Geomechanics and Engineering, Vol. 14, No. 6 (2018) 519-532

DOI: https://doi.org/10.12989/gae.2018.14.6.519 519
Novel quasi-3D and 2D shear deformation theories for bending and free
vibration analysis of FGM plates
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Abstract.  In this work, two dimensional (2D) and quasi three-dimensional (quasi-3D) HSDTs are proposed for bending and
free vibration investigation of functionally graded (FG) plates using hyperbolic shape function. Unlike the existing HSDT, the
proposed theories have a novel displacement field which include undetermined integral terms and contains fewer unknowns.
The material properties of the plate is inhomogeneous and are considered to vary continuously in the thickness direction by three
different distributions; power-law, exponential and Mori-Tanaka model, in terms of the volume fractions of the constituents. The
governing equations which consider the effects of both transverse shear and thickness stretching are determined through the
Hamilton’s principle. The closed form solutions are deduced by employing Navier method and then fundamental frequencies are
obtained by solving the results of eigenvalue problems. In-plane stress components have been determined by the constitutive
equations of composite plates. The transverse stress components have been determined by integrating the 3D stress equilibrium
equations in the thickness direction of the FG plate. The accuracy of the present formulation is demonstrated by comparisons

with the different 2D, 3D and quasi-3D solutions available in the literature.
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1. Introduction

Functionally graded materials (FGMs) are a kind of
advanced composite materials whose properties change
gradually and continuously from one surface to another.
The mechanical characteristics of FGM change along the
thickness direction in the material depending on a function.
Because of this this feature, the FGMs have some benefits
such as eliminating the material discontinuity and avoiding
the delamination failure, diminishing the stress levels and
deflections. Combination of these properties attracts
application of FGMs in many engineering areas from
biomedical to civil engineering (Ahmed 2014,
Swaminathan and Naveenkumar 2014, Hadji et al. 2015,
2016, Abdelhak et al. 2016, Ahouel et al. 2016,
Ghorbanpour Arani et al. 2016a, b, Aldousari 2017,
Rahmani et al. 2017).

In recent years, FGM applications have received
important increase. The increase in FGM applications
requires accurate theories to examine their response
(Bessaim et al. 2013, Tounsi et al. 2013, Zemri et al. 2015,
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Ait Atmane et al. 2015, Attia et al. 2015, Belkorissat et al.
2015, Larbi Chaht et al. 2015, Hamidi et al. 2015, Hebali
et al. 2016, Barati and Shahverdi 2016, Barka et al. 2016,
Beldjelili et al. 2016, Meksi et al. 2017, Menasria et al.,
2017). The bending and vibration behavior of FG plates
have been investigated by many researchers in recent ten
years. Kashtalyan (2004) presented a 3D elasticity solution
for a simply supported FG plate under the transverse
loading. Matsunaga (2009) developed a 2D higher-order
theory for the prediction of displacement and stresses in FG
plates under thermal and mechanical loadings. The model
can take into account the influence of both transverse shear
and normal stresses. Zhao et al. (2009) analyzed the free
vibration of FG plates using the element-free kp-Ritz
method. The first-order shear deformation plate theory
(FSDT) is utilized to consider the transverse shear strain
and rotary inertia, and mesh-free kernel particle functions
are employed to approximate the 2D displacement fields.
Vaghefi et al. (2010) proposed a version of meshless local
Petrov-Galerkin procedure to determine 3D static solutions
for thick FG plates. Orakdogen et al. (2010) examined the
coupling influence of extension and static in FG plate under
transverse loading for Kirchhoff-Love plate theory
equations. Tamijani and Kapania (2012) presented an
element free Galerkin method for the vibration of a FG
plate with curvilinear stiffeners. The governing equations

ISSN: 2005-307X (Print), 2092-6219 (Online)



520 Abderahman Younsi, Abdelouahed Tounsi, Fatima Zohra Zaoui, Abdelmoumen Anis Bousahla and S.R. Mahmoud

for the plate and stiffeners are obtained by employing the
FSDT. Gunes et al. (2014) presented an experimental study
about the low-velocity impact response of FG clamped
circular plates. Zhang et al. (2014) proposed a 3D elasticity
solution for bending of thick FG plates by using a hybrid
semi-analytical approach-the state-space based differential
quadrature method. Ait Amar Meziane et al. (2014)
presented an efficient and simple refined theory for
buckling and free vibration of exponentially graded
sandwich plates under various boundary conditions. Ait
Yahia et al. (2015) analyzed wave propagation in FG plates
with  porosities using various higher-order shear
deformation plate theories. Sofiyev and Kuruoglu (2015)
developed a theoretical formulation to solve dynamic
problems of FG truncated conical shells under mixed
boundary conditions. Zafarmand and Kadkhodayan (2015)
studied the 3D bending and dynamic response of a thick
sector plate made of two-directional FGMs. Kar and Panda
(2015a) investigated the free vibration responses of
temperature dependent FG curved panels under thermal
environment. Kar and Panda (2015b) presented large
deformation bending analysis of FG spherical shell using
FEM. Kar and Panda (2015c) discussed nonlinear flexural
vibration of shear deformable FG spherical shell panel. Kar
et al. (2015) studied also the nonlinear flexural analysis of
laminated composite flat panel under hygro-thermo-
mechanical loading. Zhu and Liew (2011) presented free
vibration analyses of FG plates with the local Kriging
meshless method.

It is clear that non-negligible shear deformations occur
at the thick and moderately thick plates and the classical
plate theory (CPT) provides inaccurate results. So,
transverse shear deformations have to be considered in the
analysis. There is numerous plate models that introduce
transverse shear strains for the advanced composites like
FGMs. Benachour et al. (2011) developed a four variable
refined plate theory for free vibration investigation of plates
made of FGMs with an arbitrary gradient. Hosseini-
Hashemi et al. (2011) proposed a novel exact closed-form
method to solve free vibration analysis of FG rectangular
thick plates based on the Reddy’s third-order shear
deformation plate theory while the plate has two opposite
edges simply supported. Matsunaga (2008) investigated the
natural frequencies and buckling stresses of FG plates by
considering the effects of transverse shear and normal
deformations and rotatory inertia. Jha et al. (2013)
discussed the free vibration behavior of FG elastic,
rectangular, and simply supported plates based on higher
order shear/shear-normal deformations theories.
Sheikholeslami and Saidi (2013) investigated the free
vibration of simply supported FG rectangular plates resting
on two-parameter elastic foundation using the higher-order
shear and normal deformable plate theory. Hebali et al.
(2014) developed a novel quasi-3D hyperbolic shear
deformation theory for bending and free vibration analysis
of FG plates. Belabed et al. (2014) proposed an efficient
and simple higher order shear and normal deformation
theory for FG plates. Alijani and Amabili (2014) studied the
nonlinear forced vibrations of moderately thick FG
rectangular plates by considering HSDTs that consider the
thickness deformation effect. Akavci and Tanrikulu (2015)
presented a new quasi-3D hyperbolic shear deformation

theory for static and free vibration analysis of FG plates.
Houari et al. (2016) presented a new simple three -unknown
sinusoidal shear deformation theory for FG plates. Baseri et
al. (2016) presented an analytical solution for buckling of
embedded laminated plates based on higher order shear
deformation plate theory. Kolahchi and Moniri Bidgoli
(2016) used a sinusoidal beam model for dynamic
instability of single-walled carbon nanotubes. Arani and
Kolahchi (2016) analyzed buckling behavior of embedded
concrete columns armed with carbon nanotubes. Kolahchi
et al. (2016a) employed differential cubature and
quadrature-Bolotin methods for dynamic stability of
embedded piezoelectric nanoplates based on visco-
nonlocal-piezoelasticity theories. Bilouei et al. (2016)
investigated the buckling of concrete columns retrofitted
with nano-fiber reinforced polymer. Madani et al. (2016)
presented a differential cubature method for vibration
analysis of embedded FG-CNT-reinforced piezoelectric
cylindrical shells subjected to uniform and non-uniform
temperature distributions. Kolahchi et al. (2016b) analyzed
the dynamic stability of temperature-dependent functionally
graded CNT-reinforced visco-plates resting on orthotropic
elastomeric medium. Kolahchi et al. (2017) presented
visco-nonlocal-refined Zigzag theories for dynamic
buckling of Ilaminated nanoplates using differential
cubature-Bolotin methods. Zamanian et al. (2017) discussed
the agglomeration effects on the buckling behavior of
embedded concrete columns reinforced with SiO2 nano-
particles. Bennoun et al. (2016) presented a novel five
variable refined plate theory for vibration analysis of
functionally graded sandwich plates. Ait Atmane et al.
(2017) studied the effect of thickness stretching and
porosity on mechanical response of a FG beams resting on
elastic foundations. Benahmed et al. (2017) proposed a
novel quasi-3D hyperbolic shear deformation theory for FG
thick rectangular plates on elastic foundation. Benbakhti et
al. (2016) developed also a new five unknown quasi-3D
type HSDT for thermomechanical bending analysis of FGM
sandwich plates. Chikh et al. (2017) discussed the thermal
buckling response of cross-ply laminated plates using a
simplified HSDT. Klouche et al. (2017) presented an
original single variable shear deformation theory for
buckling analysis of thick isotropic plates. Draiche et al.
(2017) proposed a refined theory with stretching effect for
the flexure analysis of laminated composite plates.
Benchohra et al. (2017) presented a novel quasi-3D
sinusoidal shear deformation theory for FG plates.

In this study, a novel quasi-3D hyperbolic shear
deformation theory is proposed for bending and vibration
investigation of FG plates. The developed theory provides
good accuracy and considers a parabolic transverse shear
deformation shape function and respects shear stress free
boundary conditions of upper and lower surfaces of the
plate without employing shear correction factors. Besides,
the model considers the thickness stretching effect by
employing the same hyperbolic function. By introducing
integral terms in the in-plane displacements, the number of
unknowns of the theory is reduced, thus saving
computational time (Bourada et al. 2016). Governing
equations are obtained from the Hamilton’s principle.
Navier solution is employed to determine the analytical
solutions for simply supported FG plates. The in-plane
stresses are computed from the linear constitutive relations
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Fig. 1 Geometry and coordinates of the considered
single-layer FGM plate

and the transverse shear and normal stresses are calculated
by integrating the 3D stress equilibrium equations of elastic
media by respecting the stress boundary conditions on the
upper and lower surfaces of a plate. Numerical results are
presented to demonstrate the accuracy and efficiency of the
proposed theory.

2. Theoretical formulation

Consider a FG rectangular plate, having uniform
thickness h, length a, width b (Fig. 1).

In this work, the compositions and volume fractions of
the constituents in FGM are assumed to change gradually
across the thickness according to: (a) The power-law
variation, (b) The exponential distribution, (c) The Mori-
Tanaka homogenization model. Since the influences of
Poisson’s ratio v on the response of FG plates are very
small, it is supposed to be constant for all gradation models
(Bouderba et al. 2013 and 2016, Bousahla et al. 2014 and
2016, Meradjah et al. 2015, Mouaici et al. 2016, Chikh et
al. 2016, Bourada et al. 2015, Mahi et al. 2015, Boukhari et
al. 2016, Zidi et al. 2014 and 2017).

a) The power-law (P-FGM) variation

The volume fraction of the P-FGM plate is considered to
change continuously within the thickness of the plate in
according to the power law variation (Bao and Wang 1995,
Fekrar et al. 2014, Bellifa et al. 2016 and 2017. Benferhat
et al. 2016, El-Hassar et al. 2016, Laoufi et al. 2016,
Besseghier et al. 2017, Bouafia et al. 2017, El-Haina et al.
2017, Khetir et al. 2017, Mouffoki et al. 2017) as follows

k
P(z):Pm+(PC—Pm)[1+Ej (1)
2 h
b) The exponential (E-FGM) variation
The volume fraction of the E-FGM plate is considered
to vary continuously within the thickness of the plate in
according to the exponential variation (Delale and Erdogan,
1983) as follows

P(z)=AePFM)  A=P  p= Lin

il 2
h (P, @

¢) The Mori Tanaka homogenization model

For Mori-Tanaka scheme, the volume fraction of the
FGM plate is given as (Mori and Tanaka 1973, Benveniste
1987, Belabed et al. 2014, Bounouara et al. 2016)

V,
P(z)=P, +(P.~P,) : :
1+vm(PC—1J Ly (3a)
P, ")3-3v
with
1 z)
Vc :(Z—I—hJ Vm +VC :1 (Sb)

where P presents the effective material property like
Young’s modulus E, P, and P, denotes the property of the
upper and the lower faces of the plate, respectively, k is
the power law index and p is the volume fraction
exponent.

2.1 Kinematics

On the basis of the thick plate theory and considering
the thickness stretching influence, the supposed
displacement field of the plate can be described as

u(x, v.z,0) =u,(x, y.,1) —:% +k f(:)_[é‘(x. y.)dx (4a)
&
v(x, y.2) = v, (x, 0 1) —:@ +k, f(:)j&(x.)uf)nfr (4b)
oy

w(x, v, 2.0) =w,(x, v.0) + g(2)@(x, v.1) (4c)

where up, Vo, Wy, @ and ¢, are the five unknown
displacement functions of middle surface of the plate. Note
that the integrals do not have limits. The constants k; and k,
depends on the geometry.

In this work, the shear strain shape functions are

f(z):htanhl(rz]j—(:] % g(z):Sl]; ©)

Based on the suppositions in Eq. (4), within the
application of the linear, small-strain elasticity theory, the
general strain-displacement relations are expressed as

e ] [e k; ki )
_j .0 ) N Vel Ve gy 0
£, 1=16& p+Ivky t+ f(Dky . , =gy § . e.=g'@e. (6)
2 NS I S &
where
% 762\10
] o ;2 o k: k8
0| _ Ny s{_J_ W s|_
T g 2]
7o) o ol (K o = klg.{e vk, g_{edy
& ox axer -
01 |k fodrs 2
P e
_‘D - ? E4 z
el Ak [od - 2=
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and
g(s)- 92 (70)

It can be seen from equation (6) that the transverse shear
strains (y«, 7y,,) are equal to zero at the top (z=h/2) and
bottom (z=-h/2) surfaces of the plate. A shear correction
coefficient is, hence, not required.

The integrals employed in the above equations shall be
resolved by a Navier type method and can be expressed as
follows

el

c’6 jed\ Ied\ B; (8)

6x61

—Iﬂd\

where the coefficients A’ and B’ are considered according to
the type of solution employed, in this case via Navier
method. Therefore, A’, B/, ki and k; are expressed as follows

a=-Lt gL k- K-p
— 2=F )
where a and f are defined in expression (20).

The linear constitutive relations of a FG plate according

to the 3D elasticity can be written as

o] [Cqu Cu Cy 0 0 07]fe
O-y C12 CZZ C23 0 0 0 y
o _|Cs Cu Gy 0 0 0 e
Tyl |0 0 0 Ciu 0 0 ||y,
7| [0 0 0 0 Cyu O ||7a
t.] 10 0 0 0 0 Cullry

The elastic constants (C;) are depends on the normal
strain &,.
* If the £,#0 then C;; are

C,p=Cp =Cy = % (11a)
Cp=Cpy =Cypy = % (11b)
Cus =Cos = Cg = % (11c)

« If the £,=0 then C; are
C,=C, = % (12a)
= (Vl_E—izz)) (12b)
Cus = Cos =Cgs = % (12¢)

2.3 Equations of equilibrium and stress components

The Hamilton principle is considered herein to
determine the equations of motion appropriate to the
displacement field and the constitutive equations. The
principle can be stated in analytical form as (Belabed et al.
2014, Taibi et al. 2015, Fahsi et al. 2017)

t
0=[(sU+5V, -5 K)dt (13)
0

where oU is the variation of strain energy; dV, is the
potential energy of applied distributed transverse load and
JK is the variation of kinetic energy of FG plate.

The equations of motion can be obtained from Eg. (13)
by integrating the displacement gradients by parts and
setting the coefficients Juy, Jvg, owy, 60 and dgp, zero
separately

v, | N, i oii
Sy 1 ot — L, -:.’L-JL—..;"—
o oy
N, N
Syt ]ifﬂ.ﬂf
& &y &
&*M M M,
Sy s LA H1+1) 1,y ~ 1k 2 28
o’ p? ondy axt ot 14
. as: L5 iy ( )
56 5 kM kM Gl kB +a‘:1—+k8_\— g B g &y
exay oy ax (J
—f[ﬁ-s‘ O .&Mn_-wm—)
oy

a5 as”
o, - 2= T N it + Ko,
o oy

The stress and moment resultants which appeared in Eq.
(8) are given by

&x
av,
‘,\.‘v -'4\\ '4\2 (] BII BIZ O B.‘. B\\] n Xli_ 3
No| |4, 4, 0 B, B, 0 B, B, 0 X, oy B
N, o 0 4, O O B, O 0 B, 0 & &
-"’f': EH B\: 0 DII D\: 0 DI‘\ D:\; 0 "rn *(,\“:”
M B, B, 0 Dy, D, 0 D, Dy 0 ¥y (‘:“\;\
Mt 0 o B, 0O 0 D, 0O 0 Dy 0 | (152)
’H: B, B, 0 D, Dy, 0 Hj, H] 0 Y _20:h‘,?
“’ \I B\\E 'BEIZ 0 DI‘Z DE‘E 0 H I‘Z H',:l n Y}‘"- ‘:‘Y‘:‘J
M 0 0 B, 0 0 Di O 0 H, 0 k@
N ¥, X, 0 ¥, v, 0 ¥ ¥ 0 Z| L
(f(‘.«i'ﬁﬁzB}:‘_‘g
oxcy
@.
00 0o,
g AS 0 k,B' —+—+
vz { _ 44 ay 6y (15b)
S 0 A 00 99,
Xz 5 k A —
ax OX

where the stiffness components and inertias are given as

(4,.4;.B,.D,,B;.D; ,H; )= (Qﬂ.([,g:(:).:.:1.__/'(:),:_/'(:}.j"(:)}!: (16a)

(x,.%,.%;.2,)= j( @ EEO,d  (16h)

hi2

Uy 1o Lo d o Ty g Ky Ky) = [_(l,.:.: f.o 2.8 =) d= (16c)

hi2

and p(z) is the mass density.
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The in-plane normal and shear stresses (o, gy and )
can be determined accurately by the constitutive relations
(10) for FG plates. But if the transverse shear stresses (z,
and z,,) computed from the constitutive relations (10), they
may not respect the boundary conditions at the upper and
lower surfaces of the plate. So these stresses are determined
by integrating the equilibrium equations of 3D elasticity
with respect to thickness coordinate as

e les 5TWJ
r,=— | | = +—=2|dz+C,(x,y) (17a)
I/[ ox oy 1

(0 0
[T”’ ;nydHCz(x,y) (17b)

where C;(i=1, 2) are constants and determined by the
following boundary conditions at the upper and lower
surfaces of the plate

=0 (18)

Tx |z:irh/2 - 2=th/2

0 7,

3. Analytical solution for rectangular FG plates

The Navier solution method is used to determine the
analytical solutions for which the displacement variables
are expressed as product of arbitrary parameters and known
trigonometric functions to respect the governing equations
and boundary conditions.

Uy U,.e"“ cos(a x)sin(8 y

Vo | . | Ve sin(a x)cos(By

Wy r =D D W e sin(a x)sin(By);  (19)
=1 n=1 i . -

o " IX,,esin(a x)sin(g y)

@ @, sin(a x)sin(5 y)

where (Umn, Vinns Winny X @min) are unknown functions to

be determined and o is the natural frequency. a and g are
expressed as

a=mmx/aand f=nx/b (20)

The transverse distributed load q(x,y) is also expanded
double Fourier series as

q(x,y) = iiqm sin(% xjsin[nf yj (21)

m=1 n=1

The coefficients gn, are given below for some general

loadings:
« For uniformly distributed load
16
b mn=135...
U =9 MN7z (22)

0 m,n=2,46,.....

« For uniformly distributed load

Umn = o (23)

in which gy is the intensity of the load.

Substituting the stress and moment resultants defined in
Eg. (15) into equations of motion (14) we get below closed-
form solutions of static and free vibration problems of FG
plate

S S S S S my 0 oy om0 U
S Sn Su S Sy 0 my my my 0 Vo 0
Sii Sn Sy Sy Sy |=@fmy omy omyomy omyg (W, =44, (24)
S Su S S Sis my my my om0 X 0
Sis S5 85 S S 0 0 ms 0 mg])|D,
in which
S, =a’B, + A,
8= aﬁ(-‘f.: + -4\4-)

S, =-a'B, —aff*(B,+2B,,)

50 = ~alk B, + kB )+ aff By (kA + kB

S.=alX,

S.=at A+ A,

S, =-p'B,,-a’B(B,+28,)

S, ==k B+ kB @ Ak A + kBB

S.=-fX,

Sy =Dy + B Do+ 20 BDy + 2D5) Sy =a' Dy + B0, + 2a (D, +2D,)

S, =@k D e F DG+ BRDL <20 Bk A+, BYD;,

S=a’ Y, + Y,

S =kEH A I H S + 2k H + @ P (e A+ loB Y Hi v @ (A A+ (kBT AL (25)
S =k kY4 rr:i',.ﬂl’:l_"_‘ + ﬁ:k]B’A,',

S =a’ A+ A+ 2,

my, =1,
my,=—al
my, =k A ad,

my, =1,

my, =—81,

my, =k.B B,

my, =1+ f:(a: . ﬁ':)
m,,=J, [k +k,)

my=Jy

myy= K[ AV o+ (6,8 57)

ms; =K,

4. Numerical results

In order to demonstrate the accuracy of the proposed
theory in investigating the bending and dynamic responses
of simply supported FG plates, numerical examples are
presented and compared with the results of various 3D,
quasi-3D and 2D shear deformation theories.

4.1 Bending analysis

4.1.1 Functionally graded plates

In this section, the computed stress and displacements of
FG plates which are graded from the lower to the upper
surface according to Eq. (1) are provided and compared
with the results of different HSDTs. The material properties
of FG plates are listed in Table 1.

Tables 2 and 3 show the non-dimensional displacement
and stresses of an Al/Al,O3 FG square plate under uniformly
and sinusoidal distributed loads for various values of the
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Table 1 Material properties used in the FG plates

Material Properties
E(GPa) v p(kg/m®)
Aluminum (Al) 70 0.3 2702
Alumina (Al,05) 380 0.3 3800
Zirconia (ZrO,) 200 0.3 5700

Table 2 The non-dimensional displacement and stress
components of an Al/Al,O; FG square plate subjected to
uniformly distributed load (a/h=10)

, _(h _(h — _ (h _( h
ey a wo ) sl %@ w(F) s
Akavci and _
Tanrikulu (2015) =0 04665 28909 19103 0.4988 0.4363 1.2857
Present =0 04665 28913 19102 0.5043 0.4367 1.2855
0 -
Akavci and
Tanrikulu (2015) #0 04635 29981  1.8925 0.4782 0.4315 1.2578
Present #0 04637 29919  1.8932 0.4791 0.4317 1.2585
Akavci and _
Tanrikulu (2015) =0 09288 44707  2.1693 0.4988 0.5364 11141
Present =0 09287 44713 21692 0.5043 0.5370 11141
1 -
Akavci and

Tanrikulu (2015) #0 08977 46110  2.0822 0.4782 0.5119 1.0211

Present #0 08980  4.6005 2.0832 0.4791 0.5121 1.0225

Akavci and

Tanrikulu (2015) =0 11940 52248 2.0342 0.4581 0.5643 0.9909

Present =0 11940 52256 20340 04637 05657  0.9908

2 Akavci and
Tanrikuly (2015) 0 11376 53825 19257 04524 05081 08921
Present £0 11380 53726 19281 04532 05082  0.8926
Ta:r“i‘mi (%115) =0 13888 58855 17205 04090 05253  1.0305
Present =0 1380 58866 17202 04151 05278  1.0303

4 Akavci and
Tanrikuly (2015) 0 13259 60382 16062 04358 04804 09274
Present £0 13262 60301 16101 04365 04806  0.9279
Tarﬁ:‘mi (aznodls) =0 15875 7.3617 12828 04436 04159  1.0705
Present =0 15875 7.3628 12825  0.4495 04174  1.0703

10 Akavci and
Tanrikolu (2015 * 0 15463 75123 12016 04332 04561 09860

Present #0 15454  7.5064 1.2059 0.4339 0.4562 0.9862

power-law index. The non-dimensional displacement and
stress components for these Tables are given in Eq. (25).
Table 2 provides the computed results of non-dimensional
displacement and stress components of the square FG plate
subjected to uniform load as compared with those given by
the quasi-3D and 2D shear deformation theories by Akavci
and Tanrikulu (2015). It can be observed from the table that
the proposed 2D and 3D theory results are in excellent
agreement with those of Akavci and Tanrikulu (2015). This
table also demonstrates that, the deflection w and in-plane
stresses &, and o, increase and the shear stresses 7,
and 7. diminish with the increasing value of material
index k. Table 3 provides the non-dimensional in-plane
stresses o, and non-dimensional deflection w of a square
plate for different a/h ratios. The obtained results are
compared with the different quasi-3D HSDTs of Carrera et
al. (2011) Neves et al. (2012a, b), Hebali et al. (2014) and
Akavci and Tanrikulu (2015) that include both transverse
shear and normal deformations. The proposed quasi-3D
results agree very well with those provided by other models.

Table 3 Non-dimensional displacement and stress of an
Al/ALLO; FG square plate subjected to sinusoidal load

5,(0) W (0)

k Theory &
alh=4  a/h=10 a/h=100 ah=4  a/h=10  a/h=100

Carrera et al.
(2011)

Neves et al.
(2012a)

Neves et al.
(2012b)

Hebali et al.
1 (2014)

Akavci and

Tanrikulu (2015)

#0 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625

#0 05925 14945 149690  0.6997  0.5845 0.5624

#0 0.5910 1.4917 14.9440 0.7020 0.5868 0.5648

#0 0.5952 1.4954 14.9630 0.6910 0.5686 0.5452

=0 05806 14895 149670 0.7282  0.5889 0.5625

Present =0 0.5808 1.4896 14.9675 0.7283 0.5889 0.5625

Akavci and

Tanrikulu (2015) #0 05754  1.4322 14.3060 0.6908 0.5691 0.5457

Present #0 05758 14330 143135 0.6910  0.5692 0.5459

Carrera et al.
(2011)

Neves et al.
(2012a)

Neves et al.
(2012b)

Hebali et al.
4 (2014)

Akavci and

Tanrikulu (2015)

#0 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286

#0 04404 11783 119320 1.1178  0.8750 0.8286

#0 0.4340 1.1593 11.7380 1.1095 0.8698 0.8241

#0  0.4507 1.1779 11.8710 1.0964 0.8413 0.7926

=0 04431 11787 119200 1.1613  0.8818 0.8287

Present =0 0.4437 1.1789 11.9209 1.1609 0.8817 0.8287

Akavci and

Tanrikuly (2015) #0 04247 1.1017 11.0880 1.0983 0.8417 0.7925

Present #0 04260 11045 111152  1.0982  0.8419 0.7928

Carrera et al.

(011) #0 03965  0.8965 8.9077 13745  1.0072 0.9361
Neves et al.
(20122) #0 03227 11783  11.9320  1.3490  0.8750 0.8286
Neves et al.
(2012b) #0 03108  0.8467 8.6013 1.3327  0.9886 0.9228
Hebali et al.

10 (2014) #0 03325 0.8889 8.9977 13333 0.9791 0.9114
Akavci and

Tanrikulu (2015) =0 03242 08778 8.9059 13917  1.0089 0.9362

Present =0 03248 08780 89059 13915 10088  0.9362

Akavci and

Tanrikulu (2015) #0 03095  0.8229 8.3185 13352  0.9818 0.9141

Present #0 03109  0.8259 8.3473 1.3353  0.9819 0.9141
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Ty :ﬂ—q_ur\‘ (0.0.2): 7 =ﬂ—qcr‘:[0.5.:]- T, =a—an__, E.O.:]

Fig. 2 presents the stress and displacement variations
through the thickness of Al/Al,O3 FG square plate subjected
to sinusoidal load. The non-dimensional quantities
presented in Fig. 2 are given in Eqg. (26). The results are
shown as compared with the quasi-3D and 2D shear
deformation theories of Akavci and Tanrikulu (2015) for
various values of material index k. According to Fig. 2, the
results are in excellent agreement with those computed
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using of the quasi-3D and 2D shear deformation theories of
Akavci and Tanrikulu (2015). It is important to indicate
that, the through the thickness variations of in-plane stresses
o« and z, are linear for homogeneous plate while it is

parabolic for FG plates.
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Fig. 2 The distributions of the non-dimensional
displacement and stresses of square FG plate (a/h=10),

(a)

In-plane  displacement

(u)

(b) Transverse

displacement (), (c) axial stress (&, ), (d) in-plane shear

stress (z,,) and (e) transverse shear stress (7,,)

Table 4 Non-dimensional deflection w(©)=

& Akavci (2015)
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0) of

EGM plates subjected to sinusoidal distributed load (a/h=2)

p
bla Theory &
0.1 0.3 0.5 0.7 1 15
Zenkour (2007) #0 05769  0.5247 04766  0.4324  0.3726  0.2890
Zenkour (2007) =0 05730 0.5180 0.4678 0.4221 0.3611 0.2771
Mantari and
Soares (2013) #0 05778 05224 04717 04256 0.3648  0.2793
Mantari and _
. Soares (2013) - 0 0.6362 05751 05194  0.4687  0.4017  0.3079
Akavci and _
Tanrikulu (2015) ~ 0 0.6351 05741 05185 0.4679  0.4004  0.3075
Present =0 06355 05745 05189 0.4683  0.4007  0.3077
Akavci and
Tanrikulu (2015) #0 05750 05198 0.4694 04236 0.3624 0.2780
Present #0 0.5758 0.5205 0.4701 0.4242 0.3629 0.2784
Zenkour (2007) #0 1.1944 1.0859 0.9864 0.8952 0.7726 0.6017
Zenkour (2007) =0 1.1879 1.0739 0.9700 0.8754 0.7493 0.5757
Mantari and
Soares (2013) #0 1.1940 1.0794 0.9750 0.8799 0.7537 0.5786
Mantari and _
, Soares (2013)  ~ 0 1.2776 11553  1.0441  0.9430  0.8092  0.6237
Akavci and _
Tanrikulu (2015) 0 1.2763 1.1541 1.0431 0.9422 0.8079 0.6234
Present =0 12768 1.1546  1.0435 0.9426  0.8082  0.6236
Akavci and
Tanrikulu (2015) #0 11938 1.0765 09723 08775 0.7511  0.5771
Present #0 1.1917 1.0774 0.9731 0.8782 0.7517 0.5775
Zenkour (2007) # 0 1.4429 1.3116 1.9112 1.0811 0.9333 0.7275
Zenkour (2007) =0 14354 12977 11722 10579  0.9056  0.6961
Mantari and
Soares (2013) #0 1.4421 1.3037 1.1776 1.0627 0.9104 0.6992
Mantari and _
. Soares (2013) - 0 15340 1.3873 1.2540 1.1329 09725 0.7506
Akavci and _
Tanrikulu (2015) = 0 15327 1.3861 12530 1.1320 09712  0.7503
Present =0 15332 13866 12534 1.1324 0.9715 0.7504
Akavci and
Tanrikulu (2015) #0 1438 13005 11748 1.0602 0.9076  0.6976
Present #0 14396 13015 11756  1.0610 0.9082  0.6981

4.1.2 Exponentially graded plates
In this section, the exponential function employed to

define the material properties of the EGM plate is given in
Eg. (2). The non-dimensional stress and displacements of
the E-FGM plate are compared with the results of different
HSDTs for different loadings.

The non-dimensional displacements and stresses are

given in Tables 4-6 for different values of aspect ratio b/a,
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. . h) h? h
Table 5 Non-dimensional stress 5x[7]:2—cfx[§,9,fj of
2 a‘d, 222

EGM plates subjected to sinusoidal distributed load
(a/h=10)

b/a Theory &
0.1 0.3 05 0.7 1 15 2 25 3

Mantari and

Soares  #0 02196 0.2345 0.2503 0.2671 0.2944 0.3460 0.4065 0.4775 0.5603
(2013)

Mantari and

Soares = 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278
(2013)

Akavci and

1 Tanrikulu =0 0.2063 0.2205 0.2356 0.2516 0.2776 0.3266 0.3838 0.4504 0.5281
(2015)

Present = 9 02063 0.2205 0.2355 0.2516 0.2775 0.3265 0.3837 0.4504 0.5279

Akavci and

Tanrikulu 0 02142 0.2285 0.2438 0.2601 0.2866 0.3370 0.3964 0.4664 0.5485
(2015)

Present 2 0 0.2137 0.2280 0.2433 0.2595 0.2860 0.3363 0.3957 0.4657 0.5478

Mantari and

Soares  # 0 04552 0.4867 0.5200 0.5554 0.6126 0.7201 0.8449 0.9898 1.1580
(2013)

Mantari and

Soares = 0.4350 0.4649 0.4966 0.5303 0.5850 0.6881 0.8085 0.9490 1.1125
(2013)

Akavci and

2 Tanrikulu = 0 0.4351 0.4650 0.4968 0.5305 0.5852 0.6884 0.8088 0.9493 1.1129
(2015)

Present = 0 0.4351 0.4650 0.4967 0.5305 0.5851 0.6883 0.8087 0.9492 1.1128

Akavci and

Tanrikulu 0 0.4466 0.4773 0.5098 0.5443 0.6002 0.7058 0.8289 0.9725 1.1397
(2015)

Present 0 0.4459 0.4765 0.5090 0.5435 0.5993 0.7048 0.8278 0.8278 1.1388

Mantari and

Soares  # 0 05514 0.5896 0.6302 0.6733 0.7427 0.8730 1.0240 1.1990 1.4017
(2013)

Mantari and

Soares = 05288 0.5651 0.6037 0.6447 0.7112 0.8365 0.9828 1.1536 1.3523
(2013)

Akavci and

3 Tanrikulu = 0 0.5290 0.5653 0.6039 0.6449 0.7114 0.8368 0.9832 1.1540 1.3528
(2015)

Present =0 05289 0.5652 0.6038 0.6449 0.7113 0.8367 0.9831 1.1538 1.3527

Akavci and

Tanrikulu 0 05418 0.5791 0.6187 0.6608 0.7289 0.8570 1.0061 1.1797 1.3813
(2015)

Present 0 05410 0.5783 0.6179 0.6599 0.7279 0.8559 1.0050 1.1786 1.3803

thickness ratio a/h and exponent value p. Table 4 shows the
central deflections of the very thick E-FGM plates. The
computed results are compared with the quasi-3D
sinusoidal and exact 3D elasticity theories of Zenkour
(2007), 2D and quasi-3D trigonometric models of Mantari
and Soares (2013) and the quasi-3D and 2D shear
deformation theories by Akavci and Tanrikulu (2015). Since
the presented and other quasi-3D models introduce the
thickness-stretching influence, the results are close to each
other. Meanwhile, 2D HSDTs which do not introduce the
thickness stretching influence overestimate the results. In
Tables 5 and 6, the computed non-dimensional stresses are

. . _ h b
Table 6 Non-dimensional stress 7 (O)ZHQZ (0,*
0

2,0] of
EGM plates subjected to sinusoidal distributed load
(a/h=10)

p

bla Theory &
01 03 05 07 1 15 2 25 3

Mantariand 5454 02450 0.2442 0.2430 0.2405 0.2344 0.2263 0.2162 0.2045
Soares (2013)
Mantariand _ 5950 02376 0.2368 0.2356 0.2330 0.2268 0.2185 0.2094 0.1985
Soares (2013)
Akavci and
Tanrikulu =0 0.2434 0.2430 0.2422 0.2410 0.2385 0.2324 0.2242 0.2140 0.2023
(2015)
Present =0 0.2416 0.2412 0.2404 0.2392 0.2366 0.2305 0.2222 0.2121 0.2003
Akavci and
Tanrikulu  #0 0.2367 0.2364 0.2359 0.2353 0.2338 0.2300 0.2249 0.2182 0.2102
(2015)

Present #0 0.2371 0.2369 0.2364 0.2357 0.2342 0.2304 0.2252 0.2186 0.2105

Mantari and
Soares (2013) #© 0-3927 0.3921 0.3908 0.3889 0.3849 03752 0.3621 0.3460 0.3273
Mantariand - _ o ¢ 3310 0.3803 0.3790 0.3770 0.3730 0.3630 0.3497 0.3344 03165
Soares (2013)
Akavci and

Tanrikulu =0 0.3896 0.3889 0.3877 0.3857 0.3817 0.3719 0.3588 0.3425 0.3237

(2015)

Present =0 0.3867 0.3860 0.3847 0.3828 0.3787 0.3689 0.3557 0.3394 0.3206
Akavci and

Tanrikulu  #0 0.3790 0.3787 0.3779 0.3768 0.3744 0.3684 0.3602 0.3496 0.3368

(2015)

Present  #0 0.3797 0.3793 0.3786 0.3774 0.3750 0.3691 0.3608 0.3501 0.3373
Mantariand 5 4418 0.4411 0.4396 0.4375 0.4330 0.4221 0.4074 0.3893 0.3683
Soares (2013)

Mantariand - _ o 4285 04279 0.4264 0.4242 04196 0.4084 0.3934 0.3761 0.3558
Soares (2013)
Akavci and

Tanrikulu =0 0.4383 0.4376 0.4361 0.4340 0.4294 0.4185 0.4036 0.3854 0.3642

(2015)

Present =0 0.4350 0.4343 0.4328 0.4307 0.4261 0.4151 0.4002 0.3819 0.3607
Akavci and

Tanrikulu ~ #0 0.4265 0.4261 0.4252 0.4239 0.4212 0.4146 0.4053 0.3934 0.3789

(2015)

Present #0 0.4273 0.4268 0.4260 0.4247 0.4220 0.4153 0.4059 0.3940 0.3795
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Fig. 3 The distributions of the non-dimensional
displacement and stresses of square EGM plate
subjected to sinusoidal load versus Ey/E; rations
(a/h=4), (a) In-plane displacement (y), (b) Transverse
displacement (w), (c) axial stress (g, ), (d) in-plane
shear stress (rx ) and (e) transverse shear stress (7,, )
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B

O
Fig. 3 Continued

Table 7  Non-dimensional  central  displacement
W(©)=G(hw/hg, and in-plane  normal  stress

5, (0)=0, (0)/ao of EGM plates subjected to uniformly
distributed load

EolE;
h/a  Quantity Theory
01 05 1 2 10
BEM 40016 89751 125000 17.6640  39.0600
(Vaghefi et al. 2010) : : : :
FEM

(Vaghefi et al. 2010) 4.1215 9.0047 12.6130 17.7110  39.1550

Akavci and Tanrikulu
(2015): £ 0

=l

3.8333 8.8724 125970  17.7440  38.3330

Present: e#0 3.8345 8.8756  12.6025 17.7511  38.3451
o BEM 15356 92002 -7.4462 -5.9410  -3.4665
(Vaghefi et al. 2010) : : : : :
FEM
B (Vaghefi et al. 2010) -15.403  -9.2995 -7.4588  -5.9591  -3.4805
Ox n T
Akavci and Tanrikulu
(2015): £,2 0 -16.3220 -9.6545 -7.6944  -6.1109 -3.4530
Present: ¢,# 0 -16.2898 -9.6313  -7.6770  -6.0994  -3.4504
BEM
(Vaghefi et al. 2010) 0.9707 2.1378 2.9853 4.1208 8.7134
FEM
(Vaghefi et al. 2010) 0.9732 2.1407 2.9792 4.1333 8.7293
w Zhang et al. (2014) 0.9735 2.1405 2.9795 4.1332 8.7343
Akavci and Tanrikulu
(2015): 24 0 0.8923 2.0834 2.9602 4.1669 8.9229
Present: &,# 0 0.8925 2.0843 2.9615 4.1685 8.9253
o BEM -7.223 -4.3084  -3.4496 -2.7499 -1.6449
(Vaghefi et al. 2010) | ) ) i )

FEM

(Vaghefi et al. 2010) -7.2639  -4.3378 -3.4681  -2.7673  -1.6499

ox Zhang etal. (2014)  -7.1493  -4.3227 -3.4710 -2.7853  -1.6759

Akavci and Tanrikulu
(2015): &# 0

Present: e# 0 -7.6386  -4.4941 -35659 -2.8175  -1.5715

-7.6576  -4.5062 -3.5748 -2.8235 -1.5731

provided as compared with the quasi-3D and 2D hyperbolic
theories by Akavci and Tanrikulu (2015) and 2D and quasi-
3D trigonometric theories of Mantari and Soares (2013). It
is evident from the examination of the tables that the
present results are in an excellent agreement with the quasi-
3D solutions of (Akavci and Tanrikulu 2015, Mantari and
Soares 2013). Tables 4-6 demonstrate also that deflection
w and transverse shear stress r,, diminish and in plane
stress o increases with the increase of exponent p.

Fig. 3 shows the variations of non-dimensional
displacements and stresses within the thickness of an EGM
plate subjected to sinusoidal loading for different E/E;
ratios (where; E;=E(h) and E,=E(0)). It can be seen from
these results that the non-dimensional displacements
increase with increasing Ey/E;. In addition, it can be
deduced that Ey/E; ratios affect considerably the non-
dimensional stresses.

Table 7 shows the non-dimensional central deflections
and stresses of the EGM plates for various values of E/E;
ratios. The computed results are compared with the Finite
Element Method (FEM) and Boundary Element Method
(BEM) of Vaghefi et al. (2010), the exact 3D elasticity
theory of Zhang et al. (2014) and the quasi-3D hyperbolic
theory by Akavci and Tanrikulu (2015) and they match very
well.

4.2 Free vibration

In this section, numerical results are studied and
discussed to check the accuracy of the proposed novel
models in predicting the dynamic responses of simply
supported FG plates.

In the first example, isotropic square plates are
examined to verify the efficiency of the proposed theories.
According to Egs. (1)-(3), when the material index p,
approaches zero or infinity, the plate is isotropic composed
of fully ceramic or metal, respectively. In Table 8, the first
eight non-dimensional natural frequencies are calculated
and compared with the results given by the quasi-3D
theories of Jha et al. (2013) and Hebali et al. (2014), exact
3D solution of Srinivas et al. (1970), the quasi-3D and 2D
shear deformation theories by Akavci and Tanrikulu (2015)
and first order shear deformation theory (FSDT) of Whitney
and Pagano (1970). Table 8 proves that the computed
results are in excellent agreement with those reported by the
other quasi-3D theories of Jha et al. (2013), Hebali et al.
(2014) and Akavci and Tanrikulu (2015) for all modes of
vibration.

Table 8 Comparison of non-dimensional natural frequencies
o= wh\/GZ for isotropic square plate (a/h=10)

Mode (m, n)
Theory &

a1y (12 (2 @3 (3 (33 (4 (15

Jhaetal. (2013) #0 0.0932 0.2226 0.3421 0.4172 0.5240 0.6892 0.7515 0.9275

Hebali et al. (2014) #0 0.0933 0.2228 0.3422 0.4173 0.5240 0.6890 0.7512 0.9268

S””('i’g;f)‘a" #0 00932 02226 03421 04171 05239 0.6889 0.7511 0.9268
Whitney and _

pagano (1070) =0 00930 02220 03406 0.4149 05206 0.6834 07447 09174
Akavci and

Tanrikulu (2015) =0 0.0930 0.2219 0.3407 0.4151 0.5209 0.6841 0.7455 0.9189
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Table 8 Continued

Mode (m, n)

Theory &
tn @2 @2 @3 (23 @3 @4 @y

Present =0 0.0930 0.2220 0.3406 0.4151 0.5208 0.6840 0.7455 0.9188

Akavci and

Tanrikulu (2015) #0 0.0932 0.2227 0.3424 0.4176 0.5247 0.6902 0.7526 0.9290

Present #0 0.0932 0.2227 0.3423 0.4175 0.5245 0.6899 0.7522 0.9285

Table 9 Comparison of the non-dimensional fundamental

frequencies 52”“,/% for Al/AlL,O5 square plate

k
a/h Theory &
0 0.5 1 4 10
Zhu and Liew (2011) =0 0.9265 0.8060 0.7331 0.6112 0.5640

Matsunaga (2008) #0 0.9400 0.8232 0.7477 0.5997 0.5460

Sheikholeslami and

Saidi (2013) #0 0.9400 0.8223 0.7475 0.5995 0.5461

Belabed et al. (2014) #0 09414 0.8248 0.7516 0.6056 0.5495

? Akavciand Tanrikulu (2015) =0 0.9303  0.8115 07360 05021  0.5413
Present =0 09301 08144 07416 05979  0.5436
Akavciand Tanrikulu (2015) #0 0.9440  0.8269  0.7536  0.6063  0.5506
Present £0 00434 08287 07574 06108 05522
Zhuand Liew (2011) =0 02111 0804 01620 0395  0.1323
Benachour etal. (2011) =0 02112 01806 0628 0375  0.1300
Hosseinietal. (2011) =0 02113 01807 0.631 0378  0.1301
Matsunaga (2008) ~ #0 02121 01819 01640 01383  0.1306
: Sheikh""‘;szlgrlnzi)a“d Saidi ., 02121 01818 01640 01382  0.1306
Belabed etal. (2014)  #0 02121 01819 01640 01383  0.1306
Akavciand Tanrikulu (2015) =0 02113 01807  0.1631  0.1378  0.1300
Present =0 02113 01808 01632 01379  0.1301
Akavci and Tanrikulu (2015) #0 02124 01827 01661  0.1410  0.1319
Present £0 02123 01827 01661 01411  0.1319
Zhuand Liew (2011) =0 0.0576 00489  0.0441  0.0381  0.0365
Benachour etal. (2011) =0 00576 00490  0.0441  0.0380  0.0363
Hosseinietal. (2011) =0 00577 00490  0.0442 00381  0.0364
Matsunaga (2008)  #0 00577 00491 00442 00381  0.0364
. ShEikh"'e(Sz'gT;)a”d Saidi Lo 00577 00491 00442 00381  0.0364
Belabedetal. (2014)  #0 00578 00494 00449 00389  0.0368
Akavci and Tanrikulu (2015) =0 0.0577  0.0490  0.0442  0.0380  0.0363
Present =0 00577 00490 00442 00381  0.0364
Akavci and Tanrikulu (2015) #0  0.0578  0.0494  0.0449  0.0389  0.0368
Present £0 00578 00494 00449 00389  0.0368
Benachour etal. (2011) =0 00148 00125 00113 00098  0.0094
Hosseinietal. (2011) =0 00148 00125 00113  0.0098  0.0094
Sheikho'e(sz'glm;)a”d Saidi Lo 00148 00125 00113 00098  0.0094
Belabed etal. (2014)  #0 00148 00126 00115 00100  0.0095

20

Akavci and Tanrikulu (2015) =0 0.0148 0.0125 0.0113 0.0098 0.0094

Present =0 0.0148 0.0125 0.0113 0.0098 0.0094

Akavci and Tanrikulu (2015) #0  0.0148 0.0126 0.0115 0.0100 0.0095

Present #0 0.0148 0.0126 0.0115 0.0100 0.0095

Table 10 Comparison of the first three non-dimensional
natural frequencies @=wa®/h [p. /Ec for Al/AlLO; square
plate (a/h=10)

K
?r/lnoie) Theory &
' 0 05 1 4 10
Benachouretal.  _ 57690 49000 44160  3.8040  3.6350
(2011) =0 5. : ) : )
Matsunaga (2008) #0 57777 49170 44270 38110  3.6420
Belabed et al. (2014) #0 57800  4.9400  4.4900  3.8900  3.6800
@ AkeveiandTamikuli_ o 57605 49015 44103 38064 36365
(2015)
Present =0 57695 49016 44195  3.8070  3.6368
Akaveiand Tanrikulu o 57807 40410 44007  3.8934  3.6827
(2015)
Present #0 57794 49401 44900  3.8931  3.6826
Benachouretal. _
(2011) =0 137600 11.7310 105760  9.0120 85570
Matsunaga (2008) #0 13.8100  11.8000  10.6300  9.0450  8.5880
Belabed et al. (2014) #0 13.8000  11.8400 107700  9.2300  8.6800
1,2 AkaveiandTanrkulu_ o 950650 117390 105000  9.0224 85613
(2015)
Present =0 137653 117407 105934  9.0274  8.5637
Akavciand Tanrikulu , o 138170 118510 107730  9.2314 86768
(2015)
Present £0 138132 118496 107728  9.2337  8.6778
Benachouretal  _ o 511950 180550 162820 13.7560 12,9950
(2011)
Matsunaga (2008) #0 21.2100 18.1900  16.4000  13.8300  13.0600
Belabed et al. (2014) #0 212100 182500 165900  14.0900  13.1800
(2,2 Akavei ("”‘Z”glg)a””k“'“ =0 211270 180730 163130 13.7770  13.0020
Present =0 211262 180784 163235 137922  13.0096

Akavci and Tanrikulu £0
(2015)

Present #0 212306 18.2676  16.6128  14.1090  13.1898

212370  18.2680  16.6090  14.0990  13.1860

The next two examples are established for Al/Al,O4
thick FG square plates. In Table 9, non-dimensional
fundamental frequencies of a square plate are calculated for
various values of the material index and different a/h ratios
and compared with FSDT of Zhu and Liew (2011), 2D
shear deformation theory of Benachour et al. (2011) and
quasi-3D shear deformation theories of Hosseini et al.
(2011), Matsunaga (2008), Sheikholeslami and Saidi
(2013), Belabed et al. (2014) and and Akavci and Tanrikulu
(2015). Again, it can be seen that the computed results
correlate exceptionally well with the other quasi-3D results,
even for very thick plates. The table demonstrates that,
fundamental frequencies increase with the increase in the
thickness of plate and diminish with the increase of material
index. In Table 10, to check the higher order modes for FG
plates, the first three frequencies of the Al/Al,O; FG square
plates are calculated and compared with the 2D HSDT of
Benachour et al. (2011) and quasi-3D HSDTs of Matsunaga
(2008), Belabed et al. (2014) and Akavci and Tanrikulu
(2015). As it is observed from the table, the proposed
theories are in good agreement with those reported by the
other quasi-3D models of Matsunaga (2008), Belabed et al.
(2014) and Akavci and Tanrikulu (2015), particularly at the
higher modes of vibration. It is observed from the tables
that when the influences of normal deformations are
neglected, the natural frequencies of FG plates are found
lower.
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Fig. 4 Effect of the side-to-thickness ratio a/h and power-
law index k on the non-dimensional fundamental
frequency @ of FG square plates

Fig. 5 Effect of the aspect ratio b/a and power-law index
k on the non-dimensional fundamental frequency @
of FG plates (a/h=10).

Fig. 4 presents the variation of the non-dimensional
frequency versus the thickness ratio a/h for different power-
law index k. It can be seen that the non-dimensional
frequency decreases with increasing the material index k.

Fig. 5 shows the variation of the non-dimensional
frequency versus the aspect ratio b/a for different material
index k. It can be observed that the increase of b/a leads to a
reduction of the non-dimensional frequency.

5. Conclusions

This paper presents both bending and free vibration
investigations for FG plates using a novel non-polynomial
quasi-3D HSDTs. The kinematic is developed by
considering further simplifying assumptions to the existing
HSDTs, with the use of an undetermined integral term
leading to only five unknowns. The equations of motion
have been determined by the Hamilton principle. Double
Fourier series have been employed to solve the partial
differential equations. The accuracy of proposed theory has
been demonstrated via the results computed by present
model compared with the results of the other theories.

The results determined by the proposed method can be
summarized as follows:

 Through all the comparative investigations, it can be
seen that the proposed theory proves good agreement with
that of the results of other 2D and quasi-3D HSDTs.

» The results demonstrate that the 2D and quasi-3D

HSDTs have almost identical results for thin plates. For the
thick and moderately thick plates, however, it has been
observed from the comparison investigations that the quasi-
3D theories which account for the stretching effects, can
predict the bending and dynamic behavior more accurately
compared to other HDSTSs. So, it is relevant to conclude that
the influence of thickness stretching on static and dynamic
behavior of FG plates are just as considerable as the
influence of transverse shear strains and must be taken into
account.

« The proposed quasi-3D HSDT contains five
unknowns, but gives results comparable with those
predicted by existing quasi-3D theories having more
number of unknowns (e.g., quasi-3D theories of Neves et
al. (2012ab) with nine unknowns and Akavci and Tanrikulu
(2015) with six unknowns).

+ Although the transverse stress components can be
computed from the constitutive equations, these stresses
may not satisfy the stress boundary conditions on the upper
and lower surfaces of the plate. So, the transverse stress
components may be determined by employing equilibrium
equations of 3D elasticity theory as satisfying the stress
boundary conditions.

« The fundamental frequencies of plate decrease with the
increase of material index. Although increasing value of
material index causes to reduce in the natural frequency, the
influence of the value of material index more than 5 is
negligible.

« The small difference between the proposed 2D and
quasi-3D HSDT results is due to the ignoring the thickness
stretching influence. If the influences of normal
deformations ignored, the fundamental frequencies of FG
plates are found lower.

* The thickness stretching influence is more pronounced
for thick plates and it needs to be taken in consideration in
the modeling.
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