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Abstract.  The effects of seepage force and out-of-plane stress on cavity contracting and tunnel opening was 

investigated in this study. The generalized Hoek-Brown (H-B) failure criterion and non-associated flow rule 

were adopted. Because of the complex solution of pore pressure in an arbitrary direction, only the pore 

pressure through the radial direction was assumed in this paper. In order to investigate the effect of out-of-

plane stress and seepage force on the cavity contraction and circular tunnel opening, three cases of the out-

of-plane stress being the minor, intermediate, or major principal stress are assumed separately. A method of 

plane strain problem is adopted to obtain the stress and strain for cavity contracting and circular tunnel 

opening for three cases, respectively, that incorporated the effects of seepage force. The proposed solutions 

were validated by the published results and the correction is verified. Several cases were analyzed, and 

parameter studies were conducted to highlight the effects of seepage force, H-B constants, and out-of-plane 

stress on stress, displacement, and plastic radius with the numerical method. The proposed method may be 

used to address the complex problems of cavity contraction and tunnel opening in rock mass. 
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1. Introduction 
 

A large number of elastic-plastic closed-form solutions for the problem of cavity contraction 

and tunnel opening exist in the literatures (Banerjee et al. 2016, Bousbia and Messast 2015, 

Carranza-Torres and Fairhurst 1999, Di et al. 2016, Fahimifar and Zareifard 2009, Fahimifar et al. 

2015, Huang et al. 2016, Lee and Pietruszczak 2008, Liang et al. 2017, Lukic et al. 2014, Pan and 

Dias 2016, Shi et al. 2016, Yang et al. 2014, 2015, 2016, Zhang et al. 2016, Yu 2000, Shin et al. 

2011, Wang et al. 2012, Zhou et al. 2014, 2015 and 2016, Zou and Zuo 2017, Zou et al. 2016, 

2017c, 2017d, Zou and Du 2017, Zou and Xia 2017a, b). Some literatures also investigate 

characteristic behavior of granular materials or rock mass (Mohammadi et al. 2017, Wan et al. 

2017, Zhuang et al. 2017). However, in the majority of these plane-strain solutions, the out-of-

plane stress (sz) in the plastic zone is usually assumed to be the intermediate principal stress. 

However, it has been shown that sz may not remain the intermediate principal stress in the failure 
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zone around the tunnel in particular, when the brittle plastic or strain softening behavior of a rock 

mass is taken into account. Reed (1986, 1987) indicated that, in the elastic region, it is readily seen 

that sz=q throughout, and thus remains the intermediate stress. In the plastic region, sq=sz at the 

tunnel wall. If the tunnel support pressure is reduced below the critical value, an inner plastic zone 

will develop in which sq<sz. Pan and Brown (1996) indicated that the axial stress is dependent on 

the rock-mass dilation proposed the quasi-plane strain-softening problem of circular tunnel 

considering effect of out-of-plane stress. Wang et al. (2012) pointed out that the residual region is 

close to the tunnel wall with sq=sz>sr. The softening region is divided into the inner plastic region 

with sq=sz>sr and the outer plastic region with sq>sz >sr. 

However, the effects of seepage force and out-of-plane stress on stress and displacement during 

cavity contracting and tunnel opening have yet to be defined clearly. For example, Mohamed 

(2003) proposed an exact solution of gravity flow generated in a circular tunnel, but the effects of 

seepage force and out-of-pane stress on stress and displacement were excluded. Lee et al. (2006) 

examined the tunnel face stability with steel pipe-reinforced multi-step grouting in underwater 

tunnels and determined that after the steel pipe-reinforced multi-step grouting was adopted, the 

seepage force decreased significantly in an underwater tunnel. The effective stresses that act on the 

tunnel face were determined based on the upper-bound solution and seepage pressure was 

calculated through seepage analysis (2001). Fahimifar and Zareifard (2009) proposed an analytical 

solution to analyze tunnels below the groundwater table in plane strain axisymmetric condition 

that considers mechanical–hydraulic coupling. However, the issue of spherical cavity contraction 

was not considered. Shin et al. (2011) investigated the interaction between tunnel supports and 

ground convergence by considering the seepage forces through analytical and numerical analyses. 

In applying the existing two-dimensional solutions to the axisymmetric tunnel problem, a number 

of key questions still remain unresolved. This include: 

What is the influence of axial stress sz on tunnel stability and convergence incorporating 

seepage force? 

The present study focuses mainly on the effects of the seepage force and out-of-pane stress on 

the cavity contracting and tunnel opening in a generalized Hoek-Brown rock mass. The Solutions 

of stress and displacement were presented for the spherical and cylindrical cavities that contracted 

the tunnel opening. Parameter studies were performed to highlight the effects of seepage force, H–

B constants, and out-of-plane stress with the numerical method. 

 

 

 

Fig. 1 Circular opening in an infinite medium. 
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2. Theory and methodology 
 

2.1 Cavity contraction 
 

The analysis model presented by Yu (2000) is adopted in this study (Fig. 1). The constructions 

of the tunnels can be modeled using spherical or cylindrical cavity contraction, as shown in Figs. 

1(a) and 1(b), respectively. The tunnels to be analyzed were constructed efficiently and positioned 

deep in the ground to enable the effect of the free surface to be ignored. 

Fig. 1 shows a circular opening excavated in a continuous, homogeneous, isotropic, and 

initially elastic rock mass subjected to hydrostatic stress (s0). The opening surface is subjected to 

internal pressure (p0). As p0 gradually decreased, radial displacement occurred, and a plastic region 

developed around the opening when p0 was less than p1y (i.e., the initial yielding stress). r0 and R 

are the radii of the circular opening and the elastic-plastic interface, respectively, and sr and sq are 

the radial and circumferential stresses, respectively. 

 

2.2 Assumptions 
 

Several assumptions have been made to determine the influences of seepage force and out-of-

plane stress. The rock mass around the cavity contracting and circular opening is regarded as an 

isotropic, continuous, and permeable medium. In the seepage force analyses, the axisymmetric 

condition is not considered. Thus, pore water pressure is computed as a function of radial distance 

(r). Because of the complex solution of pore pressure in an arbitrary direction, the proposed 

solution considers only the pore pressure through the radial direction in this paper. The rock 

masses around the circular opening adhere to the generalized H-B failure criterion under the plane 

strain condition. The strain constitutive model that follows a non-associated flow rule is employed 

for formula derivation. The elastic strain in the plastic and softening regions of the surrounding 

rock accords with Hooke’s law. Compressive stress and direct strain are regarded as positive 

throughout the process. When the effects of seepage force and out-of-plane stress are taken into 

account, the solution differs from those for the normal plane strain problem. 

According to the literatures in Reed (1988), Pan and Brown (1996), Lu et al. (2010) and Wang 

et al. (2012a, b), sz=q in the elastic region. In the plastic region, sq=sz at the tunnel wall. If the 

tunnel support pressure is reduced below the critical value, an inner plastic zone will develop in 

which   sq≤sz. Therefore, in order to the influences of the out-of-plane stress and seepage force on 

cavity contracting and tunnel opening, three cases of the out-of-plane stress being the minor, 

intermediate, or major principal stress are assumed separately.  

 

2.3 Generalized Hoek-Brown failure criterion 
 

The generalized Hoek-Brown failure criterion can be written as follows (Yang and Pan 2015, 

Yang and Yan 2015, Yang et al. 2016, Yang and Yin 2010) 

3
1 3 ( )n

c

c

m s


  


  

 

(1) 

where, sc is the unconfined compressive strength of the rock mass and s1 and s3 are the major and 

minor principal stresses, respectively. m, s, and n are the H-B constants for the rock mass before 
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yielding, which are expressed as follows 
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where, D is a factor that depends on the degree of disturbance to which the rock has been subjected 

to in terms of blast damage and stress relaxation, which varies between 0 and 1 and GSI is the 

geological strength index (GSI) of the rock mass, which varies between 10 and 100. 

For the contracting cavities and tunnel opening with unloading condition, s1=sq and s3=sr, and 

Eq. (1) can be expressed as follows 

n
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(5) 

The radial stress (sr) at the elastic–plastic interface can be determined using the Newton-

Raphson method with Eq. (6) 

n
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(6) 

where s0 is the hydrostatic in situ stress at infinity, and k=1 and k=2 are the cylindrical and 

spherical contraction cavity problems, respectively. 

Eq. (6) is applicable only to the case of a deep tunnel excavated through a material that features 

an initial isotropic stress state. 
 

 

 

Fig. 2 Seepage flow net in different regions around the opening (Fahimifar and Zareifard 2009) 
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2.4 Seepage force 
 

The circular opening excavated below the groundwater table with a constant hydraulic head is 

depicted in Fig. 2. Pore pressure is determined using Bernoulli’s equation based on the steady state 

of the flow effect and on the datum level at the tunnel depth. The flow net of radial seepage is 

developed in the plastic zone. The tunnel cross-section and the boundary between the elastic and  

plastic zones are considered to be circular. Thus, ratio re/h1 should be reasonably small to achieve 

acceptable results. Inward seepage flow rate (q) is assumed to be positive. 

Fig. 2 shows that the water head (ha) acts on the wall of the circular tunnel with inner radius 

(r0). The water head of hydrostatic pressure (h0) is far from this wall. The hydraulic conductivity of 

the surrounding rock is assumed to be similar in all directions. Seepage flows mainly along the 

radial direction in the considered tunnel range. Thus, the continuity seepage differential equation 

based on that developed by Bear (1988) can be written as 

0
1

2

2
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r

H

rr
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(7) 

In this equation, 
0

( )r r aH r h   and 0( )rH r h   are the boundary conditions. This formula has no 

solution; however, it can be solved by replacing the second condition ( 0( )rH r h  ) 

with
0

( )r r aH r h  . Therefore, the solution of Eq. (8) is 
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(8) 

where, a is a constant of seepage force. The equation can be assigned a conveniently large value if 

it satisfies the required engineering accuracy. According to Li et al. (2004), this requirement can be 

sufficiently met at a=30. 

In the axisymmetric plane strain problem, seepage force refers to volume force and is obtained 

using Eq. (9) 


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wwr
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(9) 

where, i is the hydraulic gradient; x is the effective coefficient of pore water pressure in the rock 

mass; H is the water-level fluctuation; a is the constant of seepage force; gw is the unit weight of 

water; r is the radial distance from the center of the opening; and h0 and ha are the initial and final 

water levels, respectively. 

 

2.5 Stress and displacement in the elastic region 
 

Equilibrium equation and stress boundary conditions. The axisymmetric equilibrium equation 

for the elements of rock mass in polar coordinates, including seepage body force (Fr), is given by 

0 r
rr F

r
k

dr

d  -

 
(10) 

where, r is the radial distance from the center of the opening, sr and sq are the radial and 
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circumferential stress, and k denotes the cylindrical (k=1) and spherical cases (k=2), respectively. 

The two boundary conditions for the problem are as follows. 

r r R R  
 

(11) 
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(12) 

As a tunnel is excavated, radial stress at the tunnel boundary decreases from the initial value 

(s0), and the deformation of the rock is initially purely elastic. Under conditions of radial 

symmetry, the elastic stress-strain relationship for the case of cylindrical and spherical cavity 

contractions can be expressed as follows 
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(13) 

where, E is Young’s modulus, and n is the Poisson’s ratio of the rock mass. 

If Eq. (13) is substituted into Eq. (10), the following can be obtained 
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The solution of stress for the case of k=1 can be easily obtained 
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(16) 

If Eqs. (5) and (14) are combined with the boundary conditions of Eqs. (11) and (12), the 

displacement field in the elastic zone is determined by the following equation 
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The solution of stress for the case of k=2 can also be obtained 
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2.6 Stress and displacement in the plastic region 
 

(1) Stress 

Substituting Eq. (5) into Eq. (10) leads to the following 

0










 r

n

c

r
c

r F
r

sm

k
dr

d 






 

(21) 

Given that Eq. (21) is a non-linear differential equation, only a numerical solution can be 

obtained with the boundary conditions: 
0r r r ip    and 0r r   . 

When seepage force is not considered, the solution of Eq. (18) can be expressed as follows 
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(22) 

where, r0 is the radius of the tunnel opening and p0 is the uniformly distributed support or fluid 

pressure in the radial direction along the opening surface. 

If Eq. (22) is substituted into Eq. (5), circumferential stress is obtained as Fr=0. 

If Eq. (22) is solved with the boundary condition ( r r R R   ), the plastic radius can be given 

by 
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For the special case of k=1, Eqs. (22) and (23) are simplified to Eqs. (24) and (25) 
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Eqs. (24) and (25) were also obtained by Sharan (2008). 

(2) Displacement 

In the plastic region, radial and circumferential strain can be decomposed as follows 
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where, the superscripts e and p represent the elastic and plastic parts, respectively. 

Based on Wang’s theory, the strain equilibrium equation is given by 

0



r

k
dr

d r 

 
(28) 

If Eqs. (26) and (27) are substituted into Eq. (28), Eq. (28) is rewritten as  

r
k
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d

r
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




 
(29) 

Elastic strain is assumed to be relatively small compared with plastic strain in the plastic 

region, and hence, elastic strain can be neglected. Following the non-associated flow rule, the 

plastic parts of the radial and circumferential strains can be expressed as follows 

0 pp

r hk 
 

(30) 

where, parameter h is a function of the dilation angle (j) and is given by h = (1+sin j)/(1-sin j). 

Substituting Eq. (21) into Eq. (13) results in the following 
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(31) 

Substituting Eq. (31) into Eq. (29) leads to the following 

)(
)/1(
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d pp


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(32) 
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where 

   
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(33) 

If Eq. (32) is solved, the plastic strain is 


  )/1(

1

)/1()/1( )( khkkhkkhkp rcdrrfrr
 

(34) 

where, c1 is the integration constant. 

Because the plastic strain at r=R is equal to the difference (∆ε
e
θ) of the elastic strain in the 

elastic and plastic regions for the proposed model, the following equation can be derived 

 




  )/1(

1

)/1(

)1/(
)(

1 khkkhkR

khhRr

pe Rcdrrfr
R

 
 

(35) 

The integration constant c1 can be determined by 

 

ekhkkhkR Rdrrfrc  
 )/1()/1(

1 )(
 

(36) 

In which the circumferential strain increment (∆ε
e
θ) in the elastic region is expressed as 
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(37) 

The circumferential strain (ε
er
θ) in the plastic region is given by the following equation 
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(38) 

And only the elastic part can be obtained by Eq. (38). 

The expression of ∆ε
e
θ is given by 
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(39) 

If Eq. (39) is substituted into Eq. (36), the constant c1 is 
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(40) 

The radial displacement can be obtained by the following 
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(41) 
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For the special case of k=1, Eq. (31) can be reduced to the following equation 
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(42) 

For the special case of k=1 and Fr=0, Eqs. (31) and (33) are reduced into Eqs. (43) and (44) as 

follows 
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(44) 

 

 

3. Solutions 
 

3.1 Stress in the elastic region 
 

Only the plain strain problem is evaluated considering the effect of out-of-plane stress for the 

solutions of tunnel. The following discussion in this section is the case of k=1 and k=2. 

The elastic strain that considers the effect of the out-of-plane stress in the elastic region is 
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    
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(45) 

where, q is the out-of-plane stress along the axis of the tunnel. 

In the elastic region, sz=q, therefore, the radial and circumferential stresses are the same as in 

Eqs. (18) and (19). 

Displacement in the elastic region is 

  01r

r
u v v

E
       

 
(46) 
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3.2 Stress and strain in the plastic region (σz-the major principal stress) 
 

The generalized H-B failure criterion can be expressed as follows 
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m s
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(47) 

The boundary condition at the interface between the plastic and elastic regions is sz=q. Using 

the boundary condition and Eq. (47), the radial stress at the interface between the plastic and 

elastic region can be derived as 
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(48) 

where, pc1 is the critical internal pressure and q is the major principal stress. 

The non-associate flow rule is 
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(49) 

Combining Eqs. (28), (45), and (49) results in the following 
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(50) 

sz, sq, and sr can be solved using Eqs. (10), (47), and (50).  

If Eqs. (10) and (47) are substituted into Eq. (50), the differential equation is  
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and 
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(52) 

Substituting Eqs. (10) and (47) into Eq. (52) leads to 
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(53) 

In the inner plastic zone  0 , z rr r R       . 
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(54) 

where,  
r z

e e eh
f r h

k
     . 

As r=R and u=uc, then 
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(55) 

Plastic radius can be determined using Eqs. (53), (54) and (55). Stress (sz, sq, and sr) in the 

plastic region can be obtained using Eqs. (10), (47), and (51), whereas displacement can be 

obtained using Eq. (53) and (54) with the boundary conditions: sr(r=r0)=pin, sr(r=R)=pc1, and 

u(r=R)=uc1. 

 

3.3 Stress and strain in the plastic region (σz−the intermediate principal stress) 
 

The radial and circumferential stresses in the plastic region can be solved using Eq. (21). The 

out-of-plane stress is 

  02z rv v q      
 

(56) 

Considering the effects of out-of-plane stress, the elastic strain in the elastic region can be 

given by 
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(57) 

The plastic strain is the same as in Eq. (34), which is as follows 
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The displacement in the plastic region is expressed as follows 
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(59) 

Eqs. (15), (16), (17), (21), and (59) show that the plastic radius and stress in the elastic and 

plastic regions are unaffected by out-of-plane stress in the plane strain condition because out-of-
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plane is the intermediate principal stress, except for the displacement in the plastic region. 

 

3.4 Stress and strain in the plastic region (σz−the minor principal stress) 
 

The generalized H-B failure criterion is expressed as follows 
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(60) 

The boundary condition at the interface between the plastic and elastic regions is sz=q. Using 

the boundary condition and Eq. (60), the radial stress at the interface between the plastic and 

elastic regions can be derived as follows 
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(61) 

The non-associate flow rule is expressed as follows 
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Combining Eqs. (28), (58), and (62) results in 
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sz, sq, and sr can be determined by combining Eqs. (10), (58), and (62). By substituting Eqs. (10) 

and (58) into Eq. (62) we can obtain 
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Displacement in the plastic region is given by 
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     
   

(65) 
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Substitute Eq. (58) into (65) yields 

   0 0 0

1 1

2

n

z
c z r

c

kv k kv kv
m s v v

r h h h h
u

E k
v vq q v

h


  



  

       
              
       
 
     
    

(66) 

In the inner plastic zone,  0 , r zr r R       . 

 
h

r
h h R

RR

u
u r r f r dr u

r

  
   

 


 

(67) 

where,  
r z

e e ef r h k


     . 

As r = R, u=uc3 and it is expressed by 

 
   0

3 0 3 2ln 4 1 ln 1 2
2 2ln

w a

c c

h hR R
u p v v

G b

 
 



   
         

     

(68) 

Stress (sz, sq, and sr), radius, and displacement in the plastic region can be determined using 

Eqs. (10), (64), (66), and (67) with the boundary conditions: inrrr p 0
 , 3cRrr p , and u=uc3. 

 

 

4. Verification and application 
 

4.1 Verification 
 

The parameters of very good, average, and very poor rock mass were taken from published 

literatures (Sharan, 2008) and evaluated to determine the validity of the proposed approach, as 

shown in Table 1. 

Fig. 3 shows that the stress distribution with the proposed approach corresponds to a=5 m, 

a=30, h0=0, ha=50 m, x=1, and p0=1.0 MPa for very good, average, and very poor rock masses, 

respectively. The results in this figure and in the subsequent figures were obtained with the same 

proposed approach. 

Fig. 3 shows that the effects of seepage force on the radial and circumferential stresses were not 

obvious for very good rock mass, and results of stress for Fr≠0 were less than those for Fr=0. The 

effect of seepage force on stress were found to be more significant when rock mass is poorer. 

The effects of seepage force on R/r0 with different GSI values are shown in Fig. 4. 

Fig. 4 shows that the magnitude of R/r0 for Fr≠0 was larger than that for Fr=0. The effects of 

seepage force on plastic radius were more significant when rock mass was poorer. 

Displacement distributions that consider the effects of seepage force are shown in Fig. 5 for 

very good, average, and very poor rock mass, respectively. 

Fig. 5 shows that the effect of seepage force on displacement was more obvious, and that the 

displacement for Fr≠0 was larger than those for Fr=0. The effect of seepage force on the 

displacement was smaller when the rock mass was of better quality. 

The effects of ha on the displacement and plastic radius of different rocks are shown in Figs. 6 

and 7. 
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Table 1 Basic properties of rock mass used in numerical tests 

Rock 

example 
Reference 

Quality of 

rock mass 
n sci (MPa) E(GPa) n mi s0(MPa) 

A 
Sharan 

(2008) 

Very good 0.500911 150 42 0.2 25 200 

B Average 0.505734 80 9 0.25 12 50 

C Very poor 0.522344 20 1.4 0.3 8 12 

 
 

  

(a) Very good rock mass (b) Average rock mass 

 

(c) Very poor rock mass 

Fig. 3 Effects of Fr on stress 

 

 

Fig. 4 Effects of Fr on R / r0 with increasing parameters of GSI 
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(a) Very good rock mass (b) Average rock mass 

 

(c) Very poor rock mass 

Fig. 5 Effects of Fr on displacement with increasing radius 
 

 

 

Fig. 6 Effects of ha on displacement for different rocks 
 

 

Fig. 7 Effects of ha on plastic radii for different rocks 
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Table 2 Radii of plastic zone and displacement of surrounding rock 

q(MPa) R/r0
a
 R’/r0

b
 Difference (%) u/r

a
 u'/r

b
 Difference (%) 

50.00 1.8660 1.7022 9.62 1.1570 1.1271 2.65 

44.16 1.6516 1.5937 3.63 1.0863 1.0791 0.67 

35.00 1.6516 1.5937 3.63 1.0479 1.0368 1.07 

22.50 1.6516 1.5937 3.63 1.0406 1.0275 1.27 

15.83 1.6516 1.5937 3.63 1.0420 1.0275 1.41 

15.00 1.7591 1.5937 10.38 1.0422 1.0275 1.43 

a: Results calculated by the Hoek-Brown criterion 

b: Results calculated by using equation of Fenner 

 
Table 3 Displacement that considers the out-of-plane stress (k=1) 

out-of-plane stress 

q (MPa) 

Rock 

example 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz  

(m) 

Differences 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz and Fr (m) 

Differences 

Major 

principal 

stress 

400 A 7.2116 
0.0498 

(0.0453) 
9.93% 7.2141 

0.0499 

(0.0454) 
9.91% 

100 B 10.6913 
0.0905 

(0.0787) 
15.00% 10.7263 

0.0912 

(0.0791) 
15.30% 

20 C 17.7536 
0.2348 

(0.2135) 
9.98% 18.297 

0.2489 

(0.2248) 
10.72% 

Intermediate 

principal 

stress 

100 A 6.807 
0.0447 

(0.0453) 
1.32% 6.810 

0.0447 

(0.0454) 
1.54% 

25 B 8.760 
0.0759 

(0.0787) 
3.56% 8.783 

0.0763 

(0.0791) 
3.54% 

10 C 13.347 
0.1989 

(0.2135) 
6.84% 13.689 

0.2094 

(0.2248) 
6.85% 

Minor 

principal 

stress 

50 A 7.2121 
0.0445 

(0.0453) 
1.77% 7.2146 

0.0445 

(0.0454) 
1.98% 

15 B 12.7355 
0.0758 

(0.0787) 
3.68% 12.7846 

0.0764 

(0.0791) 
3.41% 

7 C 14.0329 
0.1996 

(0.2135) 
6.51% 14.4040 

0.2104 

(0.2248) 
6.41% 

 
Table 4 Displacement that considers the out-of-plane stress (k=2) 

out-of-plane stress 

q(MPa) 

Rock 

example 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz (m) 

Differences 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz and Fr 

(m) 

Differences 

Major 

principal 

stress 

400 A 6.005 
0.0318 

(0.0227) 
40.09% 6.0056 

0.0318 

(0.0227) 
40.09% 

100 B 7.3173 
0.0429 

(0.0375) 
14.40% 7.3232 

0.0430 

(0.0377) 
14.06% 

20 C 9.4361 
0.0748 

(0.09078) 
17.60% 9.5068 

0.0767 

(0.09267) 
17.23% 
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Table 4 Continued 

out-of-plane stress 

q(MPa) 

Rock 

example 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz (m) 

Differences 

Radius of 

plastic zone 

R(m) 

Displacement 

considering 

σz and Fr 

(m) 

Differences 

Intermediate 

principal 

stress 

100 A 5.655 
0.0259 

(0.0227) 
14.10% 5.656 

0.0259 

(0.0227) 
14.10% 

25 B 6.328 
0.0428 

(0.0375) 
14.13% 6.333 

0.0430 

(0.0377) 
14.06% 

10 C 7.700 
0.10217 

(0.09078) 
12.55% 7.745 

0.10418 

(0.09267) 
12.42% 

Minor 

principal 

stress 

50 A 6.0107 
0.0290 

(0.0227) 
27.75% 6.0112 

0.0290 

(0.0227) 
27.75% 

15 B 8.5048 
0.0264 

(0.0375) 
29.60% 8.5151 

0.0265 

(0.0377) 
29.71% 

7 C 8.3904 
0.0673 

(0.09078) 
25.86% 8.4448 

0.0683 

(0.09267) 
26.30% 

 

 

Fig. 6 shows that for very good and average rock masses, the displacement changed slightly 

with the increase in head pressure. The effect of ha on the plastic radius was similar to the pattern 

of displacement when head pressure was involved (see Fig. 7). 

To further validate the effective of the proposed approach, comparisons between the proposed 

approach and Fenner’s solutions are carried out. The parameters of the rock example D in Sharan 

(2008) were adopted. The H-B parameters are converted to equivalent M-C parameters according 

to Hoek and Carranza-torres (2002) as f=26.87°, c=1.78 MPa. The results are shown in the Table 

2. 

It can be seen from Table 2 that the results of the proposed solutions are similar to those of 

Fenner, but the plastic zone radius and displacement of surrounding rock are larger 10.38% and 

2.65% (the maximum value, respectively) than those of Fenner in the same situation. Therefore, 

the proposed approach tends to be more safely. 

The results for different rock masses were calculated to analyze the effects of out-of-plane 

stress on the displacement and plastic radius (Table 3). Out-of-plane stress was considered the 

major, intermediate, and minor principal stresses. The results of ignoring the effects of out-of-

plane stress are shown in the parentheses of Table 3. 

The difference was calculated using |0.0447-0.0453|/0.0453×100%=1.32% in Table 3 and 

Table 4. It reveals that when out-of-plane stress was the intermediate-principal stress, 

displacement that considered seepage force and out-of-plane stress was greater than that when 

those factors were not considered. Plastic radius was also unaffected by seepage force and out-of-

plane stress. The maximum difference of displacement was less than 10% with the case of k=1 and 

the effect is more significant when the rock has poorer mass. When k=2, the difference was larger 

than 10% and the effect was just contrary to k=1. Plastic radius and displacement that considered 

seepage force and out-of-plane stress were larger than those that only considered seepage force 

when the out-of-plane stress was the major stress with the case of k=2. Displacement that 

considered seepage force and out-of-plane stress was less than that only considered seepage force 

with k=1. When the out-of-plane stress was the minor-principal stress, the plastic radius that 

considered seepage force and out-of-plane stress were larger than those that considered only 
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seepage force. Moreover, the displacement differences were not obvious with k=1 but varied 

widely when k=2. 
 

4.2 Application of design 
 

To confirm the validity of the proposed approach, the results of the proposed procedure and 

field measuring data in Baiyanshan tunnel are compared. Baiyanshan tunnel is located in Xuhuai 

expressway, started from Xupu County and ended in Huaihua County in Hunan Province of China. 

Baiyanshan tunnel has the maximum burial depth of 198 m and the length of 2390 m. The geology 

conditions of Baiyanshan tunnel which were monitored are illustrated in Fig. 8. The test 

arrangement of the sections are presented in Fig. 9. Field measuring of displacements at tunnel 

wall and crown was performed at several places during excavation through geodetic observations. 

According to the geological investigation, laboratory experiments and inverse calculation, the 

basic parameters of surrounding rock are as follows: r0=7 m, E=11 GPa, n=0.24, s0=10 MPa, sc=40 

MPa, m=2.52, s=0.0039, f=11.74°, a=0.51, h1=100m, x=1. 

 

 

 

 

(a) ZK103+500~ZK104+250 (b) ZK104+250~ZK105+000 

 

 

(c) ZK105+000~ZK105+750 (d) ZK105+750~ZK106+050 

Fig. 8 Geological location of Baiyanshan tunnel. 

 

 

Fig. 9 Section 1 of Baiyanshan tunnel and the test arrangement 
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Fig. 10 The relationship between the ground response curve and the measured data 

 

 

The formation curve of tunnel excavation is obtained by using the theoretical calculation 

method proposed in this study. The field measured data were compared with numerical simulation 

results as shown in as shown in Fig. 10. 

It can be seen from the Fig. 10 that the ground response curves obtained by considering the 

seepage force and out-of-plane stress are not really accurate compared with the measured results in 

the field, however, the relative error is small. It is of significance to the design and construction of 

tunnels. 

 

 

5. Conclusions 
 

The solutions of stress, displacement, and plastic radius for spherical and cylindrical cavity 

contractions were proposed for the first time by considering the effects of seepage force and out-

of-plane stress based on the generalized Hoek-Brown failure criterion in this study. Several 

examples were presented, and the following conclusions were obtained: 

(1) The effects of seepage force on cavity contraction problem depend largely on the parameter 

selected and it were slighter when the rock mass was of better quality. Head pressure is more 

significant for affecting the cavity contraction, particularly when the rock mass is poor. 

(2) The radial and circumferential stresses as Fr≠0 were less than that as Fr=0, especially for 

very good rock mass. However, the plastic radius and displacement were larger than those 

considering the seepage force. 

(3) In the process of solving the stresses and displacements of the tunnel in the plastic zone, it 

can be easily found that the influence of out-of-plane stress cannot be ignored as it serves as the 

major and minor principal stress when the effects of seepage force on stress and strain of a circular 

tunnel were considered. 

(4) The proposed approach can describe the change of the stress distributions in the tunnel 

opening and provide reference for the design. Furthermore, when the directions of the principal 

tectonic stresses do not coincide with the axis of the underwater tunnel, we can apply the proposed 

approach in this situation to avoid the appreciable error because of ignoring the out-of-plane stress. 

In summary, the proposed method could be utilized to obtain simple solutions for a wide 

variety of complex problems on plasticity cavity contraction in rock mechanics. 
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