
Geomechanics and Engineering, Vol. 14, No. 6 (2018) 519-532 

DOI: https://doi.org/10.12989/gae.2018.14.6.519                                                                  519 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

Functionally graded materials (FGMs) are a kind of 

advanced composite materials whose properties change 

gradually and continuously from one surface to another. 

The mechanical characteristics of FGM change along the 

thickness direction in the material depending on a function. 

Because of this this feature, the FGMs have some benefits 

such as eliminating the material discontinuity and avoiding 

the delamination failure, diminishing the stress levels and 

deflections. Combination of these properties attracts 

application of FGMs in many engineering areas from 

biomedical to civil engineering (Ahmed 2014, 

Swaminathan and Naveenkumar 2014, Hadji et al. 2015, 

2016, Abdelhak et al. 2016, Ahouel et al. 2016, 

Ghorbanpour Arani et al. 2016a, b, Aldousari 2017, 

Rahmani et al. 2017).  

In recent years, FGM applications have received 

important increase. The increase in FGM applications 

requires accurate theories to examine their response 

(Bessaim et al. 2013, Tounsi et al. 2013, Zemri et al. 2015,  
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Ait Atmane et al. 2015, Attia et al. 2015, Belkorissat  et al. 

2015, Larbi Chaht et al. 2015, Hamidi et al. 2015, Hebali  

et al. 2016, Barati and Shahverdi 2016, Barka et al. 2016, 

Beldjelili et al. 2016, Meksi et al. 2017, Menasria et al., 

2017). The bending and vibration behavior of FG plates 

have been investigated by many researchers in recent ten 

years. Kashtalyan (2004) presented a 3D elasticity solution 

for a simply supported FG plate under the transverse 

loading. Matsunaga (2009) developed a 2D higher-order 

theory for the prediction of displacement and stresses in FG 

plates under thermal and mechanical loadings. The model 

can take into account the influence of both transverse shear 

and normal stresses. Zhao et al. (2009) analyzed the free 

vibration of FG plates using the element-free kp-Ritz 

method. The first-order shear deformation plate theory 

(FSDT) is utilized to consider the transverse shear strain 

and rotary inertia, and mesh-free kernel particle functions 

are employed to approximate the 2D displacement fields. 

Vaghefi et al. (2010) proposed a version of meshless local 

Petrov-Galerkin procedure to determine 3D static solutions 

for thick FG plates. Orakdogen et al. (2010) examined the 

coupling influence of extension and static in FG plate under 

transverse loading for Kirchhoff-Love plate theory 

equations. Tamijani and Kapania (2012) presented an 

element free Galerkin method for the vibration of a FG 

plate with curvilinear stiffeners. The governing equations 
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for the plate and stiffeners are obtained by employing the 

FSDT. Gunes et al. (2014) presented an experimental study 

about the low-velocity impact response of FG clamped 

circular plates. Zhang et al. (2014) proposed a 3D elasticity 

solution for bending of thick FG plates by using a hybrid 

semi-analytical approach-the state-space based differential 

quadrature method. Ait Amar Meziane et al. (2014) 

presented an efficient and simple refined theory for 

buckling and free vibration of exponentially graded 

sandwich plates under various boundary conditions. Ait 

Yahia et al. (2015) analyzed wave propagation in FG plates 

with porosities using various higher-order shear 

deformation plate theories. Sofiyev and Kuruoglu (2015) 

developed a theoretical formulation to solve dynamic 

problems of FG truncated conical shells under mixed 

boundary conditions. Zafarmand and Kadkhodayan (2015) 

studied the 3D bending and dynamic response of a thick 

sector plate made of two-directional FGMs. Kar and Panda 

(2015a) investigated the free vibration responses of 

temperature dependent FG curved panels under thermal 

environment. Kar and Panda (2015b) presented large 

deformation bending analysis of FG spherical shell using 

FEM. Kar and Panda (2015c) discussed nonlinear flexural 

vibration of shear deformable FG spherical shell panel. Kar 

et al. (2015) studied also the nonlinear flexural analysis of 

laminated composite flat panel under hygro-thermo-

mechanical loading. Zhu and Liew (2011) presented free 

vibration analyses of FG plates with the local Kriging 

meshless method.  
It is clear that non-negligible shear deformations occur 

at the thick and moderately thick plates and the classical 
plate theory (CPT) provides inaccurate results. So, 
transverse shear deformations have to be considered in the 
analysis. There is numerous plate models that introduce 
transverse shear strains for the advanced composites like 
FGMs. Benachour et al. (2011) developed a four variable 
refined plate theory for free vibration investigation of plates 
made of FGMs with an arbitrary gradient. Hosseini-
Hashemi et al. (2011) proposed a novel exact closed-form 
method to solve free vibration analysis of FG rectangular 
thick plates based on the Reddy’s third-order shear 
deformation plate theory while the plate has two opposite 
edges simply supported. Matsunaga (2008) investigated the 
natural frequencies and buckling stresses of FG plates by 
considering the effects of transverse shear and normal 
deformations and rotatory inertia. Jha et al. (2013) 
discussed the free vibration behavior of FG elastic, 
rectangular, and simply supported plates based on higher 
order shear/shear-normal deformations theories. 
Sheikholeslami and Saidi (2013) investigated the free 
vibration of simply supported FG rectangular plates resting 
on two-parameter elastic foundation using the higher-order 
shear and normal deformable plate theory. Hebali et al. 
(2014) developed a novel quasi-3D hyperbolic shear 
deformation theory for bending and free vibration analysis 
of FG plates. Belabed et al. (2014) proposed an efficient 
and simple higher order shear and normal deformation 
theory for FG plates. Alijani and Amabili (2014) studied the 
nonlinear forced vibrations of moderately thick FG 
rectangular plates by considering HSDTs that consider the 
thickness deformation effect. Akavci and Tanrikulu (2015) 
presented a new quasi-3D hyperbolic shear deformation 

theory for static and free vibration analysis of FG plates. 
Houari et al. (2016) presented a new simple three -unknown 
sinusoidal shear deformation theory for FG plates. Baseri et 
al. (2016) presented an analytical solution for buckling of 
embedded laminated plates based on higher order shear 
deformation plate theory. Kolahchi and Moniri Bidgoli 
(2016) used a sinusoidal beam model for dynamic 
instability of single-walled carbon nanotubes. Arani and 
Kolahchi (2016) analyzed buckling behavior of embedded 
concrete columns armed with carbon nanotubes. Kolahchi 
et al. (2016a) employed differential cubature and 
quadrature-Bolotin methods for dynamic stability of 
embedded piezoelectric nanoplates based on visco-
nonlocal-piezoelasticity theories. Bilouei et al. (2016) 
investigated the buckling of concrete columns retrofitted 
with nano-fiber reinforced polymer. Madani et al. (2016) 
presented a differential cubature method for vibration 
analysis of embedded FG-CNT-reinforced piezoelectric 
cylindrical shells subjected to uniform and non-uniform 
temperature distributions. Kolahchi et al. (2016b) analyzed 
the dynamic stability of temperature-dependent functionally 
graded CNT-reinforced visco-plates resting on orthotropic 
elastomeric medium. Kolahchi et al. (2017) presented 
visco-nonlocal-refined Zigzag theories for dynamic 
buckling of laminated nanoplates using differential 
cubature-Bolotin methods. Zamanian et al. (2017) discussed 
the agglomeration effects on the buckling behavior of 
embedded concrete columns reinforced with SiO2 nano-
particles. Bennoun et al. (2016) presented a novel five 
variable refined plate theory for vibration analysis of 
functionally graded sandwich plates. Ait Atmane et al. 
(2017) studied the effect of thickness stretching and 
porosity on mechanical response of a FG beams resting on 
elastic foundations. Benahmed et al. (2017) proposed a 
novel quasi-3D hyperbolic shear deformation theory for FG 
thick rectangular plates on elastic foundation. Benbakhti et 
al. (2016) developed also a new five unknown quasi-3D 
type HSDT for thermomechanical bending analysis of FGM 
sandwich plates. Chikh et al. (2017) discussed the thermal 
buckling response of cross-ply laminated plates using a 
simplified HSDT. Klouche et al. (2017) presented an 
original single variable shear deformation theory for 
buckling analysis of thick isotropic plates. Draiche et al. 
(2017) proposed a refined theory with stretching effect for 
the flexure analysis of laminated composite plates. 
Benchohra et al. (2017) presented a novel quasi-3D 
sinusoidal shear deformation theory for FG plates. 

In this study, a novel quasi-3D hyperbolic shear 
deformation theory is proposed for bending and vibration 
investigation of FG plates. The developed theory provides 
good accuracy and considers a parabolic transverse shear 
deformation shape function and respects shear stress free 
boundary conditions of upper and lower surfaces of the 
plate without employing shear correction factors. Besides, 
the model considers the thickness stretching effect by 
employing the same hyperbolic function. By introducing 
integral terms in the in-plane displacements, the number of 
unknowns of the theory is reduced, thus saving 
computational time (Bourada et al. 2016). Governing 
equations are obtained from the Hamilton’s principle. 
Navier solution is employed to determine the analytical 
solutions for simply supported FG plates. The in-plane 
stresses are computed from the linear constitutive relations  
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Fig. 1 Geometry and coordinates of the considered 

single-layer FGM plate 
 
 

and the transverse shear and normal stresses are calculated 
by integrating the 3D stress equilibrium equations of elastic 
media by respecting the stress boundary conditions on the 
upper and lower surfaces of a plate. Numerical results are 
presented to demonstrate the accuracy and efficiency of the 
proposed theory. 
 
 

2. Theoretical formulation 
 

Consider a FG rectangular plate, having uniform 

thickness h, length a, width b (Fig. 1). 

In this work, the compositions and volume fractions of 

the constituents in FGM are assumed to change gradually 

across the thickness according to: (a) The power-law 

variation, (b) The exponential distribution, (c) The Mori-

Tanaka homogenization model. Since the influences of 

Poisson’s ratio   on the response of FG plates are very 

small, it is supposed to be constant for all gradation models 

(Bouderba et al. 2013 and 2016, Bousahla et al. 2014 and 

2016, Meradjah et al. 2015, Mouaici et al. 2016, Chikh et 

al. 2016, Bourada et al. 2015, Mahi et al. 2015, Boukhari et 

al. 2016, Zidi et al. 2014 and 2017). 

a) The power-law (P-FGM) variation 

The volume fraction of the P-FGM plate is considered to 

change continuously within the thickness of the plate in 

according to the power law variation (Bao and Wang 1995, 

Fekrar et al. 2014, Bellifa et al. 2016 and 2017. Benferhat 

et al. 2016, El-Hassar et al. 2016, Laoufi et al. 2016, 

Besseghier et al. 2017, Bouafia et al. 2017, El-Haina et al. 

2017, Khetir et al. 2017, Mouffoki et al. 2017) as follows 
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(1) 

b) The exponential (E-FGM) variation 

The volume fraction of the E-FGM plate is considered 

to vary continuously within the thickness of the plate in 

according to the exponential variation (Delale and Erdogan, 

1983) as follows 
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c) The Mori Tanaka homogenization model 

For Mori-Tanaka scheme, the volume fraction of the 

FGM plate is given as (Mori and Tanaka 1973, Benveniste 

1987, Belabed et al. 2014, Bounouara et al. 2016) 
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(3b) 

where P presents the effective material property like 

Young’s modulus E, Pm and Pc denotes the property of the 

upper and the lower faces of the plate, respectively, k  is 

the power law index and  p  is the volume fraction 

exponent. 
 

2.1 Kinematics 
 

On the basis of the thick plate theory and considering 

the thickness stretching influence, the supposed 

displacement field of the plate can be described as 

 
(4a) 

 
(4b) 

 (4c) 

where u0, v0, w0, θ and φz are the five unknown 

displacement functions of middle surface of the plate. Note 

that the integrals do not have limits. The constants k1 and k2 

depends on the geometry. 

In this work, the shear strain shape functions are 

2
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(5) 

Based on the suppositions in Eq. (4), within the 

application of the linear, small-strain elasticity theory, the 

general strain-displacement relations are expressed as 

 

(6) 

where 

 

(7a) 

 

(7b) 

(3b) 

(5) 

521



 

Abderahman Younsi, Abdelouahed Tounsi, Fatima Zohra Zaoui, Abdelmoumen Anis Bousahla and S.R. Mahmoud 

and 

dz

zdg
zg

)(
)(' 

 
(7c) 

It can be seen from equation (6) that the transverse shear 

strains (γxz, γyz,) are equal to zero at the top (z=h/2) and 

bottom (z=-h/2) surfaces of the plate. A shear correction 

coefficient is, hence, not required. 

The integrals employed in the above equations shall be 

resolved by a Navier type method and can be expressed as 

follows 

 
(8) 

where the coefficients Aʹ and Bʹ are considered according to 

the type of solution employed, in this case via Navier 

method. Therefore, Aʹ, Bʹ, k1 and k2 are expressed as follows 

 
(9) 

where α and β are defined in expression (20). 

The linear constitutive relations of a FG plate according 

to the 3D elasticity can be written as 
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(10) 

The elastic constants (Cij) are depends on the normal 

strain ɛz.  

• If the ɛz≠0 then Cij are 
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• If the ɛz=0 then Cij are 
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2.3 Equations of equilibrium and stress components 
 

The Hamilton principle is considered herein to 

determine the equations of motion appropriate to the 

displacement field and the constitutive equations. The 

principle can be stated in analytical form as (Belabed et al. 

2014, Taibi et al. 2015, Fahsi et al. 2017) 

 

t

p dtKVU
0

 )   (0 

 

(13) 

where δU is the variation of strain energy; δVp is the 

potential energy of applied distributed transverse load and 

δK is the variation of kinetic energy of FG plate.  

The equations of motion can be obtained from Eq. (13) 

by integrating the displacement gradients by parts and 

setting the coefficients δu0, δv0, δw0, δθ and δφz zero 

separately 

 

(14) 

The stress and moment resultants which appeared in Eq. 

(8) are given by 
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(15b) 

where the stiffness components and inertias are given as 

 
(16a) 

 
(16b) 

 
(16c) 

and ρ(z) is the mass density. (15a) 
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The in-plane normal and shear stresses (σx, σy and τxy) 

can be determined accurately by the constitutive relations 

(10) for FG plates. But if the transverse shear stresses (τyz 

and τxy) computed from the constitutive relations (10), they 

may not respect the boundary conditions at the upper and 

lower surfaces of the plate. So these stresses are determined 

by integrating the equilibrium equations of 3D elasticity 

with respect to thickness coordinate as 
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(17b) 

where Ci(i=1, 2) are constants and determined by the 

following boundary conditions at the upper and lower 

surfaces of the plate 

0
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3. Analytical solution for rectangular FG plates 
 

The Navier solution method is used to determine the 

analytical solutions for which the displacement variables 

are expressed as product of arbitrary parameters and known 

trigonometric functions to respect the governing equations 

and boundary conditions. 
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(19) 

where (Umn, Vmn, Wmn, Xmn, Фmn) are unknown functions to 

be determined and ω is the natural frequency. α and β are 

expressed as 

 
(20) 

The transverse distributed load q(x,y) is also expanded 

double Fourier series as 
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The coefficients qmn are given below for some general 

loadings: 

• For uniformly distributed load 
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• For uniformly distributed load 

0qqmn   (23) 

in which q0 is the intensity of the load. 

Substituting the stress and moment resultants defined in 

Eq. (15) into equations of motion (14) we get below closed-

form solutions of static and free vibration problems of FG 

plate 

 

(24) 

in which 

 

(25) 

 

 

4. Numerical results 
 

In order to demonstrate the accuracy of the proposed 

theory in investigating the bending and dynamic responses 

of simply supported FG plates, numerical examples are 

presented and compared with the results of various 3D, 

quasi-3D and 2D shear deformation theories. 
 

4.1 Bending analysis 
 

4.1.1 Functionally graded plates 
In this section, the computed stress and displacements of 

FG plates which are graded from the lower to the upper 

surface according to Eq. (1) are provided and compared 

with the results of different HSDTs. The material properties 

of FG plates are listed in Table 1. 
Tables 2 and 3 show the non-dimensional displacement 

and stresses of an Al/Al2O3 FG square plate under uniformly 

and sinusoidal distributed loads for various values of the  
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Table 1 Material properties used in the FG plates 

Material Properties   

 E(GPa) v p(kg/m3) 

Aluminum (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

 

Table 2 The non-dimensional displacement and stress 

components of an Al/Al2O3 FG square plate subjected to 

uniformly distributed load (a/h=10) 

k
 

Theory ɛz (0)w
 

2
x

h


 
 
 

 

3
y

h


 
 
 

 

 0xz  
6

yz

h


 
 
 

 

3
xy

h


 
 
 

 

0 

Akavci and  

Tanrikulu (2015) 
= 0 0.4665 2.8909 1.9103 0.4988 0.4363 1.2857 

Present = 0 0.4665 2.8913 1.9102 0.5043 0.4367 1.2855 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.4635 2.9981 1.8925 0.4782 0.4315 1.2578 

Present ≠ 0 0.4637 2.9919 1.8932 0.4791 0.4317 1.2585 

1 

Akavci and  

Tanrikulu (2015) 
= 0 0.9288 4.4707 2.1693 0.4988 0.5364 1.1141 

Present = 0 0.9287 4.4713 2.1692 0.5043 0.5370 1.1141 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.8977 4.6110 2.0822 0.4782 0.5119 1.0211 

Present ≠ 0 0.8980 4.6005 2.0832 0.4791 0.5121 1.0225 

2 

Akavci and  

Tanrikulu (2015) 
= 0 1.1940 5.2248 2.0342 0.4581 0.5643 0.9909 

Present = 0 1.1940 5.2256 2.0340 0.4637 0.5657 0.9908 

Akavci and  

Tanrikulu (2015) 
≠ 0 1.1376 5.3825 1.9257 0.4524 0.5081 0.8921 

Present ≠ 0 1.1380 5.3726 1.9281 0.4532 0.5082 0.8926 

4 

Akavci and 

Tanrikulu (2015) 
= 0 1.3888 5.8855 1.7205 0.4090 0.5253 1.0305 

Present = 0 1.3890 5.8866 1.7202 0.4151 0.5278 1.0303 

Akavci and  

Tanrikulu (2015) 
≠ 0 1.3259 6.0382 1.6062 0.4358 0.4804 0.9274 

Present ≠ 0 1.3262 6.0301 1.6101 0.4365 0.4806 0.9279 

10 

Akavci and  

Tanrikulu (2015) 
= 0 1.5875 7.3617 1.2828 0.4436 0.4159 1.0705 

Present = 0 1.5875 7.3628 1.2825 0.4495 0.4174 1.0703 

Akavci and  

Tanrikulu (2015) 
≠ 0 1.5453 7.5123 1.2016 0.4332 0.4561 0.9860 

Present ≠ 0 1.5454 7.5064 1.2059 0.4339 0.4562 0.9862 

 
 

power-law index. The non-dimensional displacement and 

stress components for these Tables are given in Eq. (25). 

Table 2 provides the computed results of non-dimensional 

displacement and stress components of the square FG plate 

subjected to uniform load as compared with those given by 

the quasi-3D and 2D shear deformation theories by Akavci 

and Tanrikulu (2015). It can be observed from the table that 

the proposed 2D and 3D theory results are in excellent 

agreement with those of Akavci and Tanrikulu (2015). This 

table also demonstrates that, the deflection w  and in-plane 

stresses x  and y  increase and the shear stresses xz  

and xy  diminish with the increasing value of material 

index k. Table 3 provides the non-dimensional in-plane 

stresses x  and non-dimensional deflection w  of a square 

plate for different a/h ratios. The obtained results are 

compared with the different quasi-3D HSDTs of Carrera et 

al. (2011) Neves et al. (2012a, b), Hebali et al. (2014) and 

Akavci and Tanrikulu (2015) that include both transverse 

shear and normal deformations. The proposed quasi-3D 

results agree very well with those provided by other models. 

Table 3 Non-dimensional displacement and stress of an 
Al/Al2O3 FG square plate subjected to sinusoidal load 

k
 

Theory ɛz 

 0x  
(0)w  

a/h=4

 

a/h=10

 

a/h=100

 

a/h=4

 

a/h=10

 

a/h=100

 

1 

Carrera et al.  

(2011) 
≠ 0 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625 

Neves et al.  

(2012a) 
≠ 0 0.5925 1.4945 14.9690 0.6997 0.5845 0.5624 

Neves et al.  

(2012b) 
≠ 0 0.5910 1.4917 14.9440 0.7020 0.5868 0.5648 

Hebali et al.  

(2014) 
≠ 0 0.5952 1.4954 14.9630 0.6910 0.5686 0.5452 

Akavci and  

Tanrikulu (2015) 
= 0 0.5806 1.4895 14.9670 0.7282 0.5889 0.5625 

Present = 0 0.5808 1.4896 14.9675 0.7283 0.5889 0.5625 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.5754 1.4322 14.3060 0.6908 0.5691 0.5457 

Present ≠ 0 0.5758 1.4330 14.3135 0.6910 0.5692 0.5459 

4 

Carrera et al.  

(2011) 
≠ 0 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286 

Neves et al.  

(2012a) 
≠ 0 0.4404 1.1783 11.9320 1.1178 0.8750 0.8286 

Neves et al.  

(2012b) 
≠ 0 0.4340 1.1593 11.7380 1.1095 0.8698 0.8241 

Hebali et al.  

(2014) 
≠ 0 0.4507 1.1779 11.8710 1.0964 0.8413 0.7926 

Akavci and  

Tanrikulu (2015) 
= 0 0.4431 1.1787 11.9200 1.1613 0.8818 0.8287 

Present = 0 0.4437 1.1789 11.9209 1.1609 0.8817 0.8287 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.4247 1.1017 11.0880 1.0983 0.8417 0.7925 

Present ≠ 0 0.4260 1.1045 11.1152 1.0982 0.8419 0.7928 

10 

Carrera et al.  

(2011) 
≠ 0 0.3965 0.8965 8.9077 1.3745 1.0072 0.9361 

Neves et al.  

(2012a) 
≠ 0 0.3227 1.1783 11.9320 1.3490 0.8750 0.8286 

Neves et al.  

(2012b) 
≠ 0 0.3108 0.8467 8.6013 1.3327 0.9886 0.9228 

Hebali et al.  

(2014) 
≠ 0 0.3325 0.8889 8.9977 1.3333 0.9791 0.9114 

Akavci and  

Tanrikulu (2015) 
= 0 0.3242 0.8778 8.9059 1.3917 1.0089 0.9362 

Present = 0 0.3248 0.8780 8.9059 1.3915 1.0088 0.9362 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.3095 0.8229 8.3185 1.3352 0.9818 0.9141 

Present ≠ 0 0.3109 0.8259 8.3473 1.3353 0.9819 0.9141 

 
 

 

(26) 

Fig. 2 presents the stress and displacement variations 
through the thickness of Al/Al2O3 FG square plate subjected 
to sinusoidal load. The non-dimensional quantities 
presented in Fig. 2 are given in Eq. (26). The results are 
shown as compared with the quasi-3D and 2D shear 
deformation theories of Akavci and Tanrikulu (2015) for 
various values of material index k. According to Fig. 2, the 
results are in excellent agreement with those computed 
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using of the quasi-3D and 2D shear deformation theories of 
Akavci and Tanrikulu (2015). It is important to indicate 
that, the through the thickness variations of in-plane stresses 

x  and xy  are linear for homogeneous plate while it is 
parabolic for FG plates. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2 The distributions of the non-dimensional 

displacement and stresses of square FG plate (a/h=10), 

(a) In-plane displacement ( u ), (b) Transverse 

displacement ( w ), (c) axial stress ( x ), (d) in-plane shear 

stress ( xy ) and (e) transverse shear stress ( xz ) 

 
(e) 

Fig. 2 Continued 

 

Table 4 Non-dimensional deflection 
3

0
4

0

10
(0) , ,0

2 2

h E a b
w w

a q

 
  

 
 of 

EGM plates subjected to sinusoidal distributed load (a/h=2) 

b/a

 
Theory ɛz 

p

 

0.1 0.3 0.5 0.7 1 1.5 

1 

Zenkour (2007) ≠ 0 0.5769 0.5247 0.4766 0.4324 0.3726 0.2890 

Zenkour (2007) = 0 0.5730 0.5180 0.4678 0.4221 0.3611 0.2771 

Mantari and  

Soares (2013) 
≠ 0 0.5778 0.5224 0.4717 0.4256 0.3648 0.2793 

Mantari and  

Soares (2013) 
= 0 0.6362 0.5751 0.5194 0.4687 0.4017 0.3079 

Akavci and  

Tanrikulu (2015) 
= 0 0.6351 0.5741 0.5185 0.4679 0.4004 0.3075 

Present = 0 0.6355 0.5745 0.5189 0.4683 0.4007 0.3077 

Akavci and  

Tanrikulu (2015) 
≠ 0 0.5750 0.5198 0.4694 0.4236 0.3624 0.2780 

Present ≠ 0 0.5758 0.5205 0.4701 0.4242 0.3629 0.2784 

2 

Zenkour (2007) ≠ 0 1.1944 1.0859 0.9864 0.8952 0.7726 0.6017 

Zenkour (2007) = 0 1.1879 1.0739 0.9700 0.8754 0.7493 0.5757 

Mantari and  

Soares (2013) 
≠ 0 1.1940 1.0794 0.9750 0.8799 0.7537 0.5786 

Mantari and  

Soares (2013) 
= 0 1.2776 1.1553 1.0441 0.9430 0.8092 0.6237 

Akavci and  

Tanrikulu (2015) 
= 0 1.2763 1.1541 1.0431 0.9422 0.8079 0.6234 

Present = 0 1.2768 1.1546 1.0435 0.9426 0.8082 0.6236 

Akavci and  

Tanrikulu (2015) 
≠ 0 1.1938 1.0765 0.9723 0.8775 0.7511 0.5771 

Present ≠ 0 1.1917 1.0774 0.9731 0.8782 0.7517 0.5775 

3 

Zenkour (2007) ≠ 0 1.4429 1.3116 1.9112 1.0811 0.9333 0.7275 

Zenkour (2007) = 0 1.4354 1.2977 1.1722 1.0579 0.9056 0.6961 

Mantari and  

Soares (2013) 
≠ 0 1.4421 1.3037 1.1776 1.0627 0.9104 0.6992 

Mantari and  

Soares (2013) 
= 0 1.5340 1.3873 1.2540 1.1329 0.9725 0.7506 

Akavci and  

Tanrikulu (2015) 
= 0 1.5327 1.3861 1.2530 1.1320 0.9712 0.7503 

Present = 0 1.5332 1.3866 1.2534 1.1324 0.9715 0.7504 

Akavci and  

Tanrikulu (2015) 
≠ 0 1.4386 1.3005 1.1748 1.0602 0.9076 0.6976 

Present ≠ 0 1.4396 1.3015 1.1756 1.0610 0.9082 0.6981 

 

 

4.1.2 Exponentially graded plates 
In this section, the exponential function employed to 

define the material properties of the EGM plate is given in 

Eq. (2). The non-dimensional stress and displacements of 

the E-FGM plate are compared with the results of different 

HSDTs for different loadings. 
The non-dimensional displacements and stresses are 

given in Tables 4-6 for different values of aspect ratio b/a,  
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Table 5 Non-dimensional stress 
2

2
0

, ,
2 2 2 2

x x

h h a b h

a q
 

   
   

   
 of 

EGM plates subjected to sinusoidal distributed load 

(a/h=10) 

b/a

 
Theory ɛz 

p

 

0.1 0.3 0.5 0.7 1 1.5 2 2.5 3 

1 

Mantari and 

Soares  

(2013) 

≠ 0 0.2196 0.2345 0.2503 0.2671 0.2944 0.3460 0.4065 0.4775 0.5603 

Mantari and 

Soares  

(2013) 

= 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

Akavci and

 Tanrikulu 

(2015) 

= 0 0.2063 0.2205 0.2356 0.2516 0.2776 0.3266 0.3838 0.4504 0.5281 

Present = 0 0.2063 0.2205 0.2355 0.2516 0.2775 0.3265 0.3837 0.4504 0.5279 

Akavci and

 Tanrikulu 

(2015) 

≠ 0 0.2142 0.2285 0.2438 0.2601 0.2866 0.3370 0.3964 0.4664 0.5485 

Present ≠ 0 0.2137 0.2280 0.2433 0.2595 0.2860 0.3363 0.3957 0.4657 0.5478 

2 

Mantari and 

Soares  

(2013) 

≠ 0 0.4552 0.4867 0.5200 0.5554 0.6126 0.7201 0.8449 0.9898 1.1580 

Mantari and 

Soares 

 (2013) 

= 0 0.4350 0.4649 0.4966 0.5303 0.5850 0.6881 0.8085 0.9490 1.1125 

Akavci and

 Tanrikulu 

(2015) 

= 0 0.4351 0.4650 0.4968 0.5305 0.5852 0.6884 0.8088 0.9493 1.1129 

Present = 0 0.4351 0.4650 0.4967 0.5305 0.5851 0.6883 0.8087 0.9492 1.1128 

Akavci and

 Tanrikulu 

(2015) 

≠ 0 0.4466 0.4773 0.5098 0.5443 0.6002 0.7058 0.8289 0.9725 1.1397 

Present ≠ 0 0.4459 0.4765 0.5090 0.5435 0.5993 0.7048 0.8278 0.8278 1.1388 

3 

Mantari and 

Soares  

(2013) 

≠ 0 0.5514 0.5896 0.6302 0.6733 0.7427 0.8730 1.0240 1.1990 1.4017 

Mantari and 

Soares  

(2013) 

= 0 0.5288 0.5651 0.6037 0.6447 0.7112 0.8365 0.9828 1.1536 1.3523 

Akavci and

 Tanrikulu 

(2015) 

= 0 0.5290 0.5653 0.6039 0.6449 0.7114 0.8368 0.9832 1.1540 1.3528 

Present = 0 0.5289 0.5652 0.6038 0.6449 0.7113 0.8367 0.9831 1.1538 1.3527 

Akavci and

 Tanrikulu 

(2015) 

≠ 0 0.5418 0.5791 0.6187 0.6608 0.7289 0.8570 1.0061 1.1797 1.3813 

Present ≠ 0 0.5410 0.5783 0.6179 0.6599 0.7279 0.8559 1.0050 1.1786 1.3803 

 

 

thickness ratio a/h and exponent value p. Table 4 shows the 
central deflections of the very thick E-FGM plates. The 
computed results are compared with the quasi -3D 
sinusoidal and exact 3D elasticity theories of Zenkour 
(2007), 2D and quasi-3D trigonometric models of Mantari 
and Soares (2013) and the quasi-3D and 2D shear 
deformation theories by Akavci and Tanrikulu (2015). Since 
the presented and other quasi-3D models introduce the 
thickness-stretching influence, the results are close to each 
other. Meanwhile, 2D HSDTs which do not introduce the 
thickness stretching influence overestimate the results. In 
Tables 5 and 6, the computed non-dimensional stresses are  

Table 6 Non-dimensional stress  
0

0 0, ,0
2

xz xz

h b

aq
 

 
  

 
 of 

EGM plates subjected to sinusoidal distributed load 

(a/h=10) 

b/a

 
Theory ɛz 

p

 

0.1 0.3 0.5 0.7 1 1.5 2 2.5 3 

1 

Mantari and 

Soares (2013) 
≠ 0 0.2454 0.2450 0.2442 0.2430 0.2405 0.2344 0.2263 0.2162 0.2045 

Mantari and 

Soares (2013) 
= 0 0.2380 0.2376 0.2368 0.2356 0.2330 0.2268 0.2185 0.2094 0.1985 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.2434 0.2430 0.2422 0.2410 0.2385 0.2324 0.2242 0.2140 0.2023 

Present = 0 0.2416 0.2412 0.2404 0.2392 0.2366 0.2305 0.2222 0.2121 0.2003 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.2367 0.2364 0.2359 0.2353 0.2338 0.2300 0.2249 0.2182 0.2102 

Present ≠ 0 0.2371 0.2369 0.2364 0.2357 0.2342 0.2304 0.2252 0.2186 0.2105 

2 

Mantari and 

Soares (2013) 
≠ 0 0.3927 0.3921 0.3908 0.3889 0.3849 0.3752 0.3621 0.3460 0.3273 

Mantari and 

Soares (2013) 
= 0 0.3810 0.3803 0.3790 0.3770 0.3730 0.3630 0.3497 0.3344 0.3165 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.3896 0.3889 0.3877 0.3857 0.3817 0.3719 0.3588 0.3425 0.3237 

Present = 0 0.3867 0.3860 0.3847 0.3828 0.3787 0.3689 0.3557 0.3394 0.3206 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.3790 0.3787 0.3779 0.3768 0.3744 0.3684 0.3602 0.3496 0.3368 

Present ≠ 0 0.3797 0.3793 0.3786 0.3774 0.3750 0.3691 0.3608 0.3501 0.3373 

3 

Mantari and 

Soares (2013) 
≠ 0 0.4418 0.4411 0.4396 0.4375 0.4330 0.4221 0.4074 0.3893 0.3683 

Mantari and 

Soares (2013) 
= 0 0.4286 0.4279 0.4264 0.4242 0.4196 0.4084 0.3934 0.3761 0.3558 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.4383 0.4376 0.4361 0.4340 0.4294 0.4185 0.4036 0.3854 0.3642 

Present = 0 0.4350 0.4343 0.4328 0.4307 0.4261 0.4151 0.4002 0.3819 0.3607 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.4265 0.4261 0.4252 0.4239 0.4212 0.4146 0.4053 0.3934 0.3789 

Present ≠ 0 0.4273 0.4268 0.4260 0.4247 0.4220 0.4153 0.4059 0.3940 0.3795 

 

 
(a) 

 
(b) 

Fig. 3 The distributions of the non-dimensional 

displacement and stresses of square EGM plate 

subjected to sinusoidal load versus E0/E1 rations 

(a/h=4), (a) In-plane displacement ( u ), (b) Transverse 

displacement ( w ), (c) axial stress ( x ), (d) in-plane 

shear stress ( xy ) and (e) transverse shear stress ( xz ) 
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(c) 

 
(d) 

 
(e) 

Fig. 3 Continued 
 

Table 7 Non-dimensional central displacement 

  0(0) /w G h w h q  and in-plane normal stress 

    00 0x x q  of EGM plates subjected to uniformly 

distributed load 

h/a Quantity Theory 

E0/E1 

0.1 0.5 1 2 10 

0.2 

w  

BEM  

(Vaghefi et al. 2010) 
4.0916 8.9751 12.5990 17.6640 39.0600 

FEM  

(Vaghefi et al. 2010) 
4.1215 9.0047 12.6130 17.7110 39.1550 

Akavci and Tanrikulu 

(2015): ɛz≠ 0 
3.8333 8.8724 12.5970 17.7440 38.3330 

Present: ɛz≠ 0 3.8345 8.8756 12.6025 17.7511 38.3451 

x  

BEM 

 (Vaghefi et al. 2010) 
-15.356 -9.2902 -7.4462 -5.9410 -3.4665 

FEM 

 (Vaghefi et al. 2010) 
-15.403 -9.2995 -7.4588 -5.9591 -3.4805 

Akavci and Tanrikulu 

(2015): ɛz≠ 0 
-16.3220 -9.6545 -7.6944 -6.1109 -3.4530 

Present: ɛz≠ 0 -16.2898 -9.6313 -7.6770 -6.0994 -3.4504 

0.3 

w  

BEM  

(Vaghefi et al. 2010) 
0.9707 2.1378 2.9853 4.1208 8.7134 

FEM  

(Vaghefi et al. 2010) 
0.9732 2.1407 2.9792 4.1333 8.7293 

Zhang et al. (2014) 0.9735 2.1405 2.9795 4.1332 8.7343 

Akavci and Tanrikulu 

(2015): ɛz≠ 0 
0.8923 2.0834 2.9602 4.1669 8.9229 

Present: ɛz≠ 0 0.8925 2.0843 2.9615 4.1685 8.9253 

x  

BEM 

 (Vaghefi et al. 2010) 
-7.223 -4.3084 -3.4496 -2.7499 -1.6449 

FEM  

(Vaghefi et al. 2010) 
-7.2639 -4.3378 -3.4681 -2.7673 -1.6499 

Zhang et al. (2014) -7.1493 -4.3227 -3.4710 -2.7853 -1.6759 

Akavci and Tanrikulu 

(2015): ɛz≠ 0 
-7.6576 -4.5062 -3.5748 -2.8235 -1.5731 

Present: ɛz≠ 0 -7.6386 -4.4941 -3.5659 -2.8175 -1.5715 

provided as compared with the quasi-3D and 2D hyperbolic 
theories by Akavci and Tanrikulu (2015) and 2D and quasi-
3D trigonometric theories of Mantari and Soares (2013). It 
is evident from the examination of the tables that the 
present results are in an excellent agreement with the quasi-
3D solutions of (Akavci and Tanrikulu 2015, Mantari and 
Soares 2013). Tables 4-6 demonstrate also that deflection 
w  and transverse shear stress xz  diminish and in plane 
stress x  increases with the increase of exponent p.  

Fig. 3 shows the variations of non-dimensional 
displacements and stresses within the thickness of an EGM 
plate subjected to sinusoidal loading for different E0/E1 
ratios (where; E1=E(h) and E0=E(0)). It can be seen from 
these results that the non-dimensional displacements 
increase with increasing E0/E1. In addition, it can be 
deduced that E0/E1 ratios affect considerably the non-
dimensional stresses.  

Table 7 shows the non-dimensional central deflections 
and stresses of the EGM plates for various values of E0/E1 
ratios. The computed results are compared with the Finite 
Element Method (FEM) and Boundary Element Method 
(BEM) of Vaghefi et al. (2010), the exact 3D elasticity 
theory of Zhang et al. (2014) and the quasi-3D hyperbolic 
theory by Akavci and Tanrikulu (2015) and they match very 
well. 
 

4.2 Free vibration 
 

In this section, numerical results are studied and 

discussed to check the accuracy of the proposed novel 

models in predicting the dynamic responses of simply 

supported FG plates. 

In the first example, isotropic square plates are 

examined to verify the efficiency of the proposed theories. 

According to Eqs. (1)-(3), when the material index p, 

approaches zero or infinity, the plate is isotropic composed 

of fully ceramic or metal, respectively. In Table 8, the first 

eight non-dimensional natural frequencies are calculated 

and compared with the results given by the quasi-3D 

theories of Jha et al. (2013) and Hebali et al. (2014), exact 

3D solution of Srinivas et al. (1970), the quasi-3D and 2D 

shear deformation theories by Akavci and Tanrikulu (2015) 

and first order shear deformation theory (FSDT) of Whitney 

and Pagano (1970). Table 8 proves that the computed 

results are in excellent agreement with those reported by the 

other quasi-3D theories of Jha et al. (2013), Hebali et al. 

(2014) and Akavci and Tanrikulu (2015) for all modes of 

vibration.  

 

 

Table 8 Comparison of non-dimensional natural frequencies 

h
G


   for isotropic square plate (a/h=10) 

Theory ɛz 

Mode (m, n) 

(1.1) (1.2) (2.2) (1.3) (2.3) (3.3) (2.4) (1.5) 

Jha et al. (2013) ≠ 0 0.0932 0.2226 0.3421 0.4172 0.5240 0.6892 0.7515 0.9275 

Hebali et al. (2014) ≠ 0 0.0933 0.2228 0.3422 0.4173 0.5240 0.6890 0.7512 0.9268 

Srinivas et al. 

(1970) 
≠ 0 0.0932 0.2226 0.3421 0.4171 0.5239 0.6889 0.7511 0.9268 

Whitney and 

Pagano (1970) 
= 0 0.0930 0.2220 0.3406 0.4149 0.5206 0.6834 0.7447 0.9174 

Akavci and 

Tanrikulu (2015) 
= 0 0.0930 0.2219 0.3407 0.4151 0.5209 0.6841 0.7455 0.9189 

527



 

Abderahman Younsi, Abdelouahed Tounsi, Fatima Zohra Zaoui, Abdelmoumen Anis Bousahla and S.R. Mahmoud 

Table 8 Continued 

Theory ɛz 

Mode (m, n) 

(1.1) (1.2) (2.2) (1.3) (2.3) (3.3) (2.4) (1.5) 

Present = 0 0.0930 0.2220 0.3406 0.4151 0.5208 0.6840 0.7455 0.9188 

Akavci and 

Tanrikulu (2015) 
≠ 0 0.0932 0.2227 0.3424 0.4176 0.5247 0.6902 0.7526 0.9290 

Present ≠ 0 0.0932 0.2227 0.3423 0.4175 0.5245 0.6899 0.7522 0.9285 

 

Table 9 Comparison of the non-dimensional fundamental 

frequencies 
C

C

h
E


   for Al/Al2O3 square plate 

a/h Theory ɛz 

k 

0 0.5 1 4 10 

2 

Zhu and Liew (2011) = 0 0.9265 0.8060 0.7331 0.6112 0.5640 

Matsunaga (2008) ≠ 0 0.9400 0.8232 0.7477 0.5997 0.5460 

Sheikholeslami and  

Saidi (2013) 
≠ 0 0.9400 0.8223 0.7475 0.5995 0.5461 

Belabed et al. (2014) ≠ 0 0.9414 0.8248 0.7516 0.6056 0.5495 

Akavci and Tanrikulu (2015) = 0 0.9303 0.8115 0.7360 0.5921 0.5413 

Present = 0 0.9301 0.8144 0.7416 0.5979 0.5436 

Akavci and Tanrikulu (2015) ≠ 0 0.9440 0.8269 0.7536 0.6063 0.5506 

Present ≠ 0 0.9434 0.8287 0.7574 0.6108 0.5522 

5 

Zhu and Liew (2011) = 0 0.2111 0.1804 0.1629 0.1395 0.1323 

Benachour et al. (2011) = 0 0.2112 0.1806 0.1628 0.1375 0.1300 

Hosseini et al. (2011) = 0 0.2113 0.1807 0.1631 0.1378 0.1301 

Matsunaga (2008) ≠ 0 0.2121 0.1819 0.1640 0.1383 0.1306 

Sheikholeslami and Saidi 

(2013) 
≠ 0 0.2121 0.1818 0.1640 0.1382 0.1306 

Belabed et al. (2014) ≠ 0 0.2121 0.1819 0.1640 0.1383 0.1306 

Akavci and Tanrikulu (2015) = 0 0.2113 0.1807 0.1631 0.1378 0.1300 

Present = 0 0.2113 0.1808 0.1632 0.1379 0.1301 

Akavci and Tanrikulu (2015) ≠ 0 0.2124 0.1827 0.1661 0.1410 0.1319 

Present ≠ 0 0.2123 0.1827 0.1661 0.1411 0.1319 

10 

Zhu and Liew (2011) = 0 0.0576 0.0489 0.0441 0.0381 0.0365 

Benachour et al. (2011) = 0 0.0576 0.0490 0.0441 0.0380 0.0363 

Hosseini et al. (2011) = 0 0.0577 0.0490 0.0442 0.0381 0.0364 

Matsunaga (2008) ≠ 0 0.0577 0.0491 0.0442 0.0381 0.0364 

Sheikholeslami and Saidi 

(2013) 
≠ 0 0.0577 0.0491 0.0442 0.0381 0.0364 

Belabed et al. (2014) ≠ 0 0.0578 0.0494 0.0449 0.0389 0.0368 

Akavci and Tanrikulu (2015) = 0 0.0577 0.0490 0.0442 0.0380 0.0363 

Present = 0 0.0577 0.0490 0.0442 0.0381 0.0364 

Akavci and Tanrikulu (2015) ≠ 0 0.0578 0.0494 0.0449 0.0389 0.0368 

Present ≠ 0 0.0578 0.0494 0.0449 0.0389 0.0368 

20 

Benachour et al. (2011) = 0 0.0148 0.0125 0.0113 0.0098 0.0094 

Hosseini et al. (2011) = 0 0.0148 0.0125 0.0113 0.0098 0.0094 

Sheikholeslami and Saidi 

(2013) 
≠ 0 0.0148 0.0125 0.0113 0.0098 0.0094 

Belabed et al. (2014) ≠ 0 0.0148 0.0126 0.0115 0.0100 0.0095 

Akavci and Tanrikulu (2015) = 0 0.0148 0.0125 0.0113 0.0098 0.0094 

Present = 0 0.0148 0.0125 0.0113 0.0098 0.0094 

Akavci and Tanrikulu (2015) ≠ 0 0.0148 0.0126 0.0115 0.0100 0.0095 

Present ≠ 0 0.0148 0.0126 0.0115 0.0100 0.0095 

Table 10 Comparison of the first three non-dimensional 

natural frequencies 2
C Ca h E    for Al/Al2O3 square 

plate (a/h=10) 

Mode  

(m, n) 
Theory ɛz 

K 

0 0.5 1 4 10 

(1, 1) 

Benachour et al. 

(2011) 
= 0 5.7690 4.9000 4.4160 3.8040 3.6350 

Matsunaga (2008) ≠ 0 5.7777 4.9170 4.4270 3.8110 3.6420 

Belabed et al. (2014) ≠ 0 5.7800 4.9400 4.4900 3.8900 3.6800 

Akavci and Tanrikulu 

(2015) 
= 0 5.7695 4.9015 4.4193 3.8064 3.6365 

Present = 0 5.7695 4.9016 4.4195 3.8070 3.6368 

Akavci and Tanrikulu 

(2015) 
≠ 0 5.7807 4.9410 4.4907 3.8934 3.6827 

Present ≠ 0 5.7794 4.9401 4.4900 3.8931 3.6826 

(1, 2) 

Benachour et al. 

(2011) 
= 0 13.7600 11.7310 10.5760 9.0120 8.5570 

Matsunaga (2008) ≠ 0 13.8100 11.8000 10.6300 9.0450 8.5880 

Belabed et al. (2014) ≠ 0 13.8000 11.8400 10.7700 9.2300 8.6800 

Akavci and Tanrikulu 

(2015) 
= 0 13.7650 11.7390 10.5900 9.0224 8.5613 

Present = 0 13.7653 11.7407 10.5934 9.0274 8.5637 

Akavci and Tanrikulu 

(2015) 
≠ 0 13.8170 11.8510 10.7730 9.2314 8.6768 

Present ≠ 0 13.8132 11.8496 10.7728 9.2337 8.6778 

(2, 2) 

Benachour et al. 

(2011) 
= 0 21.1250 18.0550 16.2820 13.7560 12.9950 

Matsunaga (2008) ≠ 0 21.2100 18.1900 16.4000 13.8300 13.0600 

Belabed et al. (2014) ≠ 0 21.2100 18.2500 16.5900 14.0900 13.1800 

Akavci and Tanrikulu 

(2015) 
= 0 21.1270 18.0730 16.3130 13.7770 13.0020 

Present = 0 21.1262 18.0784 16.3235 13.7922 13.0096 

Akavci and Tanrikulu 

(2015) 
≠ 0 21.2370 18.2680 16.6090 14.0990 13.1860 

Present ≠ 0 21.2306 18.2676 16.6128 14.1090 13.1898 

 
 
The next two examples are established for Al/Al2O3 

thick FG square plates. In Table 9, non-dimensional 
fundamental frequencies of a square plate are calculated for 
various values of the material index and different a/h ratios 
and compared with FSDT of Zhu and Liew (2011), 2D 
shear deformation theory of Benachour et al. (2011) and 
quasi-3D shear deformation theories of Hosseini et al. 
(2011), Matsunaga (2008), Sheikholeslami and Saidi 
(2013), Belabed et al. (2014) and and Akavci and Tanrikulu 
(2015). Again, it can be seen that the computed results 
correlate exceptionally well with the other quasi-3D results, 
even for very thick plates. The table demonstrates that, 
fundamental frequencies increase with the increase in the 
thickness of plate and diminish with the increase of material 
index. In Table 10, to check the higher order modes for FG  
plates, the first three frequencies of the Al/Al2O3 FG square 
plates are calculated and compared with the 2D HSDT of 
Benachour et al. (2011) and quasi-3D HSDTs of Matsunaga 
(2008), Belabed et al. (2014) and Akavci and Tanrikulu 
(2015). As it is observed from the table, the proposed 
theories are in good agreement with those reported by the 
other quasi-3D models of Matsunaga (2008), Belabed et al. 
(2014) and Akavci and Tanrikulu (2015), particularly at the 
higher modes of vibration. It is observed from the tables 
that when the influences of normal deformations are 
neglected, the natural frequencies of FG plates are found 
lower. 
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Fig. 4 Effect of the side-to-thickness ratio a/h and power-

law index k on the non-dimensional fundamental 

frequency   of  FG square plates 

 

 
Fig. 5 Effect of the aspect ratio b/a and power-law index 

k  on the non-dimensional fundamental frequency   
of FG plates (a/h=10). 

 
 

Fig. 4 presents the variation of the non-dimensional 

frequency versus the thickness ratio a/h for different power-

law index k. It can be seen that the non-dimensional 

frequency decreases with increasing the material index k.  

Fig. 5 shows the variation of the non-dimensional 

frequency versus the aspect ratio b/a for different material 

index k. It can be observed that the increase of b/a leads to a 

reduction of the non-dimensional frequency.    

 

 

5. Conclusions 
 

This paper presents both bending and free vibration 

investigations for FG plates using a novel non-polynomial 

quasi-3D HSDTs. The kinematic is developed by 

considering further simplifying assumptions to the existing 

HSDTs, with the use of an undetermined integral term 

leading to only five unknowns. The equations of motion 

have been determined by the Hamilton principle. Double 

Fourier series have been employed to solve the partial 

differential equations. The accuracy of proposed theory has 

been demonstrated via the results computed by present 

model compared with the results of the other theories. 

The results determined by the proposed method can be 

summarized as follows: 

• Through all the comparative investigations, it can be 

seen that the proposed theory proves good agreement with 

that of the results of other 2D and quasi-3D HSDTs.  

• The results demonstrate that the 2D and quasi-3D 

HSDTs have almost identical results for thin plates. For the 

thick and moderately thick plates, however, it has been 

observed from the comparison investigations that the quasi-

3D theories which account for the stretching effects, can 

predict the bending and dynamic behavior more accurately 

compared to other HDSTs. So, it is relevant to conclude that 

the influence of thickness stretching on static and dynamic 

behavior of FG plates are just as considerable as the 

influence of transverse shear strains and must be taken into 

account. 

• The proposed quasi-3D HSDT contains five 

unknowns, but gives results comparable with those 

predicted by existing quasi-3D theories having more 

number of unknowns (e.g., quasi-3D theories of Neves et 

al. (2012ab) with nine unknowns and Akavci and Tanrikulu 

(2015) with six unknowns). 

• Although the transverse stress components can be 

computed from the constitutive equations, these stresses 

may not satisfy the stress boundary conditions on the upper 

and lower surfaces of the plate. So, the transverse stress 

components may be determined by employing equilibrium 

equations of 3D elasticity theory as satisfying the stress 

boundary conditions. 

• The fundamental frequencies of plate decrease with the 

increase of material index. Although increasing value of 

material index causes to reduce in the natural frequency, the 

influence of the value of material index more than 5 is 

negligible. 

• The small difference between the proposed 2D and 

quasi-3D HSDT results is due to the ignoring the thickness 

stretching influence. If the influences of normal 

deformations ignored, the fundamental frequencies of FG 

plates are found lower. 

• The thickness stretching influence is more pronounced 

for thick plates and it needs to be taken in consideration in 

the modeling.  
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