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1. Introduction 
 

Classical plate theory (Kirchhoff, 1850ab) overestimates 

natural frequencies and buckling loads and underestimates 

the vertical displacement. This is due to not considering the 

influence of transverse shear and transverse normal stresses. 

The errors in natural frequencies and buckling loads are 

quite considerable for plate fabricated from composite 

materials. 

First order shear deformation theory (FSDT) is 

developed to improve the classical plate theory (CPT). 

Reissner (1944, 1945) was the first to propose consistent 

stress-based plate model, which introduces the influence of 

shear deformation; whereas Mindlin (1951) developed 

kinematic based first order shear deformation theory. In 

these models, the transverse shear strain variation is 

considered to be constant within the plate thickness and 

therefore, shear correction factor is needed to account for 

the strain energy because of the shear deformation (Meksi 

2015, Bellifa 2016, Bouderba 2016). In general, these shear 

correction coefficients are problem dependent. 

The limitations of CPT and FSDT stimulated the 

development of higher order shear deformation theories 

(HSDTs), to introduce influence of cross sectional warping 

and to provide the realistic distribution of the transverse 

shear strains and stresses across the thickness of plate. For 

HSDTs, primarily two types of formulations are employed.  
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In one formulation, the stresses are considered as primary 

variables. In the other formulation, displacements are 

considered as primary variables. Reddy (1984) has 

proposed well known HSDT for the investigation of 

laminated plates assuming polynomial function in-terms of 

thickness co-ordinate to introduce influence of transverse 

shear deformation. Many review articles are available on 

displacement based plate models (Ghugal and Shimpi 2002, 

Chen and Zhen 2008, Kreja 2011, Eltaher et al. 2012, 

Sobhy 2013, Tounsi et al. 2013, Han et al. 2015, Hadji et al. 

2015, Barati and Shahverdi 2016, Rahmani et al. 2017, 

Aldousari 2017). Recently many novel refined theories 

(Shimpi 2002, Shimpi et al. 2007, Ghugal and Sayyad 

2010, Bouderba et al. 2013, Zidi et al. 2014, Belkorissat et 

al. 2015, Attia et al. 2015, Zemri et al. 2015, Mahi et al. 

2015, Taibi et al. 2015, Bounouara et al. 2016, Beldjelili et 

al. 2016, Becheri et al. 2016, Javed et al. 2016, Ahouel et 

al. 2016, Boukhari et al. 2016, Bousahla et al. 2016, Bellifa 

et al. 2017a, Mouffoki et al. 2017, Klouche et al. 2017, Zidi 

et al. 2017, Amar et al. 2017) are developed for the 

investigation of isotropic and orthotropic plates and beams. 

Ghugal and Sayyad (2011) have presented trigonometric 

shear deformation theory including influence of transverse 

shear and transverse normal strain/stress for the dynamic 

analysis of thick orthotropic plates. Shimpi and Patel (2006) 

have proposed a two variable refined plate theory for 

orthotropic plate analysis. Ghugal and Pawar (2011) have 

studied static flexure behavior of isotropic and orthotropic 

plates by hyperbolic shear deformation theory. Karama et 

al. (2003) has employed exponential function to predict the 

mechanical response multilayered laminated composite 
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beams. Meziane et al. (2014) considered an efficient and 

simple refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Yahia et al. (2015) studied the wave 

propagation in FG plates with porosities applying various 

HSDTs of four unknowns. Kar and Panda (2015) studied 

the free vibration responses of temperature dependent FG 

curved panels under thermal environment by using a refined 

HSDT. Akavci (2014, 2016) presented new HSDTs to study 

the mechanical behavior of FG plates. Ahmed et al. (2014) 

examined the post-buckling response of sandwich beams 

with functionally graded faces using a consistent higher 

order theory. Kar et al. (2015) studied the nonlinear flexural 

analysis of laminated composite flat panel under hygro-

thermo-mechanical loading. Draiche et al. (2016) developed 

a refined plate theory with stretching effect for the flexure 

analysis of laminated composite plates. Saidi et al. (2016) 

presented a simple hyperbolic shear deformation theory for 

vibration analysis of thick functionally graded rectangular 

plates resting on elastic foundations. Bennoun et al. (2016) 

proposed a novel five variable refined plate theory for 

vibration analysis of functionally graded sandwich plates. 

Baseri et al. (2016) presented an analytical solution for 

buckling of embedded laminated plates based on HSDT. 

Chikh et al. (2017) proposed a simplified HSDT to 

investigate the thermal buckling response of cross-ply 

laminated plates. Bourada et al. (2016) presented a buckling 

analysis of isotropic and orthotropic plates using a novel 

four variable refined plate theory. Recently, Karami et al. 

(2017) studied effects of triaxial magnetic field on the 

anisotropic nanoplates. 

In the present work, an efficient HSDT is presented for 

buckling and free vibration analysis of orthotropic plate 

analysis. The displacement model contains undetermined 

integral terms in addition to classical plate theory terms. 

The numbers of unknown variables are lower as that of 

FSDT. Governing equations are found from the dynamic 

version of principle of virtual works. The Navier type 

solution is used for solving the governing equations of 

simply supported orthotropic plates. The critical buckling 

loads and natural frequencies of orthotropic plates for 

various modular and aspect ratios are investigated and 

discussed in detail.   
 

 

2. Orthotropic plate under consideration 
 

In this study, a rectangular plate of length a, width b, 

and a constant thickness h is considered for examination. 

The plate is subjected to in-plane compressive loads (N
0
x, 

N
0

y and N
0
xy). The structure occupies (in O–x–y–z right-

handed Cartesian coordinate system) a region 

0  ;    0  ;    / 2 / 2x a y b h y h      
 (1) 

 

2.1 Kinematics 
 

In this study, some simplifying suppositions are 

employed to the existing HSDT so that the number of 

variables is reduced. The displacement field of the existing 

HSDT is given by 
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where w0, φx and φy are five generalized displacements, f(z) 

is the shape function representing the variation of the 

transverse shear strains and stresses within the thickness. 

By adopting that  dxyxx ),(  and  dyyxy ),( , 

the kinematic of the proposed theory can be expressed in a 

simpler form as (Hebali et al. 2016, Meksi et al. 2017, 

Besseghier et al. 2017, El-Haina et al. 2017, Fahsi et al. 

2017, Meftah et al. 2017, Menasria et al. 2017, Khetir et al. 

2017, Bellifa et al. 2017b, Sekkal et al. 2017) 
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where w0(x,y) and θ(x,y)  are the two unknown 

displacement functions of middle surface of the plate. The 

constants k1 and k2 depends on the geometry. The integrals 

utilized are undetermined. 

In this work, the present HSDT is obtained by putting  
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The strains associated with the kinematic in Eq. (3) are 
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where 

 

(6a) 

and 

dz

zdf
zg

)(
)( 

 

(6b) 

The integrals used in the above expressions shall be 

resolved by a Navier solution and can be expressed by 

 
(7) 

where the parameters Aʹ and Bʹ are defined according to the 

type of solution employed, in this case via Navier. Hence, 

(2a) 

(2b) 

(2c) 

(3a) 

(3b) 

(3c) 

(6b) 

(5) 

712



 

Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory 

Aʹ and Bʹ are expressed by 

 
(8) 

where α and β are defined in Eq. (23). 

 

2.2 Constitutive equations 
 
The constitutive relations for orthotropic materials can 

be expressed as 
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(9) 

where Qij are the plane stress-reduced stiffnesses, and are 

expressed as 

 
(10) 

 

2.3 Equation of motions  
 
Hamilton’s principle is used to deduce the equations of 

motion 
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where δU  is the variation of strain energy; δW is the 

virtual potential energy due to constant in-plane 

compressive and shear forces (N
0

x, N
0

y and N
0

xy) and δK is 

the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants M, and S 

are given by 

 
(13) 

Substituting Eqs. (5) and (9) into Eq. (13) and 

integrating through the thickness of the plate, the stress 

resultants are related to the generalized displacements (w0 

and θ) by the relations 

11 12 11 12

12 22 12 22

66 66

11 12 11 12

12 22 1 22

66 66

0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0

b b
s s

x x

b b
s s

y y

b bs
xy xy

s s s ss s
x x

s s s ss s
y y

s ss s
xy xy

M kD D D D

M kD D D D

M kD D

D D H HM k

D D H HM k

D HM k

    
    
    
    
       

    
   
   
   
   

      





  

(14a) 

0

44

0
55

0

0

s s
yz yz

ss
xz xz

S A

AS





       
     
          

(14b) 

and stiffness components are given by 
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The work done by applied forces can be expressed as 
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(16) 

The variation of kinetic energy of the plate can be 

computed by 

 

(17) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ is the 

mass density of the material; and (Ii, Ji, Ki) are mass inertias 

calculated by  

 
(18) 

Substituting the relations for δU, δV, and δK from Eqs. 

(12), (16) and (17) into Eq. (11) and integrating by parts, 

and collecting the coefficients of δw0, and δθ, the following 

equations of motion for the plate are deduced as follows 

 

(19a) 

 

(19b) 

Substituting Eq. (14) into Eq. (19), the governing 

equations of the plate in term of generalized displacements 

are as follows 
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where dij, dijl and dijlm are the following differential 

operators 
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3. Analytical solutions for orthotropic plates 
 

The Navier method is considered to present the 

analytical solutions of the partial differential equations in 

Eq. (20) for simply supported plates.  

Based on the Navier procedure, the following solutions 

of displacements are employed to automatically respect the 

simply supported boundary conditions of plate 
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where Wmn and Xmn are coefficients; ω is the natural 

frequency of the system; and α and β are expressed as 
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buckling are obtained by setting 
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of orthotropic plates can be deduced from equations 
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4. Numerical results and discussion 
 

4.1 Free vibration analysis 
 

The considered orthotropic plate has following materials 

properties 

 
(26) 

The flexure mode and shear mode frequencies of plate 

are presented in the non-dimensional form 
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In the present work, dynamic investigation of a simply 
supported orthotropic plate is considered. Natural 
predominantly bending mode ( w ) and thickness shear 
mode (  ) frequencies of square plate are determined for 
thickness ratio 10. Tables 1 to 3 give non-dimensional 
frequencies of simply supported square plate and the results 
are compared with exact solution of Srinivas et al. (1970), 
HSDT of Reddy (1984), trigonometric shear deformation 
theory (TSDT) of Ghugal and Sayyad (2011), exponential 
shear deformation theory (ESDT) of Ghugal and Sayyad 
(2014), refined late theory (RPT) of Shimpi and Patel 
(2006), first shear deformation theory (FSDT) of Mindlin 
(1951) and CPT. 

Table 1 Comparison of non-dimensional natural 

predominantly bending mode frequencies w  of simply-

supported orthotropic square plate (a/h=10) 

(m,n) Present Exact ESDT HSDT TSDT RPT FSDT CPT 

(1,1) 0.0477 0.0474 0.0474 0.0474 0.0474 0.0477 0.0474 0.0497 

(1,2) 0.1040 0.1033 0.1033 0.1033 0.1031 0.1040 0.1032 0.1120 

(1,3) 0.1898 0.1888 0.1888 0.1888 0.1793 0.1898 0.1884 0.2154 

(1,4) 0.2980 0.2969 0.2969 0.2969 0.2932 0.2980 0.2959 0.3599 

(2,1) 0.1198 0.1188 0.1190 0.1189 0.1196 0.1198 0.1187 0.1354 

(2,2) 0.1722 0.1694 0.1697 0.1695 0.1696 0.1722 0.1692 0.1987 

(2,3) 0.2520 0.2475 0.2480 0.2477 0.2478 0.2520 0.2459 0.3029 

(2,4) 0.3534 0.3476 0.3482 0.3479 0.3468 0.3534 0.3463 0.4480 

(3,1) 0.2197 0.2180 0.2191 0.2184 0.2199 0.2197 0.2178 0.2779 

(3,2) 0.2675 0.2624 0.2637 0.2629 0.2671 0.2675 0.2619 0.3418 

(3,3) 0.3407 0.3320 0.3337 0.3326 0.3326 0.3407 0.3310 0.4470 

(4,1) 0.3344 0.3319 0.3351 0.3330 0.3346 0.3344 0.3311 0.4773 

(4,2) 0.3774 0.3707 0.3743 0.3720 0.3727 0.3774 0.3696 0.5415 

 

Table 2 Comparison of non-dimensional natural 

predominantly thickness shear mode frequencies   of 

simply-supported orthotropic square plate (a/h=10) 

(m,n) Present Exact ESDT HSDT TSDT FSDT 

(1,1) 1.5137 1.6530 1.6448 1.6550 1.6530 1.6647 

(1,2) 1.6791 1.7160 1.7105 1.7209 1.7145 1.7307 

(1,3) 1.8073 1.8115 1.8052 1.8210 1.8044 1.8307 

(1,4) 1.9418 1.9306 1.9249 1.9466 1.9121 1.9562 

(2,1) 1.5155 1.6805 1.6728 1.6827 1.6817 1.6922 

(2,2) 1.6784 1.7509 1.7462 1.7562 1.7513 1.7657 

(2,3) 1.8310 1.8523 1.8418 1.8622 1.8458 1.8717 

(2,4) 1.9795 1.9749 1.9701 1.9912 1.9524 2.0004 

(3,1) 1.6478 1.7334 1.7274 1.7361 1.7373 1.7452 

(3,2) 1.7691 1.8195 1.8068 1.8255 1.8255 1.8343 

(3,3) 1.9115 1.9289 1.9203 1.9395 1.9301 1.9418 

(4,1) 1.8414 1.8458 1.8437 1.8583 1.7163 1.7267 

(4,2) 1.9306 1.9447 1.9351 1.9514 1.9568 1.9588 

 

 

The predominantly bending mode frequencies of 

orthotropic square plate are presented in Table 1 for various 

modes of vibration. It is seen that the proposed model 

provides excellent results for all modes of vibration. From 

Table 2 it is seen that, thickness shear modes frequencies of 

orthotropic square plate determined by the proposed model 

are in good agreement with other results.    
 

4.2 Buckling analysis 
 

In this section, buckling response of an orthotropic 

square and rectangular plate is examined. Three types of in-

plane loading conditions are considered in this study: (1) 

uniaxial compression along the x-axis; (2) uniaxial 

compression along y-axis; and (3) biaxial compression. For 

the comparison studies, numerical results are also compared  
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Table 3 Comparison of non-dimensional buckling load 

factors (Ncr) for simply-supported orthotropic square plate 

under uniaxial compression (γ1=-1, γ2=0, m=n=1) 

a/h Model 

Non-dimensional critical buckling load factor (Ncr) 

Modular ratio E1/E2  

3 10 20 30 40 

5 

Present 3.9587 6.3478 8.3967 9.6821 10.578 

ESDT 3.9650 6.3014 8.0946 9.2166 10.049 

HSDT 3.9434 6.2072 7.8292 8.7422 9.3472 

TSDT 4.0572 6.3212 7.9324 8.8418 9.4502 

FSDT 3.9386 6.1804 7.7450 8.5848 9.1084 

CPT 5.4248 11.163 19.383 27.606 35.830 

10 

Present 4.9637 9.3732 14.563 18.772 22.258 

ESDT 4.9612 9.2998 14.080 17.748 20.676 

HSDT 4.9568 9.2772 14.001 17.577 20.386 

TSDT 5.0128 9.3646 14.116 17.711 20.534 

FSDT 4.9562 9.2734 13.982 17.532 20.304 

CPT 5.4248 11.163 19.383 27.606 35.830 

20 

Present 5.3016 10.653 17.898 24.690 31.069 

ESDT 5.3004 10.625 17.681 24.146 30.094 

HSDT 5.2994 10.621 17.664 24.108 30.025 

TSDT 5.3194 10.653 17.714 24.175 30.107 

FSDT 5.2994 10.620 17.662 24.102 30.014 

CPT 5.4248 11.163 19.383 27.606 35.830 

50 

Present 5.4047 11.078 19.129 27.094 34.972 

ESDT 5.4044 11.072 19.087 26.982 34.758 

HSDT 5.4040 11.072 19.085 26.976 34.748 

TSDT 5.4116 11.081 19.098 26.993 34.769 

FSDT 5.4046 11.072 10.085 26.976 34.748 

CPT 5.4248 11.163 19.383 27.606 35.830 

100 

Present 5.4197 11.141 19.319 27.477 35.612 

ESDT 5.4196 11.400 19.308 27.447 35.554 

HSDT 5.4192 11.139 19.307 27.466 35.553 

TSDT 5.4250 11.145 19.314 27.453 35.562 

FSDT 5.4206 11.142 19.309 27.448 35.554 

CPT 5.4248 11.163 19.383 27.606 35.830 

 

Table 4 Comparison of non-dimensional buckling load 

factors (Ncr) for simply-supported orthotropic square plate 

under biaxial compression (γ1=-1, γ2=-1, m=n=1) 

a/h Model 

Non-dimensional critical buckling load (Ncr) 

Modular ratio E1/E2 

3 10 20 30 40 

5 

Present 1.9793 3.1739 4.1984 4.8411 5.2892 

ESDT 1.9825 3.1507 4.0473 4.6083 5.0246 

HSDT 1.9717 3.1036 3.9146 4.3711 4.6736 

TSDT 2.0281 3.1606 3.9662 4.4209 4.7251 

FSDT 1.9693 3.0902 3.8725 4.2924 4.5542 

CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

Table 4 Continued 

a/h Model 

Non-dimensional critical buckling load factor (Ncr) 

Modular ratio E1/E2  

3 10 20 30 40 

10 

Present 2.4818 4.6866 7.2816 9.3862 11.1291 

ESDT 2.4806 4.6499 7.0402 8.8741 10.3380 

HSDT 2.4784 4.6386 7.0002 8.7885 10.1929 

TSDT 2.5064 4.6823 7.0582 8.8558 10.2674 

FSDT 2.4781 4.6367 6.9910 8.7662 10.1522 

CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

20 

Present 2.6508 5.3267 8.9490 12.3448 15.5343 

ESDT 2.6502 5.3124 8.8405 12.0731 15.0470 

HSDT 2.6497 5.3101 8.8320 12.0540 15.0127 

TSDT 2.6597 5.3266 8.8574 12.0875 15.0537 

FSDT 2.6497 5.3100 8.8311 12.0513 15.0070 

CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

50 

Present 2.7023 5.5390 9.5646 13.5470 17.4859 

ESDT 2.7022 5.5364 9.5437 13.4911 17.3791 

HSDT 2.7020 5.5360 9.5424 13.4884 17.3744 

TSDT 2.7058 5.5407 9.5490 13.4969 17.3849 

FSDT 2.7023 5.5362 9.5425 13.4885 17.3745 

CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

100 

Present 2.7099 5.5707 9.6596 13.7384 17.8060 

ESDT 2.7098 5.5700 9.6542 13.7238 17.7779 

HSDT 2.7096 5.5697 9.6533 13.7230 17.7767 

TSDT 2.7124 5.5727 9.6571 13.7269 17.7811 

FSDT 2.7103 5.5710 9.6544 13.7241 17.7772 

CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

 

 

to those reported by HSDT of Reddy (1984), trigonometric 

shear deformation theory (TSDT) of Ghugal and Sayyad 

(2011), exponential shear deformation theory (ESDT) of 

Ghugal and Sayyad (2014), first shear deformation theory 

(FSDT) of Mindlin (1951) and CPT.    

 

 

Table 5 Comparison of non-dimensional buckling load 

factors (Ncr) for simply-supported orthotropic rectangular 

plate under uniaxial compression along x-axis (a/h=5, γ1=-1, 

γ2=0, m=n=1)  

E1/E2 Model 

Non-dimensional critical buckling load factor (Ncr) 

Aspect ratio b/a 

1.0 1.5 2 2.5 3.0 3.5 4.0 

10 

Present 6.3478 5.3284 5.0109 4.8706 4.7961 4.7518 4.7232 

ESDT 6.3014 5.3026 5.0148 4.8939 4.8317 4.7953 4.7723 

HSDT 6.2072 5.2245 4.9412 4.8223 4.7611 4.7253 4.7026 

TSDT 6.3212 5.2923 4.9940 4.8682 4.8033 4.7654 4.7412 

FSDT 6.1804 5.2025 4.9205 4.8021 4.7412 4.7056 4.6831 

CPT 11.163 9.3549 8.8428 8.6270 8.5154 8.4500 8.4083 
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Table 5 Continued  

E1/E2 Model 

Non-dimensional critical buckling load factor (Ncr) 

Aspect ratio b/a 

1.0 1.5 2 2.5 3.0 3.5 4.0 

25 

Present 9.1039 7.9408 7.5409 7.3561 7.2558 7.1952 7.1559 

ESDT 8.7062 7.8373 7.6007 7.5047 7.4562 7.4281 7.4109 

HSDT 8.3394 7.4929 7.2631 7.1701 7.1231 7.0961 7.0792 

TSDT 8.4398 7.5414 7.2929 7.1909 7.1391 7.1091 7.0905 

FSDT 8.2199 7.3805 7.1530 7.0610 7.0154 6.9883 6.9713 

CPT 23.495 21.690 21.179 20.964 20.854 20.783 20.744 

40 

Present 10.579 9.2342 8.7587 8.5368 8.4158 8.3426 8.2950 

ESDT 10.049 9.2310 9.0145 8.9282 8.8853 8.8608 8.8454 

HSDT 9.3472 8.5541 8.3455 8.2628 8.2217 8.1983 8.1837 

TSDT 9.4502 8.6015 8.3719 8.2791 8.2324 8.2056 8.1888 

FSDT 9.1084 8.3237 8.1178 8.0363 7.9958 7.9728 7.9585 

CPT 35.830 34.027 33.516 33.300 33.189 33.124 33.082 

 

Table 6 Comparison of non-dimensional buckling load 

factors (Ncr) for simply-supported orthotropic rectangular 

plate under uniaxial compression along y-axis (a/h=5, γ1=0, 

γ2=-1, m=n=1) 

E1/E2 Model 

Non-dimensional critical buckling load factor (Ncr) 

Aspect ratio b/a 

1.0 1.5 2 2.5 3.0 3.5 4.0 

10 

Present 6.3478 11.989 20.044 30.441 43.165 58.210 75.572 

ESDT 6.3014 11.930 20.059 30.587 43.485 58.743 76.356 

HSDT 6.2072 11.755 19.765 30.139 42.849 57.885 75.242 

TSDT 6.3212 11.907 19.975 30.426 43.229 58.375 75.859 

FSDT 6.1804 11.705 19.682 30.013 42.670 57.644 74.929 

CPT 11.163 21.048 35.371 53.918 76.638 103.51 134.53 

25 

Present 9.1039 17.867 30.164 45.976 65.302 88.141 114.494 

ESDT 8.7062 17.634 30.403 46.904 67.107 90.999 118.57 

HSDT 8.3394 16.859 29.052 44.813 64.110 86.931 113.27 

TSDT 8.4398 16.968 29.171 44.943 64.253 87.089 113.44 

FSDT 8.2199 16.606 28.611 44.131 63.132 85.604 111.54 

CPT 23.495 48.803 84.716 131.02 187.66 254.63 331.92 

40 

Present 10.578 20.777 35.035 53.355 75.742 102.20 132.72 

ESDT 10.049 20.769 36.058 55.801 79.968 108.55 141.42 

HSDT 9.3472 19.246 33.382 51.642 73.995 100.42 130.93 

TSDT 9.4502 19.353 33.487 51.744 74.092 100.52 131.02 

FSDT 9.1084 18.728 32.471 50.226 71.962 97.667 137.33 

CPT 35.830 76.560 134.06 208.12 298.69 405.76 529.31 

 
 

Tables 3 and 4 present the comparison of non-
dimensional critical buckling load for square plate under 
uniaxial and biaxial compression with the variation of 
modular and thickness ratios. It can be observed that the 
proposed model with only two unknowns provides good 
results for all thickness and modular ratios. The difference 
between the proposed model and HSDT of Reddy (1984) 

 
Table 7 Comparison of non-dimensional buckling load 

factors (Ncr)  for simply-supported orthotropic rectangular 

plate under biaxial compression (a/h=5, γ1=-1, γ2=-1, 

m=n=1)  

E1/E2 Model 

Non-dimensional critical buckling load factor (Ncr) 

Aspect ratio b/a 

1.0 1.5 2 2.5 3.0 3.5 4.0 

10 

Present 3.1739 3.6889 4.0087 4.1988 4.3165 4.3932 4.4454 

ESDT 3.1507 3.6710 4.0118 4.2189 4.3485 4.4334 4.4915 

HSDT 3.1036 3.6170 3.9530 4.1571 4.2849 4.3687 4.4260 

TSDT 3.1606 3.6639 3.9952 4.1967 4.3230 4.4057 4.4623 

FSDT 3.0902 3.6017 3.9364 4.1398 4.2671 4.3505 4.4076 

CPT 5.5814 6.4765 7.0743 7.4371 7.6638 7.8122 7.9137 

25 

Present 4.5519 5.4974 6.0327 3.3415 6.5302 6.6522 6.7349 

ESDT 4.3531 5.4258 6.0806 6.4696 6.7107 6.8678 6.9750 

HSDT 4.1697 5.1874 5.8105 6.1811 6.4110 6.5609 6.6631 

TSDT 4.2199 5.2210 5.8343 6.1991 6.4253 6.5728 6.6734 

FSDT 4.1099 5.1096 5.7224 6.0870 6.3132 6.4607 6.5613 

CPT 11.757 15.016 16.943 18.072 18.767 19.217 19.524 

40 

Present 5.2892 6.3929 7.0069 7.3593 7.5742 7.7130 7.8070 

ESDT 5.0246 6.3907 7.2116 7.6967 7.9968 8.1920 8.3251 

HSDT 4.6736 5.9221 6.6764 7.1231 7.3995 5.5796 7.7023 

TSDT 7.7251 5.9549 6.6875 7.1372 7.4092 7.5863 7.7071 

FSDT 4.5542 5.7626 6.4942 6.9278 7.1963 7.3711 7.4903 

CPT 17.915 23.557 26.813 28.707 29.870 30.623 31.136 

 

 

will slightly increases as the modular ratios increase. CPT 
overestimates the values of critical buckling load for all 
thickness ratios and modular ratios. 

The comparison of non-dimensional critical buckling 

load for rectangular plate is presented in Tables 5 to 7. From  

these Tables, it can be seen that the non-dimensional critical 

buckling load diminishes with increase in aspect ratios (b/a) 

when the plate is under uniaxial compression along x-axis 

whereas increases when the plate is under uniaxial 

compression along y-axis and biaxial stability.           
 

 

5. Conclusions 
 

A novel two variable refined plate theory is proposed in 

this work for stability and dynamic analysis of orthotropic 

plates. The theory considers the transverse shear effect and 

parabolic variation of the transverse shear strain across the 

thickness of the plate. From the obtained results it can be 

concluded that, the frequencies computed by the proposed 

theory are accurate as observed from the comparison with 

exact results specially in the case of natural bending mode. 

Also, it is confirmed from this study that the present theory 

can accurately predict the critical buckling loads of the 

orthotropic plates.     

An improvement of present study will be considered in 

the future work to take into account the thickness stretching 
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effect by using quasi-3D shear deformation models 

(Bessaim et al. 2013, Bousahla et al. 2014, Belabed et al. 

2014, Fekrar et al. 2014, Hebali et al. 2014, Meradjah et al. 

2015, Chaht et al. 2015, Hamidi et al. 2015, Bourada et al. 

2015, Bennoun et al. 2016, Draiche et al. 2016, Benbakhti 

et al. 2016, Benahmed et al. 2017, Atmane et al. 2017, 

Bouafia et al. 2017, Benchohra et al. 2018, Abualnour et al. 

2018). 
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