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1. Introduction 
 

Mechanically stabilized earth (MSE) structures have 

gained wide acceptance as means of improving the stability 

of slopes, retaining walls and embankments (Wilson-Fahmy 

and Koerner 1993, Karpurapu and Bathurst 1995, Yang et 

al. 2010). A MSE structure is typically composed of soil, 

reinforcements (geogrid, geotextile, and metal strip etc.) 

and facing pannels, and reinforcements are usually under 

tension. When a MSE structure is designed, the values of 

soil-reinforcement interface shear strength parameters are 

usually to be required. Conventional design uses limit 

equilibrium methods which assume that all of the points 

along the reinforcements reach the limit state 

simultaneously, and the interface direct shear test is usually 

adopted to determine these strength parameters. However, it 

has been proved that the shear stresses developed along 

reinforcements of MSE structures are not uniform by many 

researchers, and the friction along reinforcements will 

develop progressively, with the front end of the 

reinforcement reaching very large displacement while the 

rear end may not even feel the presence of the pullout effect 

(Alobaidi et al. 1997, Sieira et al. 2009). 
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Pullout tests, which are acknowledged to more closely 

simulate in-situ condition, are usually employed to 

determine the ultimate pullout capacity of reinforced soil, 

and the load-displacement curve can be obtained easily. 

Meanwhile, the strain distribution can also be acquired by 

using strain gauges mounted on the surface of 

reinforcement. Since the application of MSE structures 

started, a large number of laboratory experiments have been 

carried out to investigate the mechanical behavior of 

reinforcements under tension (Palmeira 2009, Sieira et al. 

2009, Abdi and Zandieh 2014, Bathurst and Ezzein 2015, 

Ferreira and Zornberg 2015, Wang et al. 2016). It has been 

found that reinforcements often fail by debonding at the 

reinforcement-soil interface, although rupture of 

reinforcements has also been reported in a few cases. For 

the debonding failure, the determination of the accurate 

distribution of the interface shear stress along the bonded 

length is crucial for predicting the ultimate bearing capacity 

and for making an optimal design. In spite of this 

understanding, a limited number of analytical studies have 

been reported in literature. For instance, Abramento and 

Whittle (1995) described an analysis for predicting the 

tensile stress distribution and load-elongation response in 

pullout tests performed on thin, extensible, planar soil 

reinforcements, however, it was simply assumed in the 

proposed analysis that the axial stresses in the soil and in 

the inclusion are functions of x (horizontal position) only. 

Bergado et al. (2001) and Teerawattanasuk et al. (2003) 

developed an analytical model to predict the in-soil pullout 

resistance from the deformation of the hexagonal wire mesh 

in both pullout and lateral directions. Weerasekara and 

Wijewickreme (2010) proposed an analytical model  
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(a) 

 
(b) 

Fig. 1 Pullout test, (a) Elevation and (b) Plan 

 

 

combining the nonlinear responses of the geotextile and 

soil-geotextile interface characteristics. However, the 

distinct closed-form solutions for the interfacial slip, the 

interfacial shear stress and the axial stress in the geogrid 

were not obtained, and iterative computation need to be 

used to solve the interaction problem. 

In this paper, based on a bi-linear bond-slip model, a 

closed-form analytical solution is developed first to present 

the response of a buried planar reinforcement subjected to 

pullout, and then using the analytical solution, a method is 

proposed to determine the interface friction parameters by 

the load-displacement curve. On these bases, a comparison 

is made between predicted and measured pullout force-

displacement relationship and internal displacement 

distribution along the reinforcement. Finally, a parametric 

study is carried out to evaluate the influence of stiffness and 

length of the reinforcement on the pullout behavior of the 

MSE structure. The main advantage of the proposed 

analytical method is its simplicity, which enables clear 

physical interpretation of the effects of individual 

parameters and avoids the complexities associated with 

nonlinear numerical analyses using interfacial elements. 
 

 

2. The pullout tests and an idealized model 
 

Laboratory tests have been conducted to evaluate the 
load-carrying capacity and related mechanical parameters of 
reinforcements in MSE structures. Fig. 1 illustrates a 
pullout test of the planar reinforcement which is capable of 
accurately evaluating load-carrying capacity of the tested 
reinforcement. It is known that the ultimate failure may 
occur: (a) in the reinforcement, (b) at the reinforcement-soil 
interface. This paper is concerned with the very common 
debonding failure at the reinforcement-soil interface. Under  

 

Fig. 2 Idealised model: deformation and stresses 
 

 

Fig. 3 Bi-linear bond-slip model 
 
 

the debonding failures, the deformation of the surrounding 
soil is often negligible due to boundary conditions, which is 
constrained by a steel mould (Fig. 1). As a result, the 
reinforcement can be assumed to be under unidirectional 
tension and the reinforcement-soil interface under 
interfacial shear deformation only, leading to an idealised 
model as in Fig. 2 when the failure occurs due to debonding 
at the reinforcement-soil interface. It should be noted that 
the zero thickness interface represents the materials 
adjacent to the critical interface where debonding failure 
occurs. All deformations in the surrounding soil are lumped 
in the interface in this idealized model. It is also assumed 
that the pullout force P is horizontal so that the stress in the 
protruding length of the reinforcement is uniform. 
 

 

3. Bi-linear bond-slip model 
 

There are several types of reinforcements usually used 
in MSE structures, such as metallic strips, geotextiles and 
geogrids etc. Among them, only geotextiles are rigorously 
sheet-like reinforcements, metallic strips can be treated as 
sheet-like reinforcements with a certain width, and their 
bearing capacity under pullout conditions is mainly 
provided by the interfacial frictional force between the 
reinforcement and the soil. However, geogrids, with open 
aperture, derive their anchorage capacity through both 
friction and bearing resistances (Wilson-Fahmy et al. 1994). 
For simplicity, the geogrid can be treated as a sheet-like 
reinforcement without apertures, and geogrid thickness tg is 
obtained by the equivalent stiffness method which is usually 
used in pile foundation analysis.  

It has been found in many experimental studies that the 
relationship between shear stress and shear slip follows the 
theory of perfect-plasticity (Alobaidi et al. 1997, Sieira et 
al. 2009, Xu et al. 2013). Therefore, a simple bi-linear 
bond-slip model is adopted in this paper as shown in Fig. 3. 
It has an ascending part up to the peak stress at (τf, δ1) 

234



 

An analytical analysis of the pullout behaviour of reinforcements of MSE structures 

followed by a horizontal part representing that the shear 
stress will maintain the peak stress after complete 
debonding. The bi-linear bond-slip model is assumed as a 
material property and all the parameters can be calibrated 
from pullout tests, as discussed later in this paper. 

The bi-linear bond-slip model as shown in Fig. 3 can be 

mathematically expressed as 

 
1

1

1

        for 0  (a)

           for        (b)

f

f


  

 

  


 

 
   

(1) 

It should be noted that τf is generally constant for a 

given burial depth in the pullout test, and it can be 

expressed as 

tg f N
 

(2) 

where N is the vertical earth pressure, tgθ is the interface 

friction coefficient between soil and reinforcement, and the 

value of θ is a function of the confining effective stress and 

density of the soil.  

However, there is an evidence from pullout tests 

performed on MSE that the frictional resistance at buried 

interfaces may often be several magnitudes greater than τf 

derived from Eq. (2) (i.e., shear dilation) (Schlosser and 

Elias 1978, Ingold 1982). This phenomenon can be 

explained such that the normal stress N is usually increased 

during pullout tests due to shear-induced volumetric 

expansion of soil particles, especially for compacted soil. 

Therefore, it is very difficult to accurately assess the value 

of τf  using Eq. (2).  
 
 

4. Governing equations 
 

Based on the assumptions stated in Section2, the 

following fundamental equations can be established based 

on force equilibrium considerations in Fig. 2 

2
0

 
 

g

g

d

dx t
 

(3) 

where τ is the shear stress at the interface, σg is the axial 

stress in the planar reinforcement. 

The constitutive equations for the interface and the 

reinforcement are 

= ( )    (4) 

 
g

g g

du
E

dx  
(5) 

where Eg is the Young’s modulus of the reinforcement, and 

the function τ(δ) relates the local interfacial shear stress τ to 

the local shear slip δ as in Eq. (1). The shear slip δ is 

defined as the relative displacement between the 

reinforcement and its surrounding soil. Based on the 

assumption that all deformation in the surrounding soil is 

lumped onto the interface, the shear slip δ equals the axial 

displacement of the reinforcement ug 

  gu
 

(6) 

Substituting Eqs. (4)-(6) into Eq. (3), the governing 

equation of the reinforced soil and the axial stress in the 

reinforcement can be expressed as 

2
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(8) 

where  

2

1

2 f

g gE t







 

(9) 

The governing differential Eq. (7) can be solved once 

the bond–slip model represented by τ(δ) in Eq. (1) is 

defined.  

 

 

 
Fig. 4 Evolution of interfacial shear stress distribution 

and propagation of debonding. (a)-(b), elastic stage, (c)-

(d): elastic-plastic stage and (e)-(f) debonding stage, I, II, 

III represent elastic, plastic and debonding stress state 

respectively 

 

 

Fig. 5 Typical full-range theoretical non-dimensional 

load-displacement curve 
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5. Analysis of the full-range behavior and derivation 
of analytical solutions 
 

Using the bi-linear bond-slip model defined above, the 

shear slip and shear stress distributions along the interface, 

the axial stress in the reinforcement, and the load-

displacement relation can be obtained by solving the 

governing Eq. (7) for every loading stage. Fig. 4 illustrates 

the evolution of interfacial shear stress distribution when 

the bond length is significantly longer than the effective 

bond length to allow for transfer of the ultimate load (the 

peak value of pullout load). Fig. 5 shows the load-

displacement curve corresponding to Fig. 4. 

 

5.1 Elastic stage 
 

Under a small pullout force, there is no plastic 

deformation along the reinforcement-soil interface, so the 

entire length of the interface remains elastic (Fig. 4(a) and 

segment OA in Fig. 5). This is true until the interfacial shear 

stress reaches τf at x=L. Substituting Eq. (1a) for the case of 

0≤δ≤δ1 into Eq. (7), the differential equation for the elastic 

stage can be obtained 

2
2

2
0

d

dx


  

 
(10) 

Considering the following boundary conditions 

g 0 0at x  
 

(11) 

g

g g

P
at x L

b t
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(12) 

The interfacial slip, the interfacial shear stress and the 

axial stress in the reinforcement can be obtained by solving 

Eq. (10) 

1 cosh( )

2 sinh( )f g

P x
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(13) 
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(14) 

sinh( )

sinh( )
g

g g

P x

t b L





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(15) 

The slip at the loaded end with x=L is defined as the 

displacement of the reinforcement joint and is denoted as Δ. 

The following load-displacement expression can then be 

obtained from Eq. (13) 

1

2 tanh( )f gb L
P

 


 

 

(16) 

Introducing the normalised load and displacement 

2 f g

P
P

b L


 

(17) 

1


 

 
(18) 

Eq. (16) is simplified as 

tanh( )
0 1

L
P for

L




    

 
(19) 

It may be noted that in the elastic stage, only part of the 

interface is significantly loaded with the stresses elsewhere 

being very small (Figs. 4(a)-(b)). As in the study of Ren et 

al. (2010), the effective bond length is defined as the bond 

length over which the interfacial shear stresses offer a total 

resistance of at least 97% of the applied load for a joint with 

an infinite bond length. Based on this definition and 

considering that tanh(2) is about 0.97, the effective bond 

length in the elastic stage becomes independent of the load 

level and is given by 

, 2 /e el 
 

(20) 

The elastic stage ends when the shear stress reaches the 

bond shear strength τf at a displacement of δ1 at x=L (Fig. 

4(b)). Equating Δ to δ1 in Eq. (16), the load at the initiation 

of the elastic-plastic stage is found to be 

2 tanh( )f g

ela pla

b L
P

 


 

 
(21) 

or an infinite bond length, because lim tanh( ) 1
L

L


 , Eq. (21) 

reduces to 

2 f g

ela pla

b
P




 

 
(22) 

 

5.2 Elastic-plastic stage 
 

As the pullout force increases, plastic deformation 
commences at the loaded end (x=L) and the shear stress 
reaches its peak value and then remains constant. The peak 
shear stress τf is transferred towards the embedded end, and 
part of the interface near the loaded end enters the plastic 
state (state II) as shown in Fig. 4(c). With the development 
of the plastic length a, the load P continues to increase 
because greater interface is mobilized to resist the pullout 
force. At the end of this stage (Fig. 4(d) and Point ‘B’ in 
Fig. 5), P reaches the debonding load Pdeb. The load-
displacement curve in this stage is represented by segment 
AB in Fig. 5.  

Substituting Eqs. (1(a) and 1(b)) into Eq. (7), the 

following differential equations for the elastic-plastic stage 

can be obtained 

2
2

12
0 0

d
when

dx


      

 
(23) 

2
2

1 12
0

d
when

dx


     

 
(24) 

The boundary conditions are 

0 0g at x  
 

(25) 
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g is continuous at x L a  
 (26) 

1 for at x L a      
 (27) 

g

g g

P
at x L

t b
  

 
(28) 

The solution for the elastic region of the interface with 

0≤δ≤δ1 (or 0≤x≤L-a) is 

1 cosh( )

cosh[ ( )]

x

L a

 
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


  
(29) 
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2 sinh( )
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f

g

g

x

t L a
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

 



 

(31) 

The solution for the plastic region with δ≥δ1(or L-a ≤x≤ 

L) is 

 
(32) 

f 
 

(33) 

 
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f

g
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t
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(34) 

Substituting Eq. (28) into Eq. (34) gives 

 
2

tanh[ ( )]
f gb

P L a a


 


  
 

(35) 

The displacement at x=L can be obtained from Eq. (32) 

as 

2 2

1 1 1

1
tanh[ ( )]

2
a a L a        

 
(36) 

Substituting Eq. (35) and Eq. (36) into Eq. (17) and Eq. 

(18) respectively, and the normalized load and displacement 

can be expressed as 

tanh[ ( )]L a a
P

L

 



 


 
(37) 

2 21
1 tanh[ ( )]

2
a a L a      

 
(38) 

The distribution of the interfacial shear stress during the 
elastic-plastic stage is illustrated in Figs. 4(c) and 4(d). 
During this stage, the load-displacement curve plotted from 
Eqs. (37) and (38) is shown as segment AB in Fig. (5). 
Obviously, the joint reaches its ultimate load at the end of 
this stage. P reaches its maximum when the derivative of 
Eq. (35) with respect to a equals zero. Therefore, a at the 
ultimate load can be found to be L. 

Substituting the equation a=L into Eq. (35) yields Eq. 

(36), which is very familiar.  

2u f gP b L
 

(39) 

5.3 Debonding stage 
 

This stage starts when the elastic zone disappears (Point 

‘B’ in Fig. 5). In this stage, the load-carrying capacity is 

solely provide by the maximum friction (Fig. 4(e) and 4(f)). 

The displacement at the end of the elastic-plastic stage, 

denoted by Δd, can be obtained from Eq. (36) by setting 

a=L 

2 2

1 1

1

2
d L    

 
(40) 

The pull-out displacement Δ after this varies fromΔd at 

the beginning of this stage to L+Δd when the reinforcement 

is completely pulled out. Neglecting the effect of the 

reinforcement elongation which is very small compared 

with Δ at this stage, the load-displacement relationship at 

debonding stage can be expressed as 

2 ( )g f dP b L  
 (41) 

 

5.4 Characteristic points on the load-displacement 
curve 
 

The above analysis shows that the full-range mechanical 

behaviour of reinforcements under tension consists of three 

distinct stages as depicted in Fig. 5. The important points 

are Point ‘A’ corresponding to the initiation of the interface 

plastic deformation, Point ‘B’ corresponding to the 

initiation of debonding and the ultimate load. These two 

points may be identified from an experimental load-

displacement curve, and used to calibrate the parameters in 

the bi-linear bond-slip model. After Point ‘B’, the resistance 

is solely provided by the surface maximum friction (Fig. 

4(e) and 4(f)). Therefore, the present analysis provides a 

useful tool to determine the parameters of the bilinear bond-

slip model from simple pull-out tests as illustrated in the 

following section. 

 

 

6. Calibration of control parameters 
 

There are two bond-slip model parameters τf and δ1 in 

the above analytical solution. They may be calibrated from 

the experimental load-displacement curve at the control 

points A(u1,P1), B(u2, P2) in Fig. 5. From Fig. 4(b) and Fig. 

5, it is seen that 

1 1u＝
 

(42) 

The value of τf can be obtained using two different 

methods in this analytical solution, which is dependent on 

the failure mechanism of pullout tests. When the failure 

mode is that the reinforcement is pulled out from the soil, τf 

can be obtained by substituting Pu＝P2 at Point ‘B’ into Eq. 

(39) and it can be expressed as below 

2

2
f

g

p

b L
 

 
(43) 
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Fig. 6 Comparison of predicted load-displacement curve 

with Sieira et al.’s test data (Sieira et al. 2009) 

 

 

On the other hand, when the failure mode is not the pull 

out mode, such as the rupture of reinforcement, the value of 

τf can be acquired by substituting Pela-pla＝P1 and δ1＝u1 at 

Point ‘A’ into Eq. (22), note that tanh( ) 1L  under normal 

conditions. Thus, τf can be determined by combining Eq. (9) 

and Eq. (22) as below. Note that this method can also be 

used to obtain τf in the case of pullout mode. 

2

1

2

1 g2
f

g g

p

b u E t
 

 

(44) 

Once the values of τf and δ1 are obtained, then the full-

range pullout behavior of geosynthetics, such as 

displacement distribution, interfacial shear stress and axial 

stress of geosynthetics, can be described using Eqs. (13)-

(15), (29)-(34). The load-displacement curves in every 

loading stage can also be acquired as well. 

 

 

7. Comparison with pullout test results 
 

In this section, the key material parameters are 

calibrated following the above procedure for pullout tests of 

geosynthetics. They are then used to predict the whole load-

displacement behavior and internal displacement 

distribution along the bond length. The predictions are 

compared with the test results. 
 

7.1 Load-displacement relationship 
 

Several pullout tests of geogrid reinforced soil were 
conducted by Sieira et al. (2009). The geometrical and 
material properties were: bg=1.0 m, tg=0.35 mm, L=1.0 m 
and Eg=1.6 GPa, among which, tg is obtained by the 
equivalent stiffness method. The test load-displacement data 
are shown as markers in Fig.6 where the control points were 
identified as points A, B. The bond-slip parameters τf, δ1 and 
the effective bond length le,e, which are calibrated following 
the above procedure, can be obtained as 32.6 kPa, 17.8 mm 
and 0.78 m under the normal stress of 25 kPa, 21.8 kPa, 
17.7 mm and 0.95 m under the normal stress of 12.5 kPa, 
15.5 kPa, 12.6 mm and 0.96m under the normal stress of 
5kPa, respectively. The predicted load-displacement curve  

 

Fig. 7 Comparison of predicted internal displacement 

with Sieira et al.’s test data (Sieira et al. 2009) 
 

 
using the parameters is plotted as the solid line in Fig. 6. It 

is clear that the present analytical solution reproduces 

closely the full non-linear behavior of the geogrid tested. It 

should be noted that the linear decrease in the debonding 

zone is deduced from Eqs. (40) and (41), and the slope of 

the curve can be obtained as -2bgτf, which is independent of 

pulling speed in pullout tests. However, in fact, the shape of 

the curve is dependent on the pulling speed. 

 

7.2 Internal displacement distribution 
 

Knowing the bond-slip model parameters τf and δ1, the 

internal displacement can be calculated using Eqs. (13), 

(29), (32), and (40) according to the stress states (I, II, III). 

Fig. 7 shows a comparison between the calculated internal 

horizontal displacement and the test data reported by Sieira 

et al. (2009) at the state of peak pullout loads under 

different normal stress. It can be seen clearly that the 

distribution of the calculated displacement closely matches 

the experimental results. The internal displacement of the 

reinforcement decreases gradually from the loading end to 

the free end. Also, the load end can bear a larger horizontal 

displacement with the increase of the normal stress, that is 

to say the larger normal stress improves the ductility as well 

as the ultimate load. This phenomenon can also be seen 

clearly from Fig. 6. 

 

 

8. A parametric study 
 

A parametric study was conducted to investigate the 

influences of the anchorage length, the axial stiffness of the 

reinforcement, the interfacial shear stiffness and the 

interfacial shear strength on the load-displacement relations 

and the ultimate load. The parameters of Sieira et al. 

(2009)’s experiment as given in Section 7.1 were used as 

the reference values. 
 

8.1 Effect of anchorage length L 
 

Fig. 8 shows the load-displacement curves calculated 

using different anchorage length L with L>Le. It is found  
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Fig. 8 Effect of the anchorage length on the load-

displacement relationship 

 

 

Fig. 9 Effect of the reinforcement axial stiffness on the 

load-displacement relationship 

 

 

Fig. 10 Effect of the interfacial shear stiffness on the 

load-displacement relationship 

 

 

Fig. 11 Effect of the interfacial shear strength on the 

load-displacement relationship 

that the curves in the elastic stage are independent of the 

anchorage length. In the elastic-plastic stage, the load 

continues to increase with the displacement. The hardening 

phenomenon is due to the existence of a constant shear 

strength τf after entering the elastic-plastic stage in the 

adopted bi-linear bond-slip model. It is also clear that a 

longer anchorage length improves the ductility as well as 

the ultimate load. 
 

8.2 Effect of the reinforcement axial stiffness 
 

Fig. 9 shows the influence of axial stiffness of the 

reinforcement on the pullout load-displacement 

relationship. It is clearly seen that the ductility decreases 

with the increase in reinforcement axial stiffness, and the 

ultimate pullout load remains constant for different axial 

stiffness. 
 

8.3 Effect of the interfacial shear stiffness 
 

Fig. 10 shows the effect of interfacial shear stiffness 

between reinforcement and the soil on the pullout load-

displacement behavior. It can be clearly seen that the 

ductility increases but the ultimate pullout load remains 

relatively unchanged as the interfacial shear stiffness 

increases. 
 

8.4 Effect of the interfacial shear strength 
 

Fig. 11 shows the effect of reinforcement-soil interfacial 

shear strength on the pullout load-displacement 

relationship. With increase in interfacial shear strength, the 

ultimate pullout load and the ductility clearly increase. 

Moreover, it can be clearly seen that the larger is the 

interfacial shear strength, the smaller is the pullout 

displacement under the same pullout load before the 

interface debonds.  
 

 

9. Conclusions 
 

MSE structures have been widely used in slope and road 
engineering to retain unstable soil mass and save 
construction cost. Based on a bi-linear bond-slip model, a 
closed-form solution for predicting the full-range behavior 
of reinforcements under tension has been presented in this 
paper. Its practical meaning is that, once the bond-slip 
model is calibrated using the analytical solution from 
simple pullout tests, it can be subsequently used in 
numerical simulation of complicated engineering problems. 
The conclusions can be obtained as below. 

(1) Explicit formulations for the shear stress and the 

shear slip at soil-reinforcement interface, the load-

displacement relations, and the axial stress in the 

reinforcement, have been derived for each of the three 

distinct loading stages. All the control parameters in the 

solution are physical entities and can be directly calibrated 

from pullout test data.  

(2) Three pullout tests with different normal stress were 

analysed using the developed solution. It was found that the 

predicted results are in good agreement with the 

experimental data in terms of load-displacement curve and 

internal shear displacement distribution. Thus the developed 
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solution offers a rigorous theoretical basis for understanding 

the full mechanical behavior of sheet-like reinforcements 

under tension. 

(3) As an extension of the developed solution, 

parametric analyses were conducted on the load-

displacement relations and the ultimate load of the pullout 

test. It was found that a longer anchorage length and a 

larger interfacial shear strength can improve the ductility as 

well as the ultimate load, and ductility reduces with increase 

in reinforcement axial stiffness and decrease in interfacial 

shear stiffness. 
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