSDT (Hosseini-Hashemi et al. 

2011b) 
0.1377 0.1174 0.1059 0.0903 0.0856 

FSDT (Hosseini-Hashemi et al. 

2011a) 
0.1376 0.1173 0.1059 0.0911 0.0867 

HSDTa 0.1376 0.1174 0.1059 0.0902 0.0856 

FSDTa 0.1376 0.1173 0.1059 0.0911 0.0867 

CPTa 0.1464 0.1239 0.1115 0.0966 0.0930 

Tai et al. (2014) 0.1376 0.1174 0.1059 0.0902 0.0856 

Present 0.1376 0.1174 0.1059 0.0902 0.0856 

20 1 

HSDT (Hosseini-Hashemi et al. 

2011b) 
0.0148 0.0125 0.0113 0.0098 0.0094 

FSDT (Hosseini-Hashemi et al. 

2011a) 
0.0148 0.0125 0.0113 0.0098 0.0094 

HSDTa 0.0148 0.0125 0.0113 0.0098 0.0094 

FSDTa 0.0148 0.0125 0.0113 0.0098 0.0094 

CPTa 0.0149 0.0126 0.0114 0.0099 0.0095 

Tai et al. 2014 0.0148 0.0125 0.0113 0.0098 0.0094 

Present 0.0148 0.0125 0.0113 0.0098 0.0094 

a Results from Ref. (Tai and Ho 2014). 
 

 

when the power law index varies between 0 and 2 (see Fig. 

4). This is due to the fact that increasing the power law 

index increases the volume fraction of metal. 
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Fig. 2 Comparison of the variation of fundamental frequency 

parameter   of Al/ZrO2 Square Plate versus power law index 

p when a/h=10 

 

 

Fig. 3 Comparison of the variation of fundamental frequency 

parameter   of Al/ZrO2 square plate versus thickness ratio 

a/h when p=1 

 

 
Fig. 4 Effect of power law index p on fundamental frequency 

parameter   of Al/Al2O3 Square Plate when a/h=10 

 

 

Fig. 5 Effect of thickness ratio a/h on fundamental 

frequency parameter   of Al/Al2O3 square plate when 
p=1 

 
Fig. 6 Effect of aspect ratio b/a on fundamental frequency 

parameter   of Al/Al2O3 rectangular plate when a/h=10 

and p=1 
 

Table 5 Fundamental frequency parameter   of CC 

Al/Al2O3 plate 

a/b a/h 

Power law index, p 

0 0.5 1 5 10 

0.5 

5 5.9081 5.0932 4.6108 3.7608 3.5693 

10 6.7644 5.7627 5.2008 4.4003 4.2315 

20 7.0523 5.9825 5.3936 4.6267 4.4719 

1.0 

5 7.1719 6.1781 5.5894 4.5637 4.3360 

10 8.2312 7.0111 6.3261 5.3526 5.1489 

20 8.5931 7.2893 6.5714 5.6368 5.4486 

2.0 

5 12.4913 10.8040 9.7779 7.8702 7.4494 

10 15.1495 12.9337 11.6720 9.7914 9.3965 

20 16.2033 13.7554 12.4013 10.6064 10.2437 

 

Table 6 Fundamental frequency parameter   of CS 

Al/Al2O3 Plate 

a/b a/h 

Power law index, p 

0 0.5 1 5 10 

0.5 

5 4.6336 3.9686 3.5850 2.9791 2.8482 

10 5.0677 4.3068 3.8839 3.3107 3.1933 

20 5.2007 4.4087 3.9739 3.4162 3.3048 

1.0 

5 6.1660 5.2890 4.7781 3.9482 3.7693 

10 6.8697 5.8419 5.2685 4.4799 4.3181 

20 7.0959 6.0164 5.4231 4.6587 4.5058 

2.0 

5 12.0278 10.3884 9.3966 7.5917 7.1971 

10 14.4399 12.3198 11.1157 9.3429 8.9733 

20 15.3756 13.0500 11.7646 10.0684 9.7267 

 

Table 7 Fundamental frequency parameter   of SS 

Al/Al2O3 plate 

a/b a/h 

Power law index, p 

0 0.5 1 5 10 

 

0.5 

5 3.4413 2.9347 2.6476 2.2285 2.1414 

10 3.6518 3.0990 2.7937 2.3921 2.3112 

20 3.7123 3.1458 2.8352 2.4403 2.3619 

 

1.0 

5 5.2815 4.5181 4.0782 3.3967 3.2529 

10 5.7695 4.9015 4.4193 3.7693 3.6375 

20 5.9199 5.0179 4.5228 3.8886 3.7624 
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Table 7 Continued 

a/b a/h 

Power law index, p 

0 0.5 1 5 10 

 

2.0 

5 11.5562 9.9714 9.0165 7.3040 6.9318 

10 13.7655 11.7390 10.5904 8.9141 8.5659 

20 14.6073 12.3961 11.1748 9.5682 9.2451 

 

Table 8 Fundamental frequency parameter   of CF 

Al/Al2O3 plate 

a/b a/h 

Power law index, p 

0 0.5 1 5 10 

 

0.5 

5 1.0849 0.9239 0.8339 0.7064 0.6795 

10 1.1259 0.9551 0.8610 0.7389 0.7143 

20 1.1370 0.9634 0.8683 0.7478 0.7239 

 

1.0 

5 2.7254 2.3219 2.0946 1.7689 1.7015 

10 2.8635 2.4293 2.1899 1.8772 1.8144 

20 2.9022 2.4591 2.2163 1.9083 1.8471 

 

2.0 

5 9.4721 8.1526 7.3677 6.0157 5.7241 

10 10.9883 9.3589 8.4416 7.1359 6.8667 

20 11.5290 9.7799 8.8158 7.5591 7.3073 

 

 

-Regardless of boundary condition, aspect ratio, and 

power law index, the frequency parameter increases with 

the increase of thickness ratio a/h. The increase of 

frequency becomes significant for thick plate with a/hπ5 

(see Fig. 5). Such behavior is due to the influence of rotary 

inertia and shear deformations. 

-Regardless of boundary condition, thickness ratio, and 

power law index, the frequency parameter decreases by 

increasing the aspect ratio b/a (see Fig. 6). 

-Regardless of aspect ratio, thickness ratio, and power 

law index, the frequency parameter increases when higher 

restraining boundary condition is used at the other two 

edges of plates. In other words, the lowest and highest 

values of frequency correspond to the CF and CC plates, 

respectively (see Figs. 4-6). Such behavior is due to the fact 

that higher constraints at the edges increase the flexural 

rigidity of the plate, leading to a higher frequency response. 
 

 

4. Conclusions 
 

An efficient and simple refined shear deformation 

theory is successfully developed for FG plates with two 

opposite edges simply supported and the other two edges 

having arbitrary boundary conditions. The RPT accounts for 

quadratic variation of the transverse shear strains across the 

thickness, and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate 

without using shear correction factors. The effects of many 

parameters on the free vibration in FGM plates under 

various boundary conditions are all investigated. The results 

of present theory with four independent variables are 

comparable with those generated by other shear 

deformation plate theories containing more number of 

independent variables. 
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