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Abstract.  This study proposes a sensitivity analysis method for slope stability based on the least squares support 

vector machine (LS-SVM) to examine the influencing factors of slope stability. The method uses LS-SVM as an 

algorithm for machine learning. An appropriate training dataset is established according to the slope characteristics, 

and a testing dataset is designed orthogonally. Results of the testing data in the experiment design are calculated after 

training using the LS-SVM model. The sensitivity of the slope stability of each factor is examined via gray 

correlation analysis. The results are consistent with those of the traditional Bishop analysis and can be used as a 

reference for optimizing slope design. 
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1. Introduction 
 

The stability of a slope affects human safety and property interests; thus, stability has practical 

significance in the study of slopes (De Vita et al. 2013, Sdao et al. 2013). The main methods for 

analyzing slope stability include the finite element method and the limit equilibrium method 

(Berisavljević et al. 2015, Eid and Rabie 2016, Farah et al. 2015, Gao et al. 2013, Ozbay and 

Cabalar 2014). Among the two approaches, the limit equilibrium method is the more common 

solution. It assumes that the material is a rigid body and considers the ratio of the anti-sliding force 

to the sliding force a safety factor. By contrast, the finite element method separates the differential 

equation and finds the solution with the variational principle or weighted margin. When the 

material is assumed to be elasto-plastic, applying strength reduction obtains the safety factor. The 

aforementioned methods are based on certain assumptions and equilibrium conditions in the 

established calculation model, and the safety factor is calculated. However, these methods 

typically provide varying safety factors for the same slope because of their different prerequisites. 

The traditional analysis methods for the sensitivity of a slope stability factor are essentially based 

on the computation of change parameters, such as intensive computational expenditure and the 
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preparation of a large data set. With the development of artificial intelligence, machine learning 

algorithms, such as neural networks, the cloud computing model, and fuzzy reasoning, can be used 

to obtain the results of a testing set (Ge et al. 2013, Singh et al. 2012, Li et al. 2015). Machine 

learning algorithms provide a new approach for analyzing slope stability and have been applied to 

such task in varying degrees (Chen et al. 2011, Dehnavi et al. 2015, Mohamed et al. 2012). Neural 

networks are among the most widely used algorithms. However, they should be specified in 

advanced structures, and they tend to over-rely on the study sample. In particular, input space, 

which is a set of all possible input values, is high dimensional for practical problems. Sample data 

are only sparsely distributed in space to obtain high-quality training data. Huge amounts of data 

are required, but sample data are limited in most cases. Thus, many authors have proposed new 

algorithms to improve neural networks. The application of the aforementioned algorithms to the 

stability analysis of slopes has been conducted at different levels; among these algorithms, 

however, neural networks have been the most widely used. Support vector machines (SVMs) are 

among the most successful improvements to neural networks. For example, the least squares SVM 

(LS-SVM) can solve many disadvantages of neural networks. LS-SVM prevents neural networks 

from requiring a large training dataset for support. It is based on theory of minimum risk 

probability; hence, satisfactory prediction results can be obtained even with a small sample 

(Moraes et al. 2013, Qi et al. 2013, Zhang et al. 2014). 

Slope stability is subject to a number of factors, including height, slope, internal friction angle, 

and cohesion. These factors present uncertainties, and thus, cannot be treated equally. Different 

factors of slope stability sensitivity should be considered. Eventually, we focus on the factor with 

the strongest impact on slope stability. If the main factors cannot be accurately identified during 

slope stability evaluation, then inaccurate results will be obtained and incorrect judgments will be 

made. Therefore, slope stability evaluation is necessary for analyzing the sensitivity of slope 

stability factors. Many authors have conducted studies on this topic (Yu et al. 2008, Chen et al. 

2007, Myhra et al. 2014). With regard to the method for calculating the impact of the sensitivity of 

different factors, slope stability is influenced by the height, slope, internal friction angle, and 

cohesive force of the slope. The analysis of the sensitivity of different factors and the identification 

of the dominant factor can provide an important theoretical basis for preventing and controlling 

slope failure. ANOVA and regression analysis are two of the most commonly used methods to 

determine the relationship among different factors. These methods require the sample to fulfill the 

classical probability distribution (Chen et al. 2015, Garg et al. 2014, Moraes et al. 2013, 

Vatanpour et al. 2014). By contrast, the gray correlation distribution method is not limited by this 

requirement. Its advantages include its simple and highly accurate calculation (Liu and Hu 2013). 

In accordance with LS-SVM theory, the training LS-SVM model calculates the testing set of the 

orthogonal design. Gray correlation analysis (GCA) is then conducted to measure the sensitivity of 

different factors. The sensitivity analysis of the influencing factors of slope stability can then be 

realized. 

 

 

2. Factor sensitivity analysis theory based on LS-SVM 
 

LS-SVM, orthogonal design, and GCA are involved in factor sensitivity analysis. The proposed 

method, which is for the sensitivity analysis of the influencing factors of slope stability, uses LS-

SVM as a machine learning algorithm and builds the testing set using the orthogonal design 

method. The influence degree of each factor is measured via GCA. 
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2.1 LS-SVM algorithm 
 

The least square is regarded as an error function and can be directly solved using Eq. (1). The 

mathematical expression for the prediction problem is as follows 
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where w is the weight vector, γ is the regularization parameter, ei is the error variance, φ(∙) is the 

nonlinear mapping from input space to high-dimensional feature space, and b is the bias vector. 

The Lagrange function of the optimization problem, i.e., Eq. (1), is as follows 
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where 𝛼𝑖  is the Lagrange multiplier and 𝛼𝑖 ≠ 0. 

From the corresponding Karush–Kuhn–Tucker conditions, the following equations can be 

established 
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The equations on the right side of Eq. (3) are solved to obtain α and b. Thus, the output value of 

the new input vector can be calculated according to the following formula 
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where      ,
T

i iK x x x x   is the kernel function that maps two vectors onto a separable hyper-

variable product space. The radial basis function (RBF) is one of the most popular kernel functions 

for SVM. RBF can be described as follows 
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where σ2 is the squared bandwidth, which is optimized through an external optimization technique 

during the training process. 
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2.2 Orthogonal design principle 
 

Orthogonal design is a method for scientifically arranging and analyzing multifactor tests using 

an orthogonal table. This table is abbreviated as Ln(m
k), where n is the test time, m is the factor 

level, and k is the number of the factors. The number of occurrences of a level in each column of 

the orthogonal table is equal, and all combinations of different levels of any two columns are 

shown. Thus, the experimental points are well-ordered and uniform in the interval, in addition to 

being typical. The orthogonal design can significantly reduce the number of experiments and help 

find the rule for a system. The basic steps of the test scheme design are as follows: 
 

(1) A clear purpose for the orthogonal test is stated to clarify the objective of the experiment. 

(2) The test factors are selected to determine the parameter level. The actual problem is 

studied comprehensively, and the main factors are chosen. The numbers of factors and 

levels are determined. An appropriate orthogonal table is selected. 

(3) The experiment is conducted to obtain the results. The horizontal number in the table is 

changed to the corresponding horizontal number to obtain the experiment results of the 

orthogonal design. 
 

2.3 GCA principle 
 

GCA involves determining the influence degree of the factors on the research object by 

investigating their geometric proximity, analyzing their influence, and comparing their quantitative 

correlations to measure the correlation degree among them. 

From the determined reference matrix x0(t) and comparison matrix xi(t) (i = 1, 2,..., n; t = 1, 2,..., 

m), the combined matrix X in the analysis of the correlation degree can be obtained via 
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Matrix X becomes dimensionless, thereby resulting in 
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The normalization process of matrix X̂ is 
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The equations for solving the correlation coefficient are 
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where 0 #i  n, 1 #k  m; Dmax (Dmin) is the maximum (minimum) among all the absolute 

differences Di(k); and l is the resolution coefficient, which is generally l = 0.5. 

The correlation coefficient matrix R can be obtained from Eq. (9) as follows 
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The equation for the correlation degree is generally expressed as 
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The correlation degree of each factor can be obtained using Eq. (12). 

 

 

3. Sensitivity analysis process for the influencing factors of slope stability 
 

The sensitivity analysis of the factors that influence slope stability is typically based on actual 

situations. The variation range of each factor was provided, and we gradually changed these 

factors following certain steps before calculating the corresponding change in the safety factor 

value. We obtained each factor for slope sensitivity by comparing the relatively basic index values. 

The influencing factors of slope stability include slope geometry and material mechanics 

parameters. These parameters typically consist of bulk density, internal friction angle, cohesion, 

slope angle, and slope height. The mode of slope failure generally varies, and common modes 

include circular sliding failure and wedge failure. The dataset on the right side is established as the 

training set based on different damage patterns and then used to train the LS-SVM model. The 

complete sensitivity analysis process can be divided into the following steps (Fig. 1). 
 

(1) The possible mode of the slope failure to be analyzed is determined, and the dataset that is 

consistent with the slope failure mode is selected as the training set. 

(2) LS-SVM is trained using the training set, and the predictable LS-SVM model is 

established. 

(3) The factor number, change level, and orthogonal table design are determined according to 

the slope characteristics. 

(4) The level number of the orthogonal table is changed into the corresponding concrete level 

value according to the change interval of the influencing factors, and then the prediction 

set is built. 
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Fig. 1 Analysis process for factor sensitivity 

 

 

(5) The LS-SVM model established in the second step is used to obtain the slope safety factor 

under each level number of the prediction set. 

(6) The correlation degree of each factor is obtained through GCA, and then the influence 

degree of each sensitivity factor is determined. 

 

 

4. Application example and effect analysis 
 

4.1 Application example 
 

The following influencing factors of a slope are considered: soil sample bulk density (γ) of 

19.06 kN/m3, cohesive force (c) of 11.71 kPa, internal friction angle (Φ) of 28°, slope angle (β) of 

35°, slope height (H) of 21 m, and pore pressure coefficient () of 0.11. 

The failure mode of the slope is the circular arc mode with one planar sliding surface. We can 

construct the training dataset based on the collected dataset of the arc failure of the slope (Table 1) 

(Sakellariou and Ferentinou 2005). RBF, also called the Gaussian function, have wider 

applicability and easier parameter settings than other kernel functions. Hence, it is selected to 

implement LS-SVM. However, the performance of RBF is determined by a penalty factor () and 

a kernel parameter (). The grid search algorithm is a popular method used to obtain the optimal 

solutions for  and . Suppose  and  are initially limited within a certain range. The different 

values of the  of N and the  of M are used to form the  and  of N*M for training LS-SVM. 

The errors of the results are computed based on the  and  of N*M according to the training set. 

The  and  values that can obtain the minimum computational error are regarded as the optimal 

solutions. The penalty factor  and the kernel parameter  are determined to be 399.78 and 

91.8933, respectively, using a grid search algorithm. The mapping relationship between the input 

and output variables is established using the LS-SVM model based on the training samples in 

Table 1. The slope safety factors can be predicted using the prediction model for the established 

LS-SVM. 

In the present study, the factor number of the slope is 6 and the bit level of the identified factors 

is 5. The range of the influencing factors is [80%, 120%]. The orthogonal table L25(5
6) is selected 

and used to establish the prediction set (Table 2). After training, the LS-SVM model is used to 

calculate the safety factor of each sample across different factors (Table 2, last column). 
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Table 1 Training dataset used in the analysis 

Sample 

no. 

Input variable Output variable 

γ 

(kN/m3) 

c 

(kPa) 

Φ 

(°) 

β 

(°) 

H 

(m) 
 SF 

1 18.80 14.40 25.02 19.98 30.6 0 1.876 

2 18.77 30.01 9.99 25.02 50 0.1 1.400 

3 19.97 19.96 36 45 50 0.5 0.829 

4 22.38 10.05 35.01 45 10 0.4 0.901 

5 18.77 30.01 19.98 30 50 0.1 1.460 

6 28.40 39.16 37.98 34.98 100 0 1.989 

7 19.97 10.05 28.98 34.03 6 0.3 1.340 

8 13.97 12.00 26.01 30 88 0 1.021 

9 18.77 25.06 19.98 30 50 0.2 1.210 

10 18.83 10.35 21.29 34.03 37 0.3 1.289 

11 28.40 29.41 35.01 34.98 100 0 1.781 

12 18.77 25.06 9.99 25.02 50 0.2 1.180 

13 16.47 11.55 0 30 3.6 0 1.000 

14 20.56 16.21 26.51 30 40 0 1.250 

15 18.66 26.41 14.99 34.98 8.2 0 1.111 

16 13.97 12.00 26.01 30 88 0.5 0.626 

17 25.96 150.1 45 49.98 200 0 1.199 

18 18.46 25.06 0 30 6 0 1.090 

19 19.97 40.06 30.02 30 15 0.3 1.841 

20 20.39 24.91 13.01 22 10.6 0.4 1.400 

21 19.60 12.00 19.98 22 12.2 0.4 1.349 

22 20.96 19.96 40.01 40.02 12 0 1.841 

23 17.98 24.01 30.15 45 20 0.1 1.120 

24 20.96 45.02 25.02 49.03 12 0.3 1.529 

25 22.38 99.93 45 45 15 0.3 1.799 

26 18.77 19.96 19.98 30 50 0.3 1.000 

27 21.78 8.55 32 27.98 12.8 0.5 1.030 

28 21.47 6.90 30.02 31.01 76.8 0.4 1.009 

29 21.98 19.96 22.01 19.98 180 0.1 0.991 

30 18.80 57.47 19.98 19.98 30.6 0 2.044 

31 21.36 10.05 30.33 30 20 0 1.700 

32 18.80 14.40 25.02 19.98 30.6 0.5 1.111 

33 15.99 70.07 19.98 40.02 115 0 1.111 

34 21.98 19.96 36 45 50 0 1.021 

35 19.08 10.05 9.99 25.02 50 0.4 0.649 

36 19.08 10.05 19.98 30 50 0.4 0.649 

37 17.98 45.02 25.02 25.02 14 0.3 2.091 
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Table 1 Continued 

Sample 

no. 

Input variable Output variable 

γ 

(kN/m3) 

c 

(kPa) 

Φ 

(°) 

β 

(°) 

H 

(m) 
 SF 

38 24.96 120.0 45 53 120 0 1.301 

39 20.39 33.46 10.98 16.01 45.8 0.2 1.280 

40 17.98 4.95 30.02 19.98 8 0.3 2.049 

41 18.97 30.01 35.01 34.98 11 0.2 2.000 

42 21.98 19.96 22.01 19.98 180 0 1.120 

43 20.96 30.01 35.01 40.02 12 0.4 1.490 

44 20.96 34.96 27.99 40.02 12 0.5 1.430 

45 18.46 12.00 0 30 6 0 0.781 

46 19.97 40.06 40.01 40.02 10 0.2 2.310 

47 19.97 19.96 36 45 50 0.3 0.961 

48 18.77 19.96 9.99 25.02 50 0.3 0.970 

49 18.83 24.76 21.29 29.2 37 0.5 1.070 

50 19.03 11.70 27.99 34.98 21 0.1 1.090 

51 22.38 10.05 35.01 30 10 0 2.000 

52 18.80 15.31 30.02 25.02 10.6 0.4 1.631 

 

 
Table 2 Testing dataset established using the orthogonal design method 

Sample 

no. 

Input variable Output variable 

γ 

(kN/m3) 

c 

(kPa) 

Φ 

(°) 

β 

(°) 

H 

(m) 
 SF 

1 15.25 11.71 25.20 38.50 21.00 0.10 0.10 

2 22.87 11.71 33.60 28.00 25.20 0.12 0.12 

3 15.25 9.37 22.40 28.00 16.80 0.09 0.09 

4 17.15 14.05 33.60 42.00 21.00 0.09 0.09 

5 15.25 12.88 33.60 35.00 23.10 0.13 0.13 

6 20.97 11.71 28.00 35.00 18.90 0.09 0.09 

7 22.87 12.88 28.00 42.00 16.80 0.10 0.10 

8 20.97 9.37 25.20 42.00 25.20 0.13 0.13 

9 17.15 11.71 30.80 31.50 16.80 0.13 0.13 

10 19.06 14.05 25.20 35.00 16.80 0.12 0.12 

11 19.06 11.71 22.40 42.00 23.10 0.11 0.11 

12 15.25 14.05 28.00 31.50 25.20 0.11 0.11 

13 20.97 14.05 30.80 28.00 23.10 0.10 0.10 

14 22.87 14.05 22.40 38.50 18.90 0.13 0.13 

15 22.87 10.54 25.20 31.50 23.10 0.09 0.09 

16 20.97 10.54 33.60 38.50 16.80 0.11 0.11 
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Table 2 Continued 

Sample 

no. 

Input variable Output variable 

γ 

(kN/m3) 

c 

(kPa) 

Φ 

(°) 

β 

(°) 

H 

(m) 
 SF 

17 17.15 10.54 22.40 35.00 25.20 0.10 0.10 

18 22.87 9.37 30.80 35.00 21.00 0.11 0.11 

19 19.06 12.88 30.80 38.50 25.20 0.09 0.09 

20 15.25 10.54 30.80 42.00 18.90 0.12 0.12 

21 20.97 12.88 22.40 31.50 21.00 0.12 0.12 

22 19.06 10.54 28.00 28.00 21.00 0.13 0.13 

23 19.06 9.37 33.60 31.50 18.90 0.10 0.10 

24 17.15 9.37 28.00 38.50 23.10 0.12 0.12 

25 17.15 12.88 25.20 28.00 18.90 0.11 0.11 

 

 

 

Fig. 2 Comparison of the correlation degree between each factor and stability 
 

 

4.2 Effect analysis 
 

The sensitivity of each factor can be determined based on Table 2 using GCA. The correlation 

degree between each factor and stability can be analyzed. The results are presented in Fig. 2. 

Fig. 2 shows that the influences of friction angle and cohesive force are the most significant 

among the influencing factors. Slope height, bulk density, and pore pressure coefficient rank 

second, whereas slope angle exerts the least influence. Thus, we can identify various factors 

associated with the degree of stability using the proposed method. To test the validity of the 
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Fig. 3 Rank comparison of the four influencing 

factors and the safety factor 

Fig. 4 Correlation degree comparison of the four 

influencing factors and the safety factor 
 

 

proposed method, its calculation results are compared with those of traditional analysis methods. 

From engineering practice, four influencing factors of slope stability (i.e., internal friction angle, 

cohesion, slope angle, and bulk density) have been determined to exert considerable impact on the 

safety factor. Among traditional analysis methods, the simplified Bishop method is the most 

common. The influences of four factors, namely, internal friction angle, cohesion, slope angle, and 

bulk density, are considered in the analysis. The sensitivity of each factor is calculated using the 

simplified Bishop method. A single-factor change is adopted in the calculation process. The single 

factor ranges from 80% to 120%, whereas the other parameters remain unchanged. The safety 

factor can be calculated at each level. Then, we calculate the safety factor for each parameter. 

Subsequently, the Bishop method is used to calculate the safety factor. The difference level of each 

factor can be determined. The results are presented in Fig. 3. 

The ranks presented in Fig. 3 reflect the influences of various factors on the stability of slope 

sensitivity. This figure shows that the internal friction angle exhibits the highest sensitivity. The 

sensitivity of cohesion is higher than that of bulk density, whereas slope angle demonstrates the 

least sensitivity. Fig. 4 shows the correlation degrees of the four factors from Fig. 2. This result is 

consistent with that of the analysis based on LS-SVM (Fig. 4). Therefore, the method used in this 

study is reasonable and reliable for the sensitivity analysis of slope stability. Limit equilibrium 

methods (e.g., the Bishop method, Swedish arc, and the Fellenius method) regard soil as a rigid 

body without considering its deformation. These methods are inconsistent with respect to actual 

soil property. Limit equilibrium methods obtain the main sliding surface with significant 

uncertainty and do not consider the effect of uneven stress distribution. By contrast, LS-SVM 

exhibits a strong nonlinear mapping capability. It can perform nonlinear mapping without knowing 

the relationship among data and the specific distribution of data. LS-SVM is more reasonable than 

the Bishop method or other limit equilibrium methods in analyzing the sensitivity of the slope 

safety factor (He et al. 2003). 
 

 

5. Conclusions 
 

The stability analysis of a slope is a complex scientific problem. On the basis of previous 

research, the LS-SVM model is used to study the sensitivity of the influencing factors of slope 
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stability instead of previous neural network models and conventional limit equilibrium methods. 

The proposed approach can precisely predict the safety factor of a slope given a small dataset. The 

orthogonal design method is adopted to reduce the number of experiments, and GCA is used to 

measure the influence degree of each factor. The slope dataset of a circular sliding failure mode 

with one planar sliding surface is used for LS-SVM training. The application of the orthogonal 

design method obtains a factor test set within the change in interval influence, and the degree of 

each influencing factor is measured using GCA. We compare the analysis results with those of 

conventional analysis methods. The findings show that the proposed method can correctly obtain 

the sensitivity of the influencing factors in slope stability analysis, help distinguish between 

primary and secondary influencing factors, and provide a reliable reference for optimizing slope 

design. The proposed method does not require a huge amount of data and exhibits high efficiency. 

The sample is also not required to conform to the classical general distribution. The proposed 

method for the sensitivity analysis of slope safety factors exhibits significant advantages. 
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