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1. Introduction 
 

The overburden rock behavior under compression plays 

a decisive role for tunnel stability. The prediction of stress-

strain responses of rocks under compression is important for 

the definition of Young’s modulus and stress and strain 

values at different stages of mechanical behavior of 

different rocks from zero strain/zero stress up to failure. A 

lot  of researches (Kodner 1963, Duncan and Chang 1970, 

Haas 1989, Tatsuoka and Shibuya 1992, Tharp and 

Scarbrough 1994,  Muravskii 1996, Puzrin and Burland 

1996,  Ching et al. 1997,  Fairhurst and Hudson 1999,  

Gutierrez et al. 2000,  Shibuya 2002,  Habimana et al. 

2002,  Palchik 2006, 2007,  Liu et al. 2009, Garaga and 

Latha 2010,  Palchik 2012, Bogusz and Bukowska 2015) 

were focused on  the modeling of stress-strain response of 

soils and rocks under compression. Stress-strain models 

(e.g., Kodner 1963, Duncan and Chang 1970, Haas 1989, 

Tatsuoka and Shibuya 1992, Tharp and Scarbrough 1994, 

Puzrin and Burland 1996, Fairhurst and Hudson 1999, 

Gutierrez et al. 2000, Shibuya 2002, Habimana et al. 2002) 

traditionally use normalized axial stress and strain values 

and require a certain number of unknown constants. The 

larger the number of unknown constants, the larger the 

number of data points over the pre-failure strain range 

needed for representing the stress-strain relationship.   

Hyperbolic (Kodner 1963, Duncan and Chang 1970, 

Tharp and Scarbrough 1994, Habimana et al. 2002), 

logarithmic (Puzrin and Burland 1996), double exponential  

(Shibuya 2002) and exponential (Palchik 2006, 2012) 

stress-strain models for different rock types have been  
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proposed.  Mathematical forms of the models (Tatsuoka 

and Shibuya 1992, Puzrin and Burland 1996, Shibuya 2002, 

Palchik 2006, 2012) which provide a better approximation 

of stress-strain data over the whole pre-failure strain range, 

and constants and  parameters involved in these models 

are discussed in detail elsewhere (Palchik 2006, 2012).  

Note that the stress-strain models proposed by Tatsuoka and 

Shibuya (1992), Puzrin and Burland (1996), Shibuya (2002) 

are suitable only for rocks exhibiting small (af < 0.5 %) 

failure strains. Kumara and Hayano (2016) have found  

deformation characteristics of crushed stone-sand mixtures, 

simulating fresh and fouled ballasts. Effect of particle shape 

on stress-strain behaviour of these mixtures is revealed. 

Yadollahia and Benli (2017) have studied stress-strain 

behavior of geopolymers: it is established how different 

fineness, mix design and curing method influence on 

geopolymer stress-strain response. Li et al. (2018) have 

conducted uniaxial loading cycle tests on the coal rock in 

order to study the rock dilatation at different loading rates.      

Palchik (2006, 2012) has proposed exponential stress-

strain models based on Haldane’s distribution function for 

weak-to-strong (c < 100 MPa) heterogeneous carbonate 

rocks (chalks, dolomites and limestones) exhibiting small 

(af < 0.5 %), intermediate (af ≤ 1 %) and large (af > 1 %) 

axial failure strains.  To obtain accurate stress-strain 

relationship over the whole pre-failure strain range with the 

proposed stress-strain models, it is necessary to have only 

one datum point (uniaxial compressive strength (c) and 

axial failure strain (af) at this strength). Unfortunately, 

erroneous opinion that af and c required for these models 

can be determined only by defining the whole stress-strain 

curve from zero strain/zero stress to failure using a press 

machine leads to a limited use of these useful models in 

engineering practice. 

The goal of this paper is to argue that these exponential 

equations (Palchik 2006, 2012) presented in transformed 
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forms allow one to avoid the measurement of axial failure 

strain (af) and the mechanical testing of rock samples under 

compression using a press machine. The applicability of 

transformed stress-strain models for accurate prediction of 

stress-strain responses of heterogeneous carbonate rocks 

over the whole pre-failure strain range is analyzed. 

The novelty of the presented work as compared to 

papers published earlier (Palchik 2006, 2012) is the 

mathematical formulation of exponential stress-strain 

models  which do not require the measurement of axial 

failure strain, argumentation of the choice of equations 

required for the prediction of stress-strain responses of 

carbonate rocks exhibiting different levels of axial failure 

strain, and detailed examination of proposed stress-strain 

models taking in account the most unfavorable points of 

stress-strain curves, where the values of relative errors are 

maximum.    
 

 

2. Background 
 

Palchik (2006, 2012) has recently created the following 

two exponential stress-strain models based on Haldane’s 

distribution function for heterogeneous carbonate rocks 

 

(1) 

 

(2) 

where a/c is a normalized axial stress; a (MPa) is a 

current axial stress; c (MPa) is an uniaxial compressive 

strength; a(% ) is a current axial strain; af (%) is an axial 

failure strain at c;  the constant 2 in Eq. (1) is a constant 

involved in the canonical form of Haldane’s function 

(Haldane 1919). In Eq. (2), k1 and k2 are statistical 

coefficients used instead of the constant equal to 2: k1 = 

1.63, k2 = 1.1 for carbonate rocks.  

It is obvious from Eqs. (1) and (2) that when a = 0, the 

value of a/c is zero.  When a = af, the value of a/c 

becomes equal to 1. All parameters (a, a, af and c) 

involved in Eqs. (1) and (2) are shown in Fig. 1.          

It should be noted that Eq. (1) is suitable for carbonate 

rocks exhibiting small (af < 0.5 %) and intermediate failure 

strains (af ≤ 1 %), whereas Eq. (2) is suitable for those 

having large axial failure strains (af > 1 %). The calculated 

normalized axial stress/axial strain curves for different 

levels of failure strain af = 0.2%, 0.4 %, …., 1 % (Eq.(1)) 

and af = 1.2 %, 1.4 %, … , 2.8  % (Eq.(2)) are presented 

in Fig. 2. Here all stress-strain curves are slightly concave 

upwards with a different degree of non-linearity. The latter 

is increased with growing axial strain. 

The exponential stress-strain models (Eqs. (1) and (2))  

based on Haldane’s distribution function  provide a better 

approximation of stress-strain data for weak-to-strong (c < 

100 MPa) heterogeneous carbonate rocks. As stated earlier, 

only one datum point (c and af at this c) is needed to 

predict the stress-strain relationship over the entire pre- 

 

Fig. 1 Stress and strain parameters: a and a are current 

axial stress and strain, respectively; c is uniaxial 

compressive strength, af is axial failure strain (at c) 

involved in Eqs. (1) and (2); a1 =0.05 % - 0.2 % and a1 

is one point measurement used as input parameter in Eqs. 

(13) and (15) 

 

 
Fig. 2 Calculated normalized axial stress-axial strain 

relations for different levels of axial failure strain (0.2 % 

< af < 2.8 %) 

 

 

failure strain range.  

In this study, the author intends to present Eqs. (1) and 

(2) in a more efficient manner, in which one point 

measurement (small strain at small stress) is used instead of 

the final point (c and af at this c ) of pre-failure strain 

range. Such transformation allows us to avoid the 

measurement of axial failure strain (af) and uniaxial 

compressive strength (c) in press machine for compressive 

testing.    

 

 

3. Test procedure 
 

Stress-strain responses of different heterogeneous 

carbonate rocks were observed at the Rock Mechanics 

Laboratory of the Ben-Gurion University. Chalk, dolomite 

and limestone samples exhibiting wide ranges of axial 

failure strains (0.13 % < af < 2.75 %), elastic modulus 

(6200 MPa < E < 56000 MPa), Poisson’s ratio (0.13 <  < 

0.49) and dry bulk density (1.6 g/cm
3 
<  < 2.7 g/cm

3
) were 

collected from different regions of Israel (Palchik 2006, 

2007, 2012). Rock samples were prepared following ISRM 

suggested methods with NX size (diameter of 54 mm and 

length/diameter ratio of 2). The samples were ground to the  

920



 

Applicability of exponential stress-strain models for carbonate rocks  

 

Fig. 3 Load frame (TerraTek system, model FX-S-33090) 
 

 

planeness of 0.0 1mm and cylinder perpendicularity within 

0.05 radians. All samples were oven dried at the 

temperature of 110
o
C for 24h. The selected rock samples 

were free of cracks, fissures and veins, which would act as 

planes of weakness and exert an undesirable effect on 

stress-strain curves. The studied rock samples may be 

described according to the ISRM suggested methods 

(Brown 1981) as weak (5 < c < 25 MPa), medium strong 

(25 < c < 50 MPa) and strong (50 < c < 100 MPa).  

The load frame used in this study (TerraTek system, 

model FX-S-33090) operates under hydraulic closed-loop 

servo-control with a maximum axial force of 1.4 MN and 

load frame stiffness of 510
9
 N/m. The load was measured 

by a sensitive load cell located in series with the sample 

having the maximum capacity of 1000 kN and the linearity 

of 0.5% of full scale.  The axial strain cantilever set has a 

10% strain range, and the radial strain cantilevers have a 

strain range limit of 7%, with the linearity of 1% for the full 

scale in both sets. The load frame and sample with radial 

and axial cantilever sets are described in detail elsewhere 

(Palchik and Hatzor 2000, Palchik 2014). All samples were 

tested at a constant strain rate of 10
-5

 /s and at the ambient 

temperature of 25
o
.  

The load frame is presented in Fig. 3. Axial load is 
applied by means of a servo-controlled actuator on the load 
frame. The rock sample is located inside the pressure 
vessel. Prior to testing, each sample was jacketed in a shrink 
tube to isolate the rock material from the pressure vessel oil 
even when the pressure in the vessel was zero during the 
test (uniaxial compression). Axial and radial strains were 
measured in three orthogonal directions using axial and 
radial strain cantilevers. These cantilevers are located on the 
rock sample subjected to uniaxial compression. 
 

 

4. Transformation of stress-strain models 
 

The models given by Eqs. (1) and (2)  relate the axial 

stress (a) to uniaxial compressive strength (c) and 

exponential function, where the exponent is the axial strain 

(a).  Eqs. (1) and (2) can be rewritten as the following two 

mathematical expressions for af < 1 % and af  > 1 %, 

respectively 
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(4) 

where  i = 1, 2, … , n are the number of points on stress-
strain curve where the axial stress and axial strain were 
measured; ai = a1, a2, …, an are axial stresses measured 
in points 1, 2, ..., n, respectively; ai = a1, a2, …, an are 
axial strains measured at a1, a2, …, an, respectively, in  
points 1, 2, ..., n, respectively; n is the final point of pre-
failure strain range,  where c and af  at c were 
measured, i.e. an  = af is the axial failure strain and an = 
c is the uniaxial compressive strength.  

In order to avoid the measurement of axial failure strain 
(af), the latter must be calculated.  Now the author 
attempts to show how the above-mentioned expressions 
(Eqs. (3) and (4)) can be used for the calculation of af in 
terms of c and only one point measurement (a1 and a1 at 
a1).  To calculate the af value using c, a1 and a1, Eq. (3) 
and Eq. (4), respectively, can be reduced to         
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where Dn = B/c, and the value of B is defined as 
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(7) 

The value of B insignificantly decreases from 0.8 to 0.77 

with an average value of 0.78 when af increases from 1 % 

to 2.75 %.  Since standard deviation of the average B is 

small (only 0.0075), we can use an average value of B = 

0.78 for further calculation. 

The axial failure strain (af) can be obtained from Eqs. 

(5) and (6), respectively, as 

 
(8) 
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where F1 and A are computed according to the following 

mathematical expressions 
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Taylor series expansion (Hazewinkel 2001) of the 
logarithmic expressions of ln(1-cF1) and ln(1- Ba1/c) 
involved in Eqs. (8) and (11), respectively, is the following 
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(12) 

where x = c F1 and  Ba1/c for Eqs. (8) and (11), 
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respectively. 

Substitution of Eqs. (8) and (12) into Eq. (1) yields a 

model calculation of stress-strain relationship for rocks 

exhibiting  af < 1 %, and this model presented in terms of 

c, a1 and a1 has the following form 
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(13) 

where the exponent  is computed as 
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(14) 

where  = cF1.  

Combination of Eqs. (2), (9) and (12) gives a model 

calculation of stress-strain relationship for rocks having af 

> 1 %. The model is also written in terms of c, a1 and a1 

as 
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(15) 

where c = k1
1/k2

 = 1.56 and parameters of  and  are 

defined as 
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where d = (1/k2)-1 = - 0.091, and the parameter  involved 

in Eqs. (16) and (17) is defined as 
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(18) 

where   = a1/c. 

Since B = 0.78, Eq. (18) can be rewritten as 

32 158.0304.078.0  
 

(19) 

 

 

5. Examination of proposed stress-strain model 
 

Eqs. (13) and (15) obtained as a result of transformation 

of Eqs. (1) and (2), respectively, allow us to determine 

stress-strain relations without measurements of axial failure 

strain (af). The equations (Eqs. (8) and (9)) used for the 

development of Eqs. (13) and (15), respectively, are 

mathematically justified, since they return the failure strain 

(af) if the failure data (a1 = af and a1 = c) are used as 

input values.  Indeed, Eq. (8) returns af in case of a1 = af 

and a1 = c, as demonstrated by the following expression 
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(20) 

Eq. (9) also returns af in case where a1 = af and a1 = 

c. For example, when a1 = af = 2% (at a1 = c), the result  

 
Fig. 4 Linear relation (R

2 
= 0.99 and slope = 0.99) 

between input values of a1= af =1%, 1.05%, 1.1%, … , 

2.75 % and values of af calculated according to Eq. (9) 

 

 

(a) Calculated (Eqs. (2) and (15)) and observed stress-

strain curves 

 
(b) Linear correlation (R

2
 =0.99) between calculated (Eq. 

15) and observed a 

Fig. 5 Comparison between calculated and observed 

stress-strain relations 
 
 

of calculation according to Eq. (9) is also equal to 2% 

 

(21) 

Fig. 4 confirms that the input and calculated values of af 

are equal: linear fit exhibits R
2
 = 0.99 and slope = 0.99.  

In Fig. 4, x-axis shows the input values of a1 = af = 1%, 

1.05 %, 1.1 %, … , 2.75 %,  while  y-axis shows the 

values of af calculated according to Eq. (9) for each input 

value of a1 = af.  
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Fig. 6 Sample 4U: Relative errors between observed and 

calculated (Eqs. 2 and 15) values of a 

 

 

The comparison between computed (according to Eqs. 

(13) and (15)) and observed stress-stress curves shows that 

these curves are very close to each other. The comparison 

was performed for 55 rock samples (8 chalk, 4 limestone 

and 4 dolomite formations) studied by Palchik (2006, 

2012). The names of carbonate formations and all 55 rock 

samples, as well as stress and stress characteristics of each 

rock sample, are presented in detail elsewhere (Palchik 

2006, 2012). Moreover, the comparison of the observed and 

calculated stress-strain curves was performed for 10 new 

rock samples (Meishash limestone and chalk and Bina 

limestone) that were not earlier involved in the creation of 

stress-strain models (Eqs. (1) and (2)) based on Haldane’s 

distribution function (Palchik 2006, 2012). Example of 

comparison between calculated (Eqs. (2) and (15)) and 

observed stress-strain relations for new chalk sample 4U (c 

= 57.7 MPa, af = 1.46%) exhibiting af > 1% is  presented 

in Fig. 5. The latter shows good linear correlation (R
2 

= 

0.999) between the observed and calculated (Eq.(15)) 

values of a. The calculation according to Eq. (15) was 

performed taking in account the most unfavorable point (a1 

= 0.0874% at a1 = 7.25 MPa) in Fig. 6, where the value of 

relative error () for Eq. (2) is maximum ( = 10.37%). 

Even in this unfavorable case, relative errors for Eq. 

(15) graphically presented in Fig. 6 are less than 15%. Thus, 

predictive capability of the proposed stress-strain model 

(Eq. (15)) is good. In order to calculate a value according 

to Eqs. (13) and (15) proposed in this study, only one datum 

point (a1 and a1) should be selected over the specific 

strain range. Palchik (2007) has found that the value of a1 

must be larger than 0.05%, since very small strain (a1 < 

0.05%) gives large relative errors ( > 20%) at the 

calculation of axial stress. On the other hand, analysis of 

stress-strain curves for rock samples exhibiting af > 1% 

shows that a1 should be smaller than 0.2% in order to avoid 

calculation errors. Thus, strain range where one datum point 

(a1 and a1) should be selected is 0.05%-0.2 %, as shown 

in Fig. 1. For this reason, Fig. 6 presents values of  for 

0.05% < a1 ≤ 0.2%. 

 

 

6. Discussion 
 

The proposed mathematical apparatus (Eqs. (13) and 

(15)) was successfully used to calculate the stress-strain 

responses of weak-to-strong (c < 100 MPa) carbonate 

rocks exhibiting small, intermediate and large axial strains. 

Calculation of stress-strain curve according to Eqs. (13) and 

(15) is possible when the uniaxial compressive strength (c) 

and only one datum point (a1 and a1 at this a1) are known 

a priori.  It is important to note that these input parameters 

(c, a1 at a1) can be defined without the mechanical 

testing of rock samples under compression using a press 

machine and the definition of the whole stress-strain curve 

from zero strain/zero stress to failure needed for 

determining the failure strain. Indeed, the values of c, and 

a1 at a1 can be tested using portable devices, and these 

tests are much easier, quicker and more economical to use 

than uniaxial compressive strength test. The value of c can 

be determined by a standard Schmidt hammer (Schmidt 

1951, ASTM 2001, Karaman and Kesimal 2015) which is a 

non-destructive, portable and cost-effective device for 

hardness testing. Schmidt hammer test is based on the 

rebound of a steel hammer from the rock surface, which is 

proportional to the compressive strength of the rock surface.  

The values of a1 and a1 at a1 are measured using 

indentation test by forcing indenters of various shapes into 

the tested rock sample under controllable indenter 

displacement and applied force (Chen and Labuz 2006, 

Haftani et al. 2013, Kalyan et al. 2015).  

In the paper, two sets of equations were proposed: one 

for small and intermediate failure strains and another for 

large failure strain. The choice of equations for rock 

samples exhibiting different levels of axial failure strains is 

performed using Eqs. (8), (9) and Fig. 2. There are three 

input parameters (0.05 % <a1< 0.2 %, a1 at this a1, and 

c) measured using portable devices. These parameters are 

used for the calculation of failure strain (af) according to 

Eqs. (8) and (9). Eq. (8) is suitable for rocks exhibiting 

small and intermediate failure strains (< 1%), whereas Eq. 

(9)-for large failure strains (> 1%). Values of af were 

computed according to Eqs. (8) and (9) for all 65 rock 

samples. Then the calculation results were compared with 

the results presented in Fig. 2. It was established that when 

the value of af calculated according to Eq. (9) for any rock 

sample is smaller than 1% (and, therefore, is not valid), the 

value of 0.2% < af  1% calculated according to Eq. (8) for 

the same sample is consistent with the value of af presented 

in Fig. 2 and, hence, stress-strain model (Eq. (13)) for small 

and intermediate failure strains should be chosen. On the 

other hand, when the value of af calculated according to 

Eq. (9) is between 1% and 2.8%, this value is confirmed by 

Fig. 2 and, therefore, stress-strain model (Eq. (15)) 

proposed for large strains is chosen. 
  Thus, the use of proposed models (Eqs. (13) and (15)) 
allows us to avoid mechanical testing of rock samples under 
compression using a press machine.  It is not necessary to 
measure axial failure strain. Note that it is sufficient to 
apply only one stress level (a = a1) by forcing indenter 
into the sample and to define a small value of 0.05% < a = 
a1 < 0.2% only at this a = a1. The applied stress of a = 
a1 is significantly lower than uniaxial compressive strength 
(c) at which the failure occurs. Uniaxial compressive 
strength is measured by non-destructive method (Schmidt 

923



 

Vyacheslav Palchik 

hammer) and, therefore, the same unbroken rock sample 
can be used for indentation testing.  Note that standard NX 
(D =54 mm) sized cylindrical rock samples are also used 
for Schmidt hammer and indentation tests. The cylindrical 
rock sample is smooth and free of irregularities. 

  When af > 1 %, relative errors () between uniaxial 

compressive strengths (c) of carbonate rocks defined by 

standard L-type Schmidt hammer and by uniaxial 

compressive test are < 18% (Palchik 2012). In case where 

af < 1%, these errors are smaller:  = 10%. The values of  

are smaller than 13% when a1 and a1 = 0.05%-0.2% 

observed by standard punch indentation test and those 

obtained from uniaxial compression test are compared. 

When c and one datum point (a1, a1) defined by Schmidt 

hammer test and indentation test, respectively, are used as 

input values in Eqs. (13) and (15), relative errors between 

calculated (Eqs. (13) and (15)) a and that obtained from 

uniaxial compressive test are < 12 %. 

 

 

7. Conclusions 
 

The applicability of exponential stress-strain models for 

weak-to-strong carbonate rocks (chalks, dolomites and 

limestones) used for tunnel construction is presented. It is 

established that exponential stress-strain models (Eqs. (1) 

and (2)) based on Haldane’s distribution function presented 

in transformed forms (Eqs. (13) and (15), respectively) are 

suitable for accurate prediction of stress-strain response of 

carbonate rocks exhibiting small (< 0.5%), intermediate (< 

1%) and large (> 1%) axial strains over the whole pre-

failure strain range avoiding the use of press machine. The 

proposed equations (Eqs. (13) and (15)) do not involve the 

value of af, and input parameters for these equations are 

uniaxial compressive strength (c < 100 MPa) defined using 

non-destructive standard device (Schmidt hammer) and 

only one point measurement (0.05% <a1 < 0.2% and a1 at 

this a1).  The small value of a1 = 0.05%-0.2% and 

relatively small applied load (a1) are readily defined by 

indentation test.  
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