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1. Introduction 
 

The knowledge of the tensile behavior of rocks is 

important in the design, construction and rehabilitation of 

geotechnical works and ancient stone buildings. 

Underground openings, dam foundations and slope stability 

works should be highlighted in the geotechnical field. 

Regarding the stone buildings are noteworthy the historic 

buildings that require periodic interventions for its 

preservation.  

The tensile strength of rock materials can be determined 

through laboratory tests or using empirical equations 

published in literature. The laboratory tests include the 

direct and the indirect tensile tests. The latter include, for 

example, Brazilian test, ring test, hoop test, bending test, 

etc. 

The direct determination of rock behavior requires 

sophisticated apparatus and is time consuming. Therefore, 

the use of non-destructive tests, index tests and other simple 

tests for obtaining physical properties (generally, porosity 

and density) has been increasing to obtain parameters that 

are used in models where they are correlated with the main 

rock properties (Marques et al. 2012). The most commonly 

used non-destructive tests are the Schmidt hammer and the 

ultrasonic velocity tests. The index test that is generally 

used is the point load test. In the past, the correlations  
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between the main rock properties and the other parameters 

were obtained by simple or multiple regressions (MR) 

(Irfan and Dearman 1978, Christaras et al. 1994, Begonha 

and Sequeira Braga 2002, Sharma and Singh 2007, Kiliç 

and Teymen 2008). However, nowadays there are more 

sophisticated methods based on soft computing techniques 

such as data mining (neural networks, support vector 

machines, etc.) and genetic programming that can model 

more complex and nonlinear relationships. These 

techniques have been used to develop models to predict 

rock properties using mainly index parameters, physical 

parameters and petrographical properties. In published 

literature one can find models to predict UCS based on 

neural networks (Meulenkamp and Grima 1999, Martins et 

al. 2012, Yesiloglu-Gultekin et al. 2013), genetic 

programming (Karakus 2001, Alemdag et al. 2016) and 

fuzzy inference system (Mishra and Basu 2013, Yesiloglu-

Gultekin et al. 2013). ANN and fuzzy inference systems 

(Gokceoglu et al. 2009, Dagdelenler et al. 2011) have also 

been used to develop weathering degree prediction models. 

Elasticity modulus prediction models based on genetic 

programming (Karakus 2001) and based on ANN and SVM 

(Martins et al. 2012) were also developed. 

Some prediction models of tensile strength based on soft 

computing can also be find in the literature (Baykasoğlu et 

al. 2008, Ceryan et al. 2013, Ç anakçi and Pala 2007, 

Ç anakçi et al. 2009, Singh et al. 2017, Gurocak et al. 2012).  

Ç anakçi and Pala (2007) proposed a neural network 

based formula for the determination of tensile strength of 

basalt in terms of ultrasonic pulse velocity, dry density and 

water absorption parameters. They concluded that the NN-

based formula is practical in predicting the tensile strength 

of basalt. Baykasoğlu et al. (2008) applied a set of genetic 

programming techniques which are known as multi 

expression programming, gene expression programming 
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and linear genetic programming to the uniaxial compressive 

strength and tensile strength prediction of chalky and clayey 

soft limestone. Ultrasonic pulse velocity, water absorption, 

dry density, saturated density and bulk density were used as 

input features. The results determined in their study indicate 

that genetic programming techniques are able to provide 

good prediction equations for strength prediction. Ç anakci 

et al. (2009) used two soft computing approaches, which 

are known as artificial neural networks and Gene 

Expression Programming (GEP) in strength prediction of 

basalts. The parameters, ultrasound pulse velocity, water 

absorption, dry density, saturated density, and bulk density 

were used to predict uniaxial compressive strength and 

tensile strength of basalts. It was found out that neural 

networks give far better results than GEP and regression 

analysis. Gurocak et al. (2012) developed two regression 

models, and two ANN models, namely, radial basis function 

network (RBFN) and multi-layer perceptron network 

(MLPN), to correlate tensile strength with point load index, 

Schmidt rebound number and unit weight of rocks. They 

used samples of different rock types, namely igneous, 

metamorphic and sedimentary. They concluded that the 

MLPN model was the best model and suggested an 

equation on ANN model to estimate the tensile strength of 

rocks. Ceryan et al. (2013) examined the capability of two 

SVM algorithms (Least Square-SVM and SVM) for the 

prediction of tensile strength of carbonate rocks and 

compared its performance with ANN and linear regression 

models. Total porosity, sonic velocity, slake durability index 

and aggregate impact value were used as input parameters. 

They concluded that both SVM and ANN methods are 

successful tools for prediction of tensile strength and have 

better predictive capacity than linear regression model. 

Furthermore, LS-SVM makes the running time 

considerably faster with the higher accuracy. Singh et al. 

(2017) determined uniaxial compressive strength, tensile 

strength, point load index and Young’s modulus of basaltic 

rocks from physical parameters like density, porosity and 

compressional wave velocity using multiple variable 

regression analysis and adaptive neuro-fuzzy inference 

system (ANFIS). They developed five ANFIS models and 

selected one of them as the best suitable model with high 

predictability. 

All of these models are based on Brazilian tensile 

strength tests. This study was not based on Brazilian tensile 

tests but on direct tension tests. 

The main aim of this paper consists of using data mining 

techniques for the prediction of the mechanical properties 

defining the mechanical behavior under tension through the 

tensile strength, which is a parameter more easily obtained. 

Besides, the prediction of the tensile strength and the other 

mechanical properties based on physical properties, like 

ultrasonic pulse velocity, porosity and density is also 

analyzed. 
 

 

2. Materials 
 

2.1 A brief description of granites 
 

Granite is one of the most used stones in the  

Table 1 Brief petrologic description of granites 

Granite 

designation 
Description 

Mean length 

(mm) 

Grain size 

range (mm) 
Loading directions 

BA 
Fine to medium-grained 

porphyritic biotite granite 
0.5-0.6 0.2-6.5 Parallel to the rift plane 

GA, GA* 

Fine to medium-grained, with 

porphyritic trend, two mica 

granite 

0.5-0.6 0.3-7.5 Parallel to the rift plane 

RM Medium-grained biotite granite 1.3-2.3 0.4-13.5 Parallel to the rift plane 

MC 
Coarse-grained porphyritic biotite 

granite 
1.6-2.4 0.3-16.5 Parallel to the rift plane 

AF 
Fine to medium-grained two-mica 

granite 
0.5-0.6 0.1-4.0 

Parallel (L) and 

perpendicular (P) to the 

foliation plane 

MDB 

MDB* 

Medium-grained two- mica 

granite 
0.7-0.9 0.3-14.5 

Parallel and perpendicular 

to the foliation plane 

PTA 

PTA* 

Fine to medium-grained two-mica 

granite 
0.7-0.8 0.3-12.0 

Parallel and perpendicular 

to the foliation and rift 

plane 

PLA 

PLA* 

Medium to coarse-grained 

porphyritic biotite granite 
0.5-1.1 0.2-14.0 

Parallel and perpendicular 

to the rift plane 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1  Grain size and weathering features of studied 

granites observed with the stereomicroscope, (a) RM 

granite, (b) PTA granite, (c) GA*, besides grain size it 

could be observed weathering features in plagioclase 

sections and (d) MDB*, clouding of feldspar sections and 

iron compounds in fissures can be observed. White bar at 

the lower-left corner of each photograph represents 

1 mm; total magnification: 5X; (a), (b) and (c), crossed 

polars, (d) polarized light 
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construction of vernacular and historical ancient buildings, 

ornamental elements and movable stone heritage artifacts 

(e.g., statues, altar pieces, benches, etc.) in Portugal, 

particularly in the northern regions, either in monumental or 

vernacular architecture. A wide range of granitic rocks can 

be seen in masonry buildings and artifacts, with different 

petrographic properties related to the grain size and internal 

texture and with distinct levels of weathering resulting from 

aging degradation processes through years. The granitic 

types considered in this study were mostly collected from 

the Northern region of Portugal, being selected according to 

mineralogical, textural and structural characteristics. In 

addition to these criteria, presence of planar anisotropies 

and weathering condition were also considered. In some of 

the studied granitic facies, samples of two different 

weathering degrees were collected in order to extend the 

range of values of the possible relations between properties. 

Weathering was assessed, as is frequently done in 

Engineering Geology studies, see the classic classifications 

of ISRM (1981) and GSL(1995) , on the field (quarries), 

based on macroscopic evidences, namely discolouration 

(yellowing in the case of granites) and reduction of strength. 

The weathered types, identified by an (*) in Table 1, 

correspond to the initial stages of weathering and can be 

classified according to the classification of weathering of 

intact rock material proposed in GSL(1995) . They are 

mostly between grades II and III (in all situations samples 

were extracted from blocks of rocks that could be used to 

extract building stone). Studies with the petrographic 

microscope reveal clouding of feldspar sections and the 

presence of iron compounds in fissures (responsible for 

discolouration), see Fig. 1. Based on visual assessments, 

tests specimens were considered homogeneous regarding 

weathering degree.With respect to planar anisotropies, two 

possibilities were considered to be relevant for further 

analysis of the variation of the mechanical properties 

(Vasconcelos et al. 2008a): (a) natural orientation planes of 

granitic rocks or preferred orientation of minerals 

(foliation); (b) three orthogonal planes identified as rock 

splitting planes (quarry planes), defined as planes of 

preferred rupture, being the rift plane the one corresponding 

to the easiest splitting in the quarry.To evaluate the grain 

size of the granitic types the mean length of sections 

intercepted by a single circle was measured following the 

principles of the Hilliard single-circle procedure described 

in ASTM E112-88 [28]. Four circles were studied for each 

granitic facies (the interval of values for the mean length 

obtained with the four circles is reported in Table 1). 

Individualized sections in the less weathered granitic types 

were considered. Grain size range, considering the 

maximum length of the smallest grain intercepted by the 

circular scanline and the maximum length of the biggest 

section present in the studied thin sections, is also reported 

in Table 1. 
 

2.2 An overview of the tensile behavior of granitic 
rocks 
 

Based on an extensive experimental characterization 

through direct tensile tests (Vasconcelos et al. 2008a) it was 

possible to observe that the shape of the complete stress-

displacement diagrams is essentially composed by four 

stages, similarly to what has been found for other quasi-

brittle materials, such as concrete (Prado and Van Mier 

2003), see Fig. 2: (1) the linear stretch of the stress-

displacement diagram associated with the elastic behavior 

of the material. The linear behavior is characterized by the 

value of initial stiffness, k0 ; (2) the stable microcracking 

process reflected by a nonlinear stretch before the peak 

stress is reached. This phase is characterized by the 

nonlinear pre-peak displacement, p, calculated as the 

subtraction of the linear displacement at peak stress to the 

total displacement at peak stress, ft; (3) the macrocracking 

propagation observed through the increasing on the crack 

opening, which is visible with naked eye, being also 

associated with the steep negative stretch in the softening 

branch with a slope that depends on the type of granite; (4) 

the stress-transfer mechanism, due to the bridging effect, 

which is responsible for the long tail of the softening branch 

of the complete stress-displacement diagram. 

According to Tang et al. (2007), in heterogeneous rocks, 

the failure is not abrupt and there exist a transition in which 

the tensile strength decreases at much slower rate until it 

reaches its residual strength. The post-peak behavior 

(softening stress-displacement branch) is characterized by 

the tensile strength, ft, fracture energy, Gf, and the critical 

crack opening, wc. defined as the intersection of the crack 

opening axis with a linear fitting to the softening branch 

below 0.15 ft. In addition to latter parameter, the ductility 

index parameter, du, is also considered to characterize the 

post-peak behavior being defined as the ratio Gf/ft (Chiaia et 

al. (1998). This parameter represents the fracture energy 

normalized by the tensile strength and allows the 

characterization of the brittleness of the granites.  
 

 

 
(a) 

 
(b) 

Fig. 2 Tensile behavior of granites, (a) global behavior 

and (b) characteristic mechanical properties 
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(a) 

 
(b) 

 
(c) 

Fig. 3 Experimental data, (a) tensile strength, (b) 

displacement at peak stress and (c) nonlinear 

displacement at peak stress 

 

 
(a) 

 
(b) 

Fig. 4 Experimental data, (a) initial stiffness, (b) critical 

crack opening and (c) ductility index 

 
(c) 

Fig. 4 Continued 
 

 

The data of the key tensile properties are presented 

graphically in Fig. 3 and Fig. 4. It is seen that granites 

exhibit a large range of values for the stiffness and fracture 

parameters as a result of different characteristic shapes of 

the stress-displacement diagrams, which can be explained 

essentially by microstructural aspects, weathering and 

planar anisotropy, as discussed in detail by Vasconcelos et 

al. (2008a).  

 

2.3 Data mining techniques 
 

Since the 1960s that the data mining techniques have 

come to constitute a branch of applied artificial intelligence 

(Liao et al. 2012). Data mining consists in the application of 

methods and techniques in large databases to search trends 

or patterns in order to discover valuable information. The 

data mining techniques used in this study are the multiple 

regression (MR), artificial neural networks (ANN) and 

support vector machines (SVM). These techniques have 

their advantages and disadvantages. The main advantage of 

MR is their simplicity. They are quite easily developed and 

provide a model that is readable and understandable. 

However, they perform poorly in highly non-linear 

problems or when data is noisy. Both ANN and SVM have 

shown high learning capabilities even when working with 

complex data and are particularly useful for problems that 

do not have an analytical formulation or where explicit 

knowledge does not exist. SVM are a very specific class of 

algorithms, which are characterized by the use of kernels, 

absence of local minima during the learning phase, 

sparseness of the solution and capacity control obtained by 

acting on the margin, or on the number of support vectors. 

When compared with other types of base learners, such as 

the well-known multilayer perceptron (also known as 

backpropagation neural networks) used by ANN, SVM 

represents a significant enhancement in functionality. The 

supremacy of SVM lies in their use of nonlinear kernel 

functions that implicitly map inputs into high dimensional 

feature spaces. ANN are robust when dealing with noisy 

data. However, the initial values of the weights may affect 

the results accuracy. 

These techniques were previously described by the 

authors (Martins et al. 2012, Martins and Miranda 2012). A 

brief description of these techniques will be presented 

below. Further details can be found in many publications. 

Aleksander and Morton (1990), Ilonen et al. (2003), 

Downing (2015) and Souza and Soares (2016) for ANN; 
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Vapnik (1998), Cristianini and Shawe-Taylor (2000), Dibiki 

et al. (2001), Ben-Hur and Weston (2010) and Liang et al. 

(2011) for SVM. 

The traditional MR uses an analysis similar to the 

simple regression, but rather than describing the 

relationship between two variables, describes the 

relationship between several independent variables and the 

dependent variable. 

The ANN technique is based on the architecture of the 

human brain where artificial neurons are linked each other 

according to a given architecture. The communication 

among neurons is performed by signals through links. A 

weight, wi,j (i and j are neurons or nodes) is associated to 

each link and an activation function that introduces a non-

linear component is associated to each neuron. This study 

used a logistic activation function f given by 1/(1+e
-x

) and 

the following general equation (Hastie et al. 2001) 
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(1) 

where xi are the input parameters or nodes, I is the number 

of input parameters and o is the output parameter. 

The multilayer perceptron (feed forward network) 

architecture (Haykin 1999) with one hidden layer of HN 

hidden nodes was adopted in this study. The grid search of 

the number of hidden nodes HN was 

{0,2,4,6,8,10,12,14,16,18,20}.     

The SVM technique was initially developed to 

classification problems by Cortes and Vapnik (1995). This 

method uses a non-linear mapping to transform the input 

data into a multidimensional feature space. After this 

transformation the SVM finds the best hyperplane inside the 

feature space. The non-linear mapping depends on a kernel 

function k(x,x’). This work uses the following kernel 

function 
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(2) 

The performance of the regression is affected by the 

kernel parameter, γ, a penalty parameter, C, and the width of 

the ε-insensitive zone. In order to limit searching space, C 

and ε were set using heuristics proposed by Cherkassy and 

Ma (2004): C=3 and N/̂  , where 

  
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N

i ii yy
1

ˆ5.1̂ , iŷ  is the value predicted by a 3-

nearest neighbor algorithm and N the number of examples. 

Under this setup, the search space was limited to the input 

values of γ. 

Therefore, the search space was limited to the input 

values of γ which in this study were { 2
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The forecasting capacity of the data mining techniques 
was tested using only part of the whole dataset. This part, 
corresponding to two-thirds of the whole dataset, was used 
in an evaluation scheme using a 10-fold cross validation. 
On this scheme, nine subsets were used to fit the model and 
the remaining subset was used to test the model. This 
process was repeated until all the subsets have been tested. 
Ten runs of this process were carried on this study. After 

this process, the model was fitted with all the training 
dataset. Finally, the fitted model was tested using the testing 
dataset corresponding to one-third of the whole dataset. 

The performance of the models was evaluated along the 

training process using three metrics: coefficient of 

determination R
2
, root mean square error (RMSE) (Eq. (3)) 

and mean absolute deviation (MAD) (Eq. (4)).  
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1i ii ŷy
N

1
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(4) 

where yi is the measured value, ŷi is the predicted value and 

N is the number of samples. R
2
 equal 1 corresponds to an 

excellent performance whereas R
2
 equal 0 corresponds to a 

very bad performance. The lower RMSE and MAD the 

better is the performance of the model. 

The computing process was performed in the R 

environment (R Development Core Team) using the RMiner 

library developed by Cortez (2010) that facilitates the use of 

DM algorithms.  

In the next chapters the DM techniques will be applied 

to evaluate the parameters defining the tensile-displacement 

diagrams and to predict the mechanical properties in 

function of the physical properties. It must be stressed that 

all the figures shown in the next chapters and corresponding 

to DM techniques were based on the testing dataset. 

 

 

3. Evaluation of the parameters defining the tensile-
displacement diagrams  
 

In this section an analysis is carried on the possibility of 
obtaining the parameters characterizing the complete tensile 
behavior of granites through the knowledge of the tensile 
resistance by considering distinct data mining techniques, 
namely the MR, ANN and SVM. This analysis represents a 
step forwarding in relation to the simple correlations 
presented by Vasconcelos et al. (2008a), given that besides 
the MR models, also ANN and SVM are used. For this, four 
relationships intend to analyze the feasibility of using the 
tensile strength for prediction of the non-linear peak 
displacement, δp, the initial stiffness, k0, the ultimate crack 
opening, wc, and the normalized tensile fracture energy, du. 
Additionally, the prediction of the nonlinear peak 
displacement, δp, through the displacement at peak stress, 
δft, is also assessed. Notice that these relations encompasses 
the principle that the tensile strength is a parameter easier to 
be obtained, when compared to the other mechanical 
properties defining the complete tensile behavior. The 
number of tensile tests considered for cases 2 to 4 is 240, 
whereas for cases 1 and 5 about 285 experimental results 
are considered. A general statistical overview of the 
analysed cases is presented in Table 2, which also presents 
the mean values and the coefficient of variation of the input 
and output parameters. The coefficients of variation of the 
tensile resistance and the other mechanical properties is 
high, which is justified by the great variation of the 
petrographic characteristics, weathering and planar 
anisotropy features. As discussed in detail in previous  
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Table 2 Range of variation of the input and output 

parameters and the corresponding average values 

Case Input Min. Mean Max. CV (%) Out. Min. Mean Max. CV (%) 

1 ft 1.279 3.652 9.040 51.1 δp 0.005 0.018 0.050 46.5 

2 ft 1.279 3.375 9.040 47.8 k0 401.5 3413.0 15246.0 93.3 

3 ft 1.279 3.375 9.040 47.8 du 0.020 0.079 0.198 52.8 

4 ft 1.279 3.375 9.040 47.8 wc 0.048 0.355 0.950 59.2 

5 δft 0.009 0.026 0.072 46.1 δp 0.005 0.019 0.050 46.6 

 

Table 3 Coefficients of correlation and root mean square 

errors obtained for all the cases according to different 

models 

 Coefficient  of correlation Root mean square error 

Case ANN SVM MR ANN SVM MR 

1 0.802 0.799 0.756 0.0052 0.0053 0.0569 

2 0.916 0.940 0.922 1261.80 1117.50 1209.69 

3 0.846 0.845 0.773 0.0216 0.0217 0.0257 

4 0.777 0.820 0.741 0.1415 0.1166 0.1366 

5 0.979 0.980 0.980 0.0017 0.0017 0.0017 

 

 
(a) Training set 

 
(b) Testing set 

Fig. 5 Prediction of the nonlinear peak displacement, p, 

from the input parameter, ft using the ANN model 
 

 

publications (Vasconcelos et al. 2008a), the different 
mineralogical, textural and structural characteristics of the 
granites control their mechanical properties. 

Table 3 shows the coefficient of correlation of Pearson 
(R) and the root mean square error obtained in the training 
phase for the three algorithms used: ANN, SVM and MR.  

 
(a) Training set 

 
(b) Testing set 

Fig. 6 Prediction of the nonlinear peak displacement, p, 

from the input parameter, ft using the SVM model 
 

 

From the analysis of results, it is possible to conclude 

that, for cases 1 and 3, the ANN and SVM models have 

similar performances, even if ANN model seems to have a 

slightly better predictive capacity. SVM model presents the 

best predictive performance for cases 2 and 4. The results 

obtained for case 5 indicate similar performances for all the 

models. 

The efficiency of the models to predict the mechanical 

properties of granites under tension can be also analysed 

through Fig. 5 to Fig. 9, where the predicted values versus 

the measured values for a certain variable are displayed. 

Figs. 5 and 6 present the relationships between predicted 

and measured nonlinear peak displacement, p, using the 

ANN and SVM models with the training and testing dataset. 

It is seen in Figs. 5 and 6 that the results obtained with the 

training set are better than those obtained with the testing 

set. As in all the examples presented in this paper the results 

obtained with the training data were better than the results 

obtained with the testing data, from Fig. 6 only the results 

obtained with the test data will be presented. The 

presentation of all the figures with results of training data 

for all situations would make the article too long and 

tedious. 
The representation of the predicted variables takes into 

account only one third of the whole data, which represent 
the test data. It must be emphasized that this data was not 
used in the training process. It is possible to see that there is 
an important dispersion of the values and that ANN model 
confirms a better performance, which is confirmed by the 
higher values of R

2
 and a lower RMSE. 
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(a) SVM model 

 
(b) Single regression model (Vasconcelos et al. 2008a) 

Fig. 7 Prediction of the initial stiffness, k0, from the input 

parameter, ft 

 

 
(a) ANN model 

 
(b) SVM model 

Fig. 8 Prediction of the ductility index, du from the input 

parameter, ft 

 
(a) SVM model 

 
(b) Single regression model (Vasconcelos et al. 2008a) 

Fig. 9 Prediction of the ultimate crack opening, wc, from 

the input parameter ft 

 

 
(a) MR model 

 
(b) SVM model 

Fig. 10 Prediction of the nonlinear peak displacement, p, 

based on the displacement at peak stress, ft 
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The prediction of the initial stiffness based on the tensile 

strength by using the testing data and the SVM model is 

presented in Fig. 7. It can be seen a dispersion of values 

similar to the one evidenced by the equation given by 

Vasconcelos et al. (2008) obtained with simple regression 

analysis and using all data. 

Fig. 8 shows the prediction of the ductility index as a 

function of the tensile strength obtained with the ANN and 

SVM models. It is observed that both models present some 

dispersion but the ANN model appears to give slightly 

better prediction. The prediction of the ultimate crack 

opening, wc, presents also important scatter as can be seen 

in Fig. 9, where the performance of the SVM model is 

evaluated. The prediction found by Vasconcelos et al. 

(2008a) (Fig. 9(b)) presents also scatter but taken into 

account that all data was used for this, it can be concluded 

that the data mining techniques present better prediction 

performance. 

Fig. 10 shows the very good performance of the data 

mining models about the prediction of the nonlinear peak 

displacement based on the peak displacement, as almost all 

points are aligned along the 45 degree line. In this case, the 

best prediction model is the MR model, which shows that 

the relationship between the variables is predominantly 

linear. 

The MR model corresponds to Eq. (5). 

0001.06984.0  ftp 
 

(5) 

 
 

4. Prediction of the mechanical properties through 
the physical properties 
 

This section aims at evaluating the possibility of using 

the physical properties to predict the mechanical parameters 

characterizing the mechanical behavior of granites under 

tensile loading. In fact, as the physical properties are easier 

to obtain, it can be beneficial to obtain the mechanical 

properties through physical properties. For this, it was 

decided to use the data mining models to evaluate the 

possibility and the performance of using different 

combinations of the physical properties to predict the 

mechanical properties, namely ultrasonic pulse velocity 

(UPVdry) porosity (η) and density (ρ). The data regarding to 

the physical properties found in all of the granites under 

studied is presented in Fig. 11. It is observed that a great 

variety of physical properties are also found as the result of 

the variation of the petrographic features of the granites 

under analysis. The models that use a single input variable 

are denominated by M1. M2 and M3 are the designations 

attributed to models that use two and three input variables, 

respectively. 

 

4.1 Prediction of the tensile strength 
 

For the prediction of the tensile strength through the 

physical properties, 240 groups of data were used. Table 4 

shows the general statistical overview of the rock properties 

used in database. As discussed previously, the coefficient of 

variation is relatively high, except in the case of ρ. This is 

related to the wide range of granitic rocks used in this study.  

Table 4 General statistical overview of the rock properties 

used in database 

Symbol Minimum Mean Maximum Std. deviation Coef. variation 

UPVdry  (m/s) 1578.01 2851.91 4480.59 797.70 27.97 

η (%) 0.61 2.96 7.40 2.11 71.27 

ρ (kg/m3) 2520.57 2611.78 2704.69 45.75 1.75 

ft (N/mm2) 1.28 3.65 9.04 1.61 47.81 

 

Table 5 Correlations between ft with other parameters and 

the corresponding coefficients of correlation (R) 

Correlations R 

𝑓𝑡 = 0.6756 × 𝑒0.0005.𝑈𝑃𝑉𝑑𝑟𝑦  0.931 

𝑓𝑡 = 2 × 10−5 × 𝑈𝑃𝑉𝑑𝑟𝑦
1.5343 0.931 

𝑓𝑡 = 4.3935 × 𝜂−0.461 0.804 

𝑓𝑡 = 0.0245 × 𝜌 − 60.723 0.696 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Experimental data, (a) density, (b) porosity and 

(c) ultrasonic pulse velocity, UPV 
 

 

The different mineralogical, textural and structural 

characteristics control the variables employed in this study. 

When compared to the other variables, the ρ is less affected. 

In a first phase, simple regression analysis of the tensile 

strength versus UPVdry and η and ρ was carried out to assess  
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Table 6 Mean values of RMSE obtained in the cross-

validation scheme for different combination of input 

parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.5400 0.8050 1.0065 0.4965 0.8850 0.4294 0.4111 

SVM 0.5782 0.9222 0.9961 0.5096 0.8457 0.4295 0.3943 

MR 0.6321 1.1684 1.1827 0.6370 1.1598 0.6235 0.6215 

 

Table 7 Mean values of R obtained in the cross-validation 

scheme for different combination of input parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.942 0.868 0.782 0.951 0.839 0.964 0.967 

SVM 0.933 0.821 0.786 0.949 0.854 0.964 0.970 

MR 0.920 0.687 0.678 0.918 0.693 0.922 0.922 

 

 

Fig. 12 Performance of SVM model in the prediction of ft 

using the combination with all the input parameters 
 

 

the statistical performance of the correlations. As can be 
seen through the equations shown in Table 5, the 
correlations found between the tensile strength and the 
physical properties presented are statistically meaningful. In 
this context, the relation between the tensile strength and 
the density is the poorest one. This result is in line with the 
ones presented by Vasconcelos et al. (2008a, b). 

For the construction of the data mining models, the data 
was split into two sets. The training set with two thirds of 
the groups of the data (160 cases) and the testing set with 
one third of the groups of data (80 cases). The mean values 
of RMSE and R obtained in the training process are 
presented in Tables 6 and 7. According to Johnson (1984), 
values of R higher than ±0.8 are considered statistically 
significant at 95% confidence. It can be seen that most of 
the values presented in Table 7 are greater than 0.8, which 
confirms the good predictive capacity of the majority of the 
models. Despite the correlation presented in the Table 5 
have been obtained with the whole dataset, the values of R 
obtained from the ANN and SVM approaches with the 
training data were higher (Table 7). From the results, it is 
also seen that the MR model gives the poorest results for all 
the combinations of input parameters, even if they remain 
clearly statistically meaningful. For models M1 and M2, 
better prediction results were obtained when the UPVdry, 

was used. On the other hand, when two input parameters 
were used, the best prediction was obtained with ANN 
model that also include the ρ. The better prediction obtained 
when considering the combination of the three physical 
properties is achieved with the SVM model. 

The SVM model was fitted with all the testing set and 

the result is graphically presented in Fig. 12. It can be seen 

that the model has a great accuracy in predicting the 

measured results. 
Regarding the predictive capacity of the models in 

predicting the minimum and maximum values of tensile 
strength, among all models presented in this study, the best 
results were obtained with the ANN model using the three 
input data. The minimum and maximum tensile strength 
values used in the test set were 1.498 and 8.895. The ANN 
model predicted the values 1.490 and 8.634 while the SVM 
model with three input parameters predicted the values 
1.445 and 8.454. This means that the ANN model can better 
predict the extreme values of tensile strength, especially the 
maximum value. 
 

4.2 Prediction of the ductility index 
 

The prediction of the ductility index (du) used the same 
database with 240 experimental results, being the range of 
variation already presented in Table 4 for the physical 
properties.  The ductility index ranges from 0.02 to 0.20 
with a mean value equal to 0.08. The methodology followed 
for the training and testing processes was the same 
explained in the previous section. 

A simple regression analysis of the du versus UPVdry, η 
and ρ was also performed (see Table 8). It must be 
underlined the statistically meaningful relation between the 
du and UPVdry, and between du and η. Again, the relation 
between the du and ρ is the poorest one.  

The mean values of RMSE and R obtained for the 
training process are presented in Tables 8 and 9. Also in this 
case, despite the correlation presented in Table 8 has been 
obtained with the whole dataset, the values of correlation 
coefficients obtained from M1 models based on ANN and 
SVM approaches were higher for the ρ and η. In case of the 
UPVdry, as the independent variable, the R is slightly lower 
(Table 10).  

 

 

Table 8 Correlations between du with other parameters and 

the corresponding coefficients of correlation (R) 

Correlations R 

du=82601×UPV-1.769
dry 0.863 

du=0.0421×η0.6073 0.851 

du=3×108×e-0.009.ρ 0.695 

 

Table 9 Mean values of RMSE obtained in the cross-

validation scheme for different combination of input 

parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.0223 0.0194 0.0263 0.0185 0.0194 0.0195 0.0192 

SVM 0.0225 0.0194 0.0257 0.0181 0.0189 0.0201 0.0176 

MR 0.0250 0.0230 0.0301 0.0204 0.0221 0.0241 0.0189 
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Table 10 Mean values of R obtained in the cross-validation 

scheme for different combination of input parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.836 0.878 0.763 0.890 0.880 0.878 0.884 

SVM 0.832 0.879 0.773 0.895 0.885 0.870 0.901 

MR 0.787 0.824 0.667 0.864 0.838 0.803 0.884 

 

 

Fig. 13 Performance of SVM model in the prediction of 

du using the combination with the three input parameters 
 

 

It is seen that when only one independent variable is 

used (Models M1), the best predictive performance for the 

ductility index is achieved using the porosity. In this case, 

the performances of ANN and SVM models are similar and 

better than that obtained with the MR model. When 

combining two independent input variables, the best results 

are obtained with the SVM model considering the variables 

the UPVdry and η. Among all the combinations and models, 

the best performance was obtained with the SVM model 

using all the input variables. This model was also applied to 

a database containing the testing set and the result is 

graphically presented in Fig. 13. It can be observed that the 

model has a good performance to predict the measured 

values of the ductility index up to 0.07. For higher values 

the results are more scattered around the line of 45 degrees. 

However, it should be mentioned that the coefficient of 

correlation is higher than 0.8. 

 

4.3 Prediction of the displacement at peak stress 
 

In the prediction of the displacement at peak stress (δft), 

251 experimental results were used. A general overview of 

the rock properties used in database is presented in Table 

11. In this case, the data was also split into two sets: (1) the 

training set with two thirds of the groups of the data (167 

results); (2) the testing set with one third of the data (84 

results). 

The best single correlations between the displacement at 

peak stress and the three input parameters are given in Table 

12. It can be seen one more time that the UPVdry and the η 

are considerably more relevant for the description of the δft, 

as it is confirmed by the coefficient of correlation found for 

model M1. The density is the independent variable that 

leads to a worse prediction. The values found for the 

coefficient of correlation for models M1 (Table 14) confirm  

Table 11 General statistical overview of the rock properties 

used in database 

Symbol Minimum Mean Maximum Std. deviation Coef. variation 

UPVdry  (m/s) 1578.01 2973.32 4577.14 851.98 28.65 

η (%) 0.41 2.70 7.42 2.18 80.74 

ρ (kg/m3) 2452.48 2596.11 2705.41 66.01 2.54 

δft (mm) 0.008 0.026 0.062 0.012 44.37 

 

Table 12 Correlations between δft with other parameters and 

the corresponding coefficients of correlation (R) 

Correlations R 

δft=3397.3×UPV-1.494
dry 0.911 

δft=0.0174×η0.4708 0.896 

δft=-0.0001×ρ+0.3702 0.761 

 

Table 13 Mean values of RMSE obtained in the cross-

validation scheme for different combination of input 

parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.0041 0.0047 0.0066 0.0041 0.0059 0.0052 0.0043 

SVM 0.0041 0.0048 0.0068 0.0041 0.0048 0.0044 0.0042 

MR 0.0054 0.0067 0.0075 0.0049 0.0068 0.0050 0.0049 

 

Table 14 Mean values of R obtained in the cross-validation 

scheme for different combination of input parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.931 0.911 0.817 0.933 0.862 0.898 0.926 

SVM 0.931 0.908 0.802 0.932 0.909 0.922 0.931 

MR 0.880 0.808 0.752 0.904 0.805 0.897 0.904 

 

 

also that the data mining techniques are more reliable than 
the single regression analysis. By comparing the 
performance of the different data mining methods, it is 
observed that MR model gives the poorest results for all the 
combinations of input parameters (Tables 12 and 13). This 
confirms the nonlinear relationships between δft with other 
parameters. The best performance for M1 models is 
obtained with UPVdry. In this case, the ANN and SVM 
models have similar accuracy to predict δft. When two input 
parameters are considered, it is observed that the 
combination that leads to better prediction is composed by 
the ultrasonic pulse velocity and the porosity. For the other 
two combinations, it is interesting to notice that the 
prediction performance decreases, and both of them 
perform worse than model M1 when the independent 
variable is the porosity. 

Using three input parameters, the model with the best 
predictive capacity is the SVM and it should be noticed that 
the performance between models M1 and M3 is the same as 
the coefficient of correlation is equal and the RMSE is also 
practically equal. As already mentioned, the best prediction 
of the displacement at peak load is achieved when two 
independent variables are adopted (UPVdry and η), which  
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(a) ANN model 

 
(b) SVM model 

Fig. 14 Prediction of the displacement at peak load with 

two independent variables UPVdry and η 
 

 

also confirmed when the prediction is obtained with the 
testing data through ANN and SVM models (see Fig. 14). It 
is seen that both models have a great accuracy to predict the 
peak displacement at peak load (coefficient of correlation of 
about 0.9). 
 

4.4 Prediction of the nonlinear peak displacement 
 

For the prediction of the nonlinear peak displacement 

(δp), 271 experimental results were considered. Table 15 

shows a general statistical overview of the rock properties 

used in database. Similarly to the physical properties under 

study, also the scatter found for the δp is high, given the 

wide range of granites analysed in this study. In this case 

181 results were considered as training data and 90 test 

results were used for the test. Table 16 presents the best 

simple regression analysis of the δp versus UPVdry and η and 

ρ. It must be stressed the statistically meaningful relation 

between δp and the pair UPVdry and η. Similarly to the other 

mechanical parameters, also in the prediction of the 

nonlinear peak displacement the density leads to weaker 

single correlation.  It should be mentioned that these single 

correlations were obtained with the whole dataset. 

The mean values of the RMSE and the R obtained 

during the training process are presented in Tables 17-18. 

Similarly to what was seen for the other mechanical 

properties, in spite of the data mining models (M1) uses 

only part of the dataset, the coefficient of correlation 

obtained with the ANN and SVM models are very close to 

or even higher than the ones obtained for the single  

Table 15 General statistical overview of the rock properties 

used in database 

Symbol Minimum Mean Maximum Std. Deviation Coef. Variation 

UPVdry  (m/s) 1578.01 2992.44 4632.69 874.50 29.22 

η (%) 0.34 2.69 7.42 2.19 81.41 

ρ (kg/m3) 2452.47 2597.06 2708.31 67.77 2.61 

δp (mm) 0.005 0.018 0.044 0.008 45.69 

 

Table 16 Correlations between δp with other parameters and 

the corresponding coefficients of correlation (R) 

Correlations R 

δp=2034.6×UPV-1.474
dry 0.884 

δp=0.0122×η0.4642 0.868 

δp=18298× e-0.005.ρ 0.748 

 

Table 17 Mean values of RMSE obtained in the cross-

validation scheme for different combination of input 

parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.0039 0.0037 0.0049 0.0036 0.0194 0.0039 0.0038 

SVM 0.0037 0.0037 0.0050 0.0036 0.0189 0.0037 0.0038 

MR 0.0043 0.0052 0.0057 0.0040 0.0221 0.0041 0.0040 

 

Table 18 Mean values of R obtained in the cross-validation 

scheme for different combination of input parameters 

Symbol M1   M2   M3 

 UPVdry η ρ UPVdry&η η&ρ UPVdry&ρ UPVdry&η&ρ 

ANN 0.878 0.893 0.802 0.901 0.880 0.882 0.890 

SVM 0.896 0.893 0.795 0.902 0.885 0.892 0.890 

MR 0.857 0.780 0.720 0.877 0.838 0.870 0.877 

 

 

correlations when the independent variables UPVdry, η and ρ 

are used. MR model have a lower predictive capacity but 

have also a good performance. 

It is observed that the ANN and SVM models have good 

and similar performances in predicting the nonlinear peak 

displacement. Using only one input parameter, the best 

result was obtained with the SVM model using UPVdry. 

When using two input parameters to obtain the prediction of 

the nonlinear peak displacement, the SVM model with 

UPVdry and η is the one that performs better. It should be 

stressed that the simultaneous use of all physical properties 

does not improve the prediction, if it is compared with the 

case where two variables (UPVdry and η) were used with the 

ANN and SVM models. On the other hand, in case of SVM 

model, the performance is even slightly worse when three 

input variables are used when compared to the case when 

only the UPVdry is considered. This means that there are no 

gains in considering the three variables. This prediction is 

influenced negatively by the consideration of the density, as 

already seen it represents the poorest correlation with the 

mechanical properties. 

The performance of the model M2 when the porosity and  
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(a) SVM model 

 
(b) ANN model 

Fig. 15 Prediction of nonlinear peak displacement, δp, 

with two independent variables UPVdry and η 

 

 

ultrasonic pulse velocity are combined for the test dataset, 

can be evaluated based on the diagrams presented in Fig. 

15. 

It can be seen that both models have a good 

performance, with a coefficient of correlation higher than 

0.8. Only one value is too far from the 45-degree line. The 

SVM model confirms the slightly better performance than 

ANN model. 
 

 

5. Conclusions 
 

This paper provides and discusses the results of data 

mining techniques for the prediction of the parameters 

characterizing the tensile behavior of granites.  

In a first phase, a prediction of the parameters 

characterizing the complete shape of the stress-

displacement diagrams based on the tensile strength, which 

is considered the property of easier obtainment, is carried 

out. It is seen that, in general, the tensile strength can be 

used very satisfactorily in the prediction of the mechanical 

parameters characterizing global tensile behavior of 

granites. It is clear that, in general, the prediction given by 

artificial neural networks (ANN) or supporting vector 

machines (SVM) is more meaningful than the prediction 

provided by multiple or single regression models. This is 

more evident in case of comparison of ANN and SVM 

applied in the test data in relation to single regression 

models applied to the whole data. 

It was possible also to observe that there is a strong 

relation between the mechanical properties characterizing 

the tensile behavior of granites and the physical properties 

of granites, namely ultrasonic pulse velocity, porosity and 

density. However, among these variables, the density 

provides poorest predictions results. This should be related 

to the lower range of variation when compared to the wide 

variation of the mechanical properties of granites, much 

more connected to variation on the porosity. The 

simultaneous combination of the three input variables 

almost always conducted to the best results, even if not so 

much difference was recorded to the combination of input 

variables ultrasonic pulse velocity and the porosity of the 

data mining techniques, particularly related to ANN and 

SVM models. On the other hand, it is stressed that as 

already pointed out in previous works, the ultrasonic pulse 

velocity plays a central role on the estimation of the 

mechanical properties of granites, which is also confirmed 

in this work by the application of the data mining 

techniques with very important correlation coefficients 

found. Finally, it is important to stress, that among the MR, 

ANN and SVM models, the ANN and SVM were the ones 

that led to the best prediction results, being the performance 

very close. 
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