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1. Introduction 
 

A rockburst is a complex dynamic instability 

phenomenon (Hedley 1992), which can occur during 

underground excavation in areas with large in-situ stresses. 

As a result of the sudden release of accumulated strain 

energy, rocks can become loose, crack, and even eject 

violently (Canadian Rockburst Research Program 1996). 

Rockbursts can damage underground structures and 

equipments and threaten the health and safety of workers 

(Sainoki 2016). A tunnel or excavation space may be 

rendered unusable after an occurrence. As a result, 

rockbursts are considered a major technical challenge to 

deep mining efforts. Because they are sudden, disruptive, 

and complex, accurate prediction of rockbursts is difficult 

(Blake and Hedley 2003) and remains an urgent problem 

(Pytlik et al. 2016). 

The phenomenon has been discussed extensively by 

many scholars. Rockburst tendency is an important metric 

to quantify the risk and potential intensity of occurrences 

and to grade the hazard of an affected mine. However, few 

methods are still quite accurate prediction, and they are not 

generally used to predicting rockburst in mines. In recent 

decades, meaningful advances have been made by many 

scholars (Singh 1989, Dou et al. 2009, Marek 2009, 

Patynska and Kabiesz 2009, Marian 2011, Shokouhi et al. 

2017, Li et al. 2016). A few have proposed some criteria to 

better understand the rockburst mechanism, such as strength 

theory (Hoek and Brown 1980), stiffness theory (Cook 

1965) and energy theory (Wiebols and Cook 1968). 
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However, these criteria need to be applied to further field 

practice. In addition, several indexes have been proposed to 

measure rockburst tendency, such as burst energy release 

(Hua and You 2001, Jiang et al. 2010), impact energy 

(Singh 1988) and rock integrity. These criteria derive from 

the mechanical parameters obtained by testing rock 

samples. Some important values are compressive strength, 

tensile strength, capacity to store and release elastic strain 

energy, and surrounding rock stress and integrity.  

In light of the complexity of the rockburst phenomenon, 

the use of a single parameter is insufficient for prediction 

purposes. For example, the acoustic emission, chip drilling, 

removal, vibration, and resistance methods have been 

proposed and applied, but in isolation, each is lacking in 

predictive power. As a multifactor, coupling induced 

dynamic instability, it is essential to establish a calculation 

method to evaluate the rockburst tendency involving the 

proper parameters. However, few studies have tried to 

combine the various factors relating to rockburst hazard. 

Recently, some interesting models have been derived using 

artificial intelligence, such as a neural network (Sun et al. 

2009), fuzzy theory (Adoko et al. 2013, Wang et al. 2015a) 

and Bayesian networks (Li et al. 2017), along with other 

integrated analysis methods. These research results indicate 

that the occurrence of rockbursts is closely related to the 

mechanical properties of the rock mass, the geological 

structure, and the surrounding stress. However, these 

attempts have not yet formed a complete theoretical system. 

This paper integrates several critical factors into a single 

model for rockburst tendency prediction. 

Bayesian theory, which has been successfully applied in 

many fields of study, provides a clear and flexible method 

for making predictions using incomplete knowledge. 

Heckerman (1990) used a Bayesian framework to improve  
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Table 1 Physical data of samples 

No. 
Height 

(mm) 

Diameter 

(mm) 

σc 

(MPa) 

σt
 

(MPa) 

Modulus 

(GPa) 

Poisson 

ratio 

1 100.72 49.86 100.08 8.46 26.7 0.20 

2 100.34 50.27 140.68 10.89 27.1 0.24 

3 99.60 50.55 250.54 9.85 31.6 0.19 

4 99.82 50.57 88.77 3.74 31.2 0.23 

5 100.15 49.98 180.44 8.15 25.8 0.27 

6 100.37 49.73 236.80 8.37 22.5 0.23 

7 100.34 50.48 120.38 6.53 86.7 0.23 

8 99.82 49.79 130.14 6.86 47.5 0.25 

9 99.58 49.84 180.13 6.33 51.2 0.26 

10 100.84 49.96 64.24 2.14 24.3 0.25 

11 100.52 49.96 82.46 4.20 28.7 0.22 

12 100.04 50.28 89.33 3.33 29.1 0.20 

13 99.15 50.54 120.69 5.41 41.6 0.17 

14 99.84 50.58 195.53 7.10 86.2 0.24 

15 100.35 49.88 115.50 3.52 29.5 0.23 

16 100.37 49.74 150.93 5.42 23.7 0.20 

17 100.24 50.58 178.96 4.37 84.8 0.21 

18 99.84 49.78 78.84 4.75 37.5 0.27 

*σc refers to uniaxial compression strength; σt refers to 

uniaxial tensile strength 

 

 

the process of medical diagnosis. Making full use of its 

strong information processing ability (Weidl et al. 2003), a 

Bayesian network was applied to the monitoring and 

management of industrial production processes. A Bayesian 

model was utilized for choosing investment ventures, and 

displayed a good ability to cope with future uncertainty 

(Kemmerer et al. 2002). In addition, Bayesian theory was 

used to identify faults in a computer system (Jensen et al. 

2001).  

Bayesian theory has been demonstrated to be a reliable 

approach to address complex problems involving many 

variables with large uncertainties, and models that consider 

a multi-parameter space are better suited to predicting 

rockburst tendency than single-variable models. In this 

study, the main factors affecting risk and intensity of 

rockbursts were used to make a Bayesian model. 

 

 

2. Materials and methods 
 

2.1 Materials 
 

In this study, the physical and mechanical parameters of 

limestone samples were measured. All tested samples were 

from the Beishan mine in Guangxi province and processed 

into a standard cylindrical shape 50 mm in diameter and 

100 mm in length. The uniaxial compressive strength (σc) 

tests were conducted on a rock mechanics testing system 

(MTS 815, MTS System Co., Eden Prairie, USA), which is 

a computer-controlled, servo-hydraulic compression 

machine. The testing system was a Windows-based 

platform with visual control operating software, which 

could record the current time, load, stress, displacement, 

strain value, load-displacement curve, and stress-strain 

curve, among other variables. Equal-displacement loading 

was selected as the control mode for the test. The loading 

method utilized axial strain control, and the loading rate 

was 2×10
-6

 mm/mm·s
-1

 until rock failure. The uniaxial 

tensile strength (σt) was obtained by using the Brazilian 

testing method, and the other parameters were calculated. 

The results are shown in Table 1. 

 

2.2 Bayesian model 
 

A Bayesian discriminating model is a statistical analysis 

method commonly used to distinguish between types of 

samples. The primary procedure is based on an artificial 

familiarity with known samples and possible attendant 

consequences. First, the empirical probability and 

covariance of each classification is analyzed and calculated. 

Then, a discriminant function is formulated to grade 

samples. Finally, a posterior probability is calculated to 

verify the original evaluation. New samples can then be 

easily classified after being input into model. Here is a 

detailed derivation following previous author (Gao 1999): 

 

Empirical probability 

A sample set can be divided into k categories 

G1,G2,…Gk 
according to a certain criterion. Assuming 

each sample has m factors, x1,x2,…xm, that are normally 

distributed, a given sample can be expressed as a m-

dimensional array
i ( )

j 1 2
=[(x , x , x ) ]

i T

m j
X

（）
, where 

i=1,2,3,…k, j=1,2,3,…ni, and 
i

j i
X G

（ ）
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If there are a sufficient number of samples, the 

“empirical probability,” which is the probability that a 

single sample will be classified into Gi, can be expressed as 
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Mean values and covariance 

Moment estimation of mean values and variances can be 

introduced to generalize the distribution characteristics of 

the i th category 
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where
i (i) 2

i
, ,X X S

（）
refer to the mean values, expectation 

of mean values, and covariance of the i th category, 

respectively. Additionally, Σ stands for the covariance 

matrix of the overall sample population. 

 

Empirical discriminant 
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In this Bayesian model, the empirical discriminant of 

sample classification can be expressed as 

-1 -1

i i i i

1
(X)= - ln

2

T T

i
X p       (5) 

The discriminating pattern can be simplified to be:  

If 
i j

1

(X)= max (X)
j k

 
 

, then
i

X G . 

 

Posterior probability and verification 

A Bayesian distance discriminant method was used to 

separate the samples in this paper. The distance of a given 

sample X=(x1,x2,…xm)
T
 to the i th category’s centroid can be 

calculated as 

2 1
( ) ( ) ( ) 2ln

T

j j j j
d X X X p 


      (6) 

so the posterior probability that X
 

belongs to the i th 

category can be calculated 

2

j

2

1

1
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2( | )
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2

j

k

i

i

d X

P G X

d X








 (7) 

If 
j

( | )P G X > 50%, then
i

X G . 

This confirms the previous result. 

 

 

3. Key factors of rockburst tendency 
 

3.1 Induced factors 
 

Numerous engineering datasets show that rockbursts 

have usually occurred in hard-rock zones that were mostly 

intact and exhibited high strength, while there were few 

rockbursts in soft-rock areas. Thus, the occurrence of 

rockbursts is strongly related to the mechanical properties 

of surrounding rock mass. The development and triggering 

of a rockburst is a physical process of gradual energy 

storage and sudden instability, which manifests as a large 

energy release. Laboratory tests show that these rocks are 

brittle but high-strength with linear elastic characteristics. 

The tests also show that these rocks have the characteristics 

of elastic-brittle failure and the elastic modulus is relative 

high. As a result, they are prone to brittle failure in the high-

stress regime. Excavation can result in stress redistribution 

and concentration of surrounding rock. Once local brittle 

failure occurs, the accumulated energy is quickly released, 

causing a rockburst. 

There is a close relationship between the occurrence of a 

rockburst and the characteristics of the in-situ stress 

concentration (Zhao et al. 2017). Under the same geological 

conditions, high stress is concentrated in the local rock. 

Some rock zones have instead low crustal stress levels. An 

intact rock with high crustal stress usually has a high elastic 

modulus, which means a large capacity to store strain 

energy. High stress locations are especially prone to 

rockbursts, especially zones not in a hydrostatic state. In the 

stress concentration zones, most rockbursts are attributable 

to the discordance of three dimensional stresses, which 

leads to the shear failure of the rock, rapid energy release, 

and rockburst (Zhang et al. 2013). 

Deformations within a rock mass are dominated by 

elastic strain, and most of the brittle rock with high strength 

belongs to this category. Conversely, a rock mass dominated 

by plastic deformation can store less energy. In general, 

high-strength, brittle rock at underground engineering sites 

is most likely to induce rockburst.  

With respect to energy, rock deformation and failure is 

the result of energy dissipation and release. The relationship 

between the dissipated energy and released energy was 

analysed along the uniaxial loading path; therefore, 

characterizing rockburst tendency using the energy index 

may be an effective method. The deformation 

characteristics prior to rock failure can be approximately 

captured by the stress-strain behaviour (Müller 2007). 

Rockburst tendency is used to characterize the risk and 

intensity of these events. The severity can be estimated 

using different quantitative or qualitative methods. 

Generally, rockburst intensity is divided into four levels, 

namely, strong rockburst, moderate rockburst, weak 

rockburst, and none. 

Most scholars who study rockburst tendency are 

concerned with the mechanical properties of field rocks, 

while others believe that the stress state of the surrounding 

rock mass is more critical. In the previous literature, one or 

more factors were used to formulate variables to evaluate 

rockburst tendency. Some factors adopted here are listed in 

Table 2. We see that rockburst tendency was associated 

most often with σc and σθ, and followed by σ1 and Wet. 

 

3.2 Critical factors 
 

There is a complicated, nonlinear relationship between a 

rockburst and its precipitating factors. In order to make 

effective prediction of rockbursts, consideration should be 

given to integrated indexes involving multiple variables. 

The uniaxial compression strength σc and uniaxial tensional 

 

 

Table 2 Factors associated with rockburst tendency 

Scholars 
Impact factors 

σ1 σθ σL σc σt Wet 

Russenses (1974)  √  √   

Turchaninov (1981)  √ √ √   

Hoek and Brown (1980)  √  √   

Barton (1974) √   √ √  

Kidybiński (1981)      √ 

Tao (1987) √   √   

Xu (2002)  √  √   

Wang (1998)  √  √   

Zhang (1991)  √  √  √ 

*σ1 refers to maximum principal stress, σθ refers to 

maximum tangential stress, σL refers to axial stress of 

surrounding rocks. Additionally, σc refers to uniaxial 

compression strength, σt refers to uniaxial tensile strength, 

Wet refers to elastic energy release index of in-situ rocks. 
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Fig. 1 Energy release index (Kidybiński 1981) during 

rockburst testing 

 

Table 3 Representative criteria for rockburst tendency 

Methods Formula 
Rockburst grades criterion 

None Weak Moderate Strong 

Rock brittleness 

index (Tan 1991) 
 

>40.0 
26.7. 

~40.0 

14.5 

~26.7 
<14.5 

Russense’s 

method 

(Russense 1974) 
,

 

<0.2 
0.2 

~0.3 

0.3 

~0.55 
>0.55 

Kidybiński’s 

method 

(Kidybiński1981)  

<2.0 
2.0 

~3.5 

3.5 

~5.0 
>5.0 

 

 

strength σt are the main factors influencing the mechanical 

properties of rocks. The rock strength-stress ratio Rb, that is, 

the brittleness coefficient, can be applied to predict 

rockburst tendency. Generally, larger Rb values are 

associated with greater risks for rockburst. Hereafter, Wet is 

determined by the uniaxial load/unload curve. In order to 

obtain the loading/unloading path, the rock is usually 

loaded to 70%-80% peak stress, and then unloaded to zero. 

Wet equals to the ratio of released energy to the dissipated 

energy along the loading/unloading path. As shown in Fig. 

1, Φsp is the area between the loading path, and Φst is the 

area under unloading path, and the energy index Wet is 

calculated as the area ratio Φsp/Φst. This elastic energy 

release index of rocks has also been used to evaluate 

rockburst tendency (Kidybiński 1981). Moreover, the axial 

stress state of the surrounding rock mass was taken into 

account using Russense’s criterion Rθ (Russense 1974), 

which also greatly influences the risk of rockburst. Physical 

and mechanical properties, the elastic energy release index, 

and the stress in the initial rock mass were considered from 

different perspectives in these methods. A number of single-

variable methods have been widely recognized and applied, 

and three of them are listed in Table 3. 

The grading criteria for the different methods are 

presented on the Table 3. Each row represents a different 

method, and the columns give the criteria within each for 

grading rockbusts into the four intensity levels. The three 

indexes Rb, Rθ and Wet were used as the critical factors in 

this paper. 

 

 
4. Predicting rockburst risk 

Table 4 Critical factors of the training samples 

No. σc σt σθ Rb Rθ Wet 
Actual rockburst 

grades 

1 100.08 8.46 60.70 11.83 0.61 6.56 Strong 

2 140.68 10.89 78.40 12.92 0.56 5.52 Strong 

3 250.54 9.85 97.55 25.44 0.39 8.60 Strong 

4 88.77 3.74 30.53 23.74 0.34 6.23 Moderate 

5 180.44 8.15 67.36 22.14 0.37 5.00 Moderate 

6 236.80 8.37 109.32 28.29 0.46 4.65 Moderate 

7 120.38 6.53 98.68 18.43 0.82 3.50 Moderate 

8 130.14 6.86 55.40 18.97 0.43 4.64 Moderate 

9 180.13 6.33 65.42 28.46 0.36 3.45 Weak 

10 64.24 2.14 18.15 30.02 0.28 4.97 Weak 

11 82.46 4.20 21.71 19.63 0.26 2.56 Weak 

12 89.33 3.33 27.56 26.83 0.31 3.32 Weak 

13 120.69 5.41 30.22 22.31 0.25 4.34 Weak 

14 195.53 7.10 42.60 27.54 0.22 5.55 Weak 

15 115.50 3.52 11.62 32.81 0.10 2.70 None 

16 150.93 5.42 34.21 27.85 0.23 2.80 None 

17 178.96 4.37 18.80 40.95 0.11 1.46 None 

18 78.84 4.75 13.50 16.60 0.17 3.30 None 

* σc refers to uniaxial compression strength, σt refers to 

uniaxial tensile strength, σθ refers to maximum tangential 

stress. Additionally, Wet refers to elastic energy release 

index of in-situ rocks. 

 

 

4.1 Training samples 
 

We have been engaged in field tests and laboratory 

research on underground engineering dynamic disaster 

prevention for many years. It was determined that that 

rockburst grades are approximately normal distribution. 

That is, strong and very weak rockbursts are relatively less 

frequent, while moderate and weak rockbursts account for 

the majority of cases. The Bayesian discriminant model 

used is based on assuming a normal distribution for the 

input variables, as well. The geological description, in-situ 

stress measurement, and laboratory testing procedures were 

described previously (Wang et al. 2015a, b, Wang et al. 

2016, Wang 2014, Wang et al. 2014). Experimental samples 

were randomly selected from a large data set for training the 

Bayesian model. The basic parameters of the training 

samples and associated rockburst grades are listed in Table 

4. 

 

4.2 Predicting rockburst tendency using a Bayesian 
model 

 

In this study, the critical factors Rb(X1), Rθ(X2) and 

Wet(X3) were used as the basic parameters for predicting 

rockburst risk in a Bayesian model. The classification 

categories of rockburst tendency are strong (G1), moderate 

(G2), weak (G3), and no rockburst (G4). In other words, all 

of the basic parameters were included in the three-

dimensional matrix G=(X1,X2,X3)
T
, which forms the dataset 

of the Bayesian model. These results were calculated as 

follows: 

c

b

t

R





=
c

R 






1 3   

sp
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st'
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According to these selected training samples, the 

empirical probability is 

1 2 3 4

3 5 6 4
, , ,

18 18 18 18
p p p p     

The mean values of the variable categories are 

1 1 1

1 1 2 3
( , , ) (16.73, 0.52, 6.89)

T
X X X 

（ ） （ ） （ ）
 

2 2

2 1 2 3
( , , ) (22.31, 0.48, 4.80)

T
X X X 

（ ） （ ） （2）
 

3 1 2 3
( , , ) (25.80, 0.28, 4.03)

T
X X X 

（3） （3） （3）
 

4 1 2 3
( , , ) (29.55, 0.15, 2.57)

T
X X X 

（4） （4） （4）
 

The matrix of mean values can be expressed as 

16.73 22.31 25.80 29.55

= 0.52 0.48 0.28 0.15

6.89 4.80 4.03 2.57

X

 
 
 
  

 

The covariance matrixes of the sample categories were  

2

1

57.16 0.85 10.86

0.85 0.01 0.15

10.86 0.15 2.45

S



  



 
 
 
  

 

2

2

16.00 0.36 1.67

0.36 0.04 0.16

1.67 0.16 0.96

S



  



 
 
 
  

 

2

3

15.83 0.07 2.46

0.07 0.01 0.03

2.46 0.03 1.26

S  



 
 
 
  

 

2

4

103.77 0.36 7.36

0.36 0.01 0.03

7.36 0.03 0.61

S

 

 



 
 
 
  

 

The covariance matrix of the sample population was 

calculated as 

40.63 -0.27 1.33

-0.27 0.01 0.07

1.33 0.07 1.20

  



 
 
 
  

 

While its inverse is 

-1

0.03 0.56 0.01

0.56 113.79 6.25

0.01 6.25 1.20

 

 
 
 
  

 

The discriminants for sample categories were then 

obtained: 

1 1 2 3 1 2 3
, , ) 0.78 111.41 11.58 77.12X X X x x x    （  

2 1 2 3 1 2 3
, , ) 0.92 97.77 8.88 56.56X X X x x x    （  

3 1 2 3 1 2 3
, , ) 0.90 71.71 6.68 36.26X X X x x x    （  

4 1 2 3 1 2 3
, , ) 0.93 49.87 4.11 24.28X X X x x x    （  

 

Fig. 2 Failure modes of experimental rockbursts 

 

Table 5 Final classifications and posterior probabilities 

No. 
Discriminants Classified 

results 

Backward 

probability W1 W2 W3 W4 

1 75.72 71.84 61.72 43.94 Strong 98.78% 

2 59.05 58.80 52.22 38.22 Strong 68.10% 

3 85.83 81.22 72.03 54.15 Strong 99.41% 

4 51.99 54.18 51.41 40.56 Moderate 80.73% 

5 39.76 44.67 43.86 35.48 Moderate 72.29% 

6 50.38 55.85 53.40 44.17 Moderate 92.73% 

7 69.22 71.60 62.51 48.13 Moderate 86.62% 

8 38.94 43.68 42.36 33.67 Moderate 80.92% 

9 25.64 35.73 38.46 34.48 Weak 90.47% 

10 35.49 42.77 44.24 38.16 Weak 78.26% 

11 -2.72 9.95 17.41 17.63 None 65.21% 

12 16.77 27.73 32.21 29.70 Weak 88.05% 

13 18.56 26.95 30.79 26.80 Weak 94.91% 

14 33.05 63.96 41.25 35.01 Weak 94.54% 

15 -8.88 7.40 18.55 22.35 None 98.53% 

16 2.42 16.05 23.78 24.43 None 74.08% 

17 -16.36 4.31 17.91 25.04 None 99.95% 

18 -6.79 4.73 13.02 13.26 None 65.71% 

 

 

5. Results and discussion 
 

The goal of this study is to establish a more reliable 

model for predicting rockburst risk. Therefore, we 

introduced a multivariable Bayesian model using real 

sample data. As shown in Table 5 and Fig. 2, the final 

classifications and posterior probabilities were calculated, 

demonstrating a high rate of accuracy. Based on the raw 

data, the results of predicting rockburst risk using the 

existing methods were compared. Significant differences 

were observed between the results of the new method and 

the previous ones, even for a single sample, as shown in 

Table 6. With regard to predicting the actual rockburst 

grades, the accuracy rates of Rb, Rθ 
and Wet in isolation were 

61%, 72% and 56%, respectively. However, the 

multivariable Bayesian model was found to be significantly 

more reliable, with an accuracy rate of 94%. Only sample 

No.11 experienced a relatively small error. These results are 

consistent with the notion that the Bayesian model can 

achieve more reliable predictions of rockburst risk. 

In fact, there are many important factors that influence 

rockburst tendency. Only a few factors were considered in 

the previous prediction methods. The rock brittleness index 

(Rb) only considers the uniaxial compression strength and  
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tensile strength; the stress of surrounding rocks is not 

included in this model. Russenses’s method (Rθ) deals with 

the principal stress of surrounding rocks and uniaxial 

compression strength, but it does not account for the 

accumulated energy and rigidity of the surrounding rock 

mass. Finally, Kidybinski’s method (Wet) measures the 

capacity for rock to store and release elastic energy, while 

many other factors are ignored. Clearly, there are limitations 

in the traditional methods for predicting rockbursts. 

Because rockbursts are induced by multiple factors, 

considering a single factor alone inevitably leads to 

imprecise results. Conversely, our model benefitted from 

integrating the variables used in traditional methods, which 

could be input into the Bayesian model. In this research, Rb, 

Rθ and Wet were used as the critical factors in proposed 

model, plus the surrounding rock mass stress σ1 
and σθ, and 

the rock strength σc and σt. 

As shown in Table 6, the results from using the previous 

methods were inconsistent for all samples, except for #1, 2, 

8, and 16. Additionally, at least one method gave the 

incorrect rockburst grade for all samples besides #1, 2 and 

8. On the other hand, the proposed model always returned 

the correct grade, except for sample 16.  

The traditional methods are also limited in that they 

cannot differentiate the relative importance of the different 

variables. In addition, it is not always reasonable to update  

the variables to coordinate the field data. Although certain 

types of artificial intelligence, such as neural network 

models, could consider many factors simultaneously, these 

methods do not address the empirical probabilities and 

posterior probabilities in their calculations. A Bayesian 

model, however, can overcome these shortcomings to 

provide an ideal method for rockburst tendency prediction.  

Because of the limited availability of sample data, a 

 

 

self-validation process was implemented on the predictions 

from the new model. More samples will enable the model to 

be further optimized and tested, which we plan to perform 

in future research. However, our results demonstrate that 

the new model is a significant improvement over existing 

methods, and can be implemented for reliable rockburst 

tendency prediction. 

The special geological structures would affect the 

probability of rockburst. When the model is applied in the 

field, we can get data that most similar to geological 

conditions according to the geological measurement results, 

indoor experiments and numerical simulation, this can 

ensure the accuracy of the results. 

 

 

6. Conclusions 
 

The occurrence of rockbursts is related to the physical 

and mechanical properties of rocks and the in-situ stresses 

of the surrounding environments. Improving upon three 

traditional prediction methods, we used a Bayesian multi-

parameter model to predict rockburst tendency. The 

predictions of the new model were determined to be more 

reliable than those from the original methods. 

By considering multiple factors, the new model can 

overcome the limitations of single-factor methods. In this 

study, all of the parameters and methods were considered in 

order to eliminate subjective judgments. These variables 

included the rock brittleness index Rb, Russense’s Rθ, 

Kidybinski’s Wet, the surrounding rock mass stress σL and 

σθ, and the rock strength σc and σt. 

The results demonstrated that the multivariable 

Bayesian model was highly accurate in predicting rockburst 

tendency. We recommend that Bayesian models be 

Table 6 Comparison of predicted results 

No. 
Rock brittleness 

index (Rb) 

Russenses’s method 

(Rθ) 

Kidybinski’s  

method (Wet) 

Proposed 

model 

Actual rockburst 

grades 

1 Strong Strong Strong Strong Strong 

2 Strong Strong Strong Strong Strong 

3 Moderate Moderate Strong Strong Strong 

4 Moderate Moderate Strong Moderate Moderate 

5 Moderate Moderate Strong Moderate Moderate 

6 Weak Moderate Moderate Moderate Moderate 

7 Moderate Strong Moderate Moderate Moderate 

8 Moderate Moderate Moderate Moderate Moderate 

9 Weak Moderate Moderate Weak Weak 

10 Weak Weak Moderate Weak Weak 

11 Moderate Weak Weak None Weak 

12 Moderate Moderate Weak Weak Weak 

13 Moderate Weak Moderate Weak Weak 

14 Weak Weak Strong Weak Weak 

15 Weak None Weak None None 

16 Weak Weak Weak None None 

17 Weak None None None None 

18 Moderate None Weak None None 

* The Bold and Italic words indicate the predicting results are identical using different methods; The Bold words 

indicate the proposed model don't returned the correct grade. 
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Experimental investigation of predicting rockburst using Bayesian model 

incorporated in future work on predicting rockburst 

tendency. 
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