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Abstract.  In this paper, with a graphical approach, a series of stability charts for homogeneous slopes with benches 

are presented based on the upper bound limit analysis theory and strength reduction technique. The objective function 

of the slope safety factor Fs is optimized by the nonlinear sequential quadratic programming, and a substantial 

number of examples are illustrated to use the stability charts for homogeneous slopes with benches driven by only the 

action of the soil weight. These charts can be applied to quick and accurate estimations of the stability status of 

homogeneous slopes with benches. Moreover, the failure modes and the formula for safety factor Fs of 

homogeneous slopes with benches are provided to illustrate the stability analysis of slopes with benches, which is 

validated by samples. 
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1. Introduction 
 

Stability charts have been studied by many researchers to quickly estimate the stability of a 

slope. Taylor (1937) developed stability charts used in the stability analysis for clay slopes, based 

on the friction circle method in which the algorithm needs iteration. Bishop and Morgenstern 

(1960), Bell (1966), Cousins (1978), Michalowski (Michalowski 2002, 2010, Michalowski and 

Martel 2011), Steward et al. (2011) and Eid (2014) improved the Taylor charts by eliminating the 

iterative steps in the calculation of safety factor Fs. Klar et al. (2011) proposed new stability charts 

for simple earth slopes without iteration, based on the limit equilibrium method as well as its 

relationship with the probability of slope instability. Sun and Zhao (2013) developed previous 

research and drew up stability charts considering pore water pressure to quickly calculate the 

safety factor Fs and determine the types of slope failure. Tang et al. (2015) put forward stability 
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charts under typical environment loads, with which the safety factor Fs and the failure mode can be 

determined quickly. 

All the charts mentioned above aim at simple slopes and focus less on slopes with benches 

normally used in engineering practice. Using the upper bound limit analysis, Gao et al. (2013, 

2014) derived formulae for overall instability and possible local instability appearing in slopes 

with benches, and discussed the influence of heterogeneity and anisotropic nature of the cohesive 

force on slope stability. Pantelidis and Psaltou (2012) used the software SLIDETM for numerous 

calculations and gave a series of stability tables for calculating the stability factor as well as for 

judging the local instability of slopes with benches under conditions such as those prevailing in 

some typical slope geometry and groundwater. Because of the nature of the iterative process for 

calculating the stability factor, these stability tables could not give rapid assessment of the typical 

slopes with benches used in engineering practice for calculating the safety factor Fs. 

This paper aims at presenting a series of stability charts for slopes with benches, based on the 

graphical approach proposed by Klar et al. (2011). This paper also extends the work of Pantelidis 

and Psaltou (2012) by presenting stability charts of slope with beaches. Compared with the 

previous methods, one of the advantages of the present method is the slope safety factor can been 

obtained indirectly without iterative calculation. The logarithmic spiral rotational failure mode for 

homogeneous slopes with benches is adopted based on the upper bound limit analysis (Chen 1975, 

Dawson et al. 1999, Baker 2006, Zhao et al. 2010, 2015, 2016). By using the shear strength 

reduction technique, this paper derives the formula for the safety factor Fs of homogeneous slopes 

with benches. It also gives stability charts for homogeneous slopes with benches, which can help 

us to perform rapid assessment of the safety factor of homogeneous slopes with benches driven by 

only the action of the soil weight. The results are expected to provide reasonable references for the 

primary design of slopes with benches in engineering and for rapid evaluation of slope stability. 
 

 

2. Stability analysis for slopes with benches 
 

In this paper, the slope stability analysis of homogeneous slopes with benches is conducted 

based on the upper bound limit analysis and shear strength reduction technique. The strength 

reduction technique is widely used in the analysis of stability safety factor Fs, based on the linear 

Mohr-Coulomb (M-C) failure criterion (Zienkiewicz et al. 1975, Duncan 1996, Griffiths and Lane 

1999 and Steward et al. 2011). It is assumed that the shear strength of the geo-material is factored 

by the safety factor Fs, and when the slope reaches the critical state, the slope failure occurs 

exactly. At this state, the sliding mass performs rigid rotation around the center of rotation and the 

geo-materials of the slope conform to the associated flow rule. The safety factor Fs above is 

generally defined as follows 

tan

tan
s

m m

c
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c




 

 

(1) 

 

where c and φ are the original shear strength parameters, and cm and φm are the reduced ones. 
 

2.1 Failure mode of slopes with benches 
 

The experimental results of a large number of scaled models for homogeneous and isotropic 

slopes show that failure surfaces of homogeneous slopes are closer to logarithmic spiral sliding 
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Fig. 1 Logarithmic spiral sliding plane for slopes with benches 

 

 

surface, as shown in Fig. 1. The rigid body BPNMKIGFEDCA performs rigid rotation around the 

center O, and under the logarithmic spiral surface BC', which is a thin layer whose thickness can 

be ignored, the soil body is stationary. There are n-1 benches on the slope and their widths (D1 ‒ 

Dn-1) are marked in Fig. 1 in the order from top to bottom. There are n-4 benches omitted between 

the bench EF and KM, whose widths are Di. In particular, Dn is the distance from slope toe N to 

point P which can be determined after optimization of the failure surface BP. 
 

2.2 Overall stability analysis for slopes with benches 
 

According to the upper bound limit analysis, the rate of work created by slope external loading 

is made equal to the internal energy dissipation rate of the rock and soil mass on the basis of the 

principle of minimum stream power, and the energy dissipation equilibrium equation is established. 

The rate of internal energy dissipation refers to the energy dissipation occurring at the logarithmic 

spiral intersection surface. The external power in this paper refers only to the one created by 

sliding mass weight. 

In the rotational failure analysis for a slope with benches, the factored shear strength 

parameters can be introduced into the external forces work equation and the internal energy 

dissipation equation. 

According to the principle of analysis of energy consumption, the rate of work created by 

external loading is made equal to the internal energy dissipation rate for a slope with factored 

shear strength parameters cm and φm, and then an expression of upper bound safety factor Fs of 

slopes with benches can be given 
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where H is the critical height of slope; γ is the unit weight of geo-materials; H/r0 and functions f1 to 

f2n+2 are functions of  θh, θ0, α, β0……βn, α0……αn, β′ and φ, whose expressions are given in the 

Appendix I. The difference between functions f'1 to f'2n+2 and functions f1 to f2n+2 is that in functions 

f1 to f2n+2 φ is replaced by φm = arctan (tan φ/Fs). 
 

2.3 Local stability analysis for slopes with benches 
 

Sometimes overall instability does not always appear in steep slopes with benches, while local 

instability occurs instead because only a part of the sub-slope reaches the limit state. 

It is compared with the safety factor Fs of overall instability that the local stability can be 

calculated by referring to formula (2), with the corresponding adjustment of geometrical 

parameters. Taking an example of a slope with three benches, which is typical in engineering 

practice, the possible local failure modes are shown in Fig. 2, as well as the latent sliding plane. 

The critical latent slip surface is determined as the one with the smallest safety factor Fs by 

random searching and analyzing multiple possible sliding surfaces. 
 

 

 

Fig. 2 Possible local failure modes for slopes with three benches (Gao et al. 2014) 
 

 

 

Fig. 3 Comparison of sliding surfaces for overall instability in examples 
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Table 1 Comparison for safety factor Fs with overall instability in slopes with three benches 

E
x

am
p

le
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/° 

γ 

/kN·m-3 
α1 α2 α3 

β1 

/° 

β2 

/° 

β3 

/° 

H 

/m 

D 

/m 

Safety factor Fs 

Sweden 

Slide 

method 

Simplified 

Bishop 

method 

Janbu 

method 

This 

paper 

1 28 25 18.5 1/3 1/3 1/3 45 45 45 24 3 1.282 1.343 1.353 1.217 

2 30 20 17.85 2/7 3/7 2/7 30 45 60 28 3 1.068 1.099 1.105 1.028 

 

 

Table 2 Comparison of safety factors Fs for local instability 

Method Failure mode 
Example 

1 2 3 

This paper 
Local instability of two benches 1.266 1.465  

Local instability of single bench   1.268 

Simplified 

Bishop method 

Local instability of two benches 1.358 1.506  

Local instability of single bench   1.298 

Janbu method 
Local instability of two benches 1.378 1.516  

Local instability of single bench   1.330 

 

 

 

Fig. 4 Comparison of sliding surfaces for local instability 

* Example 1: The height of the slope with three benches (H) is 30 m. The depth coefficient for each bench 

(a1 = a2 = a3) is 1/3. The angle of the toe of the benches is β1 = 60°, β2 = 45°, and β3 = 30°. 

The angle of the top of the slope (α) is 0°. The width of the benches is D1 = D2 = 4 m. 

The parameters of the soil body are γ = 18.5 kN/m3, c = 30 kPa, and φ = 25°. 

* Example 2: H = 30 m. a1 = a2 = a3 = 1/3, β1 = 55°, β2 = β3 = 30°, α = 0°, D1 = 2 m, D2 = 4 m, γ = 20 kN/m3, 

c = 20 kPa, and φ = 30°. 

* Example 3: H = 30 m, a1 = a2 = a3 = 1/3, β1 = 70°, β2 = β3 = 30°, α = 0°, D1 = 3 m, D2 = 5 m, γ = 17.8 

kN/m3, c = 25 kPa, and φ = 38°. 

 

 

2.4 Nonlinear programming method 
 

In Eq. (2), β0……βn, α0……αn, γ and H are known parameters, and the strength reduction 

indexes (cm, φm) are related to the original shear strength parameters (c and φ). The strength 

reduction technique can be expressed as that: Given known slope conditions (β0……βn, α0……αn, 

γ, H), the slope is at a limit equilibrium status when the shear strength indexes (c and φ) are 

reduced to a condition (cm, φm) such that the critical height is equal to the actual original height (H 

= Hcr). Then, the safety factor Fs can be found by solving the following equations 
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In Eq. (2), the unknown variable are θh, θ0, β' and Fs. The solution of Eq. (2) can be obtained 

through optimization, which yields both the Fs values and the position of the potential sliding 

surface. An optimization procedure utilizing a sequential quadratic programming algorithm is used 

to obtain the minimum Fs in this paper (Tang et al. 2015). The slope stability analysis program 

which is based on the upper bound theorem of limit analysis has been developed by applying a 

nonlinear sequential quadratic programming algorithm and using the method of exhaustion to 

avoid sticking at local optima. 
 

2.5 Comparison and analysis 
 

To prove the correctness of formulas derived in this paper, slopes with three benches are 

considered as examples to analyze the slopes for overall and local stability, which are typical in 

engineering practice. 
 

2.5.1 Overall stability analysis 
Results comparison of examples with that of existing methods are shown in Table 1 and Fig. 3. 

It reveals that the slope safety factor Fs based on both upper bound limit analysis and shear 

strength reduction technique is slightly smaller than those based on other methods, thus it proves 

the accuracy and validity of the method adopted in this paper. 
 

2.5.2 Local stability analysis 
The literature (Gao et al. 2014) reveals that two main types of local instability are possible for 

slopes with three benches, including local instability for two benches (as sliding surfaces ①② 

shown in Fig. 2) and local instability for single bench (as sliding ④⑤⑥ surfaces shown in Fig. 

2). The results of local stability analysis of three slope examples with benches are shown in Table 

2 and Fig. 4. 

The results show that the slope safety factor obtained by the methods adopted by this paper is 

slightly smaller than those obtained by the other two methods, indicating that the formula 

proposed in this paper is accurate and valid. 
 

 

3. Graphical approach for homogeneous slopes 
 

3.1 Dimensionless parameters 
 

Stability charts for homogeneous slopes can be used to quickly analyze slope safety factor Fs. 

In order to simplify this type of charts, Taylor (1948), Das and Sobhan (2013), Klar et al. (2011), 

Sun and Zhao (2013), and Duncan and Wright (1980) introduced three dimensionless parameters: 

λcφ, tanφ and N. The value of λcφ controls the location of the potential sliding surface of 

homogeneous slopes which means slopes with the same value of λcφ have the same critical slip 
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surface. A higher value of λcφ means that the critical slip surface is nearer to the slope surface. A 

slope with a certain combination of N, tanφ and β has the only safety factor Fs (Jiang and 

Yamagami 2006, 2008). 
 

c
N

H


 
(5) 

 

tan (tan / ) tan

/

f s

c

f s
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c c F c
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(6) 

 

3.2 Graphical approach for safety factor Fs 
 

Klar et al. (2011) and Sun and Zhao (2013) put forward a graphical approach based on the limit 

equilibrium method to quickly determine the safety factor Fs of homogeneous slope (as shown in 

Fig. 5). The curve g shows the relationship between tanφ and c/γH when the slope is at a state of 

limit equilibrium. A homogeneous slope with a (c/γH, tanφ) combination positioned on curve g is 

at a state of critical instability, while a combination positioned above the curve g is stable. The 

gradient of line OA is equal to λcφ, and the slopes with the (c/γH, tanφ) combination on the same 

line OA refer to the same slope failure surface (Jiang and Yamagami 2006, 2008). According to the 

geometric relation between the curve g and line OA, Klar et al. (2011) and Sun and Zhao (2013) 

proposed a method for rapid calculation of slope safety factor Fs 
 

1

2

1

2
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x y
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(7) 

 

In the above formula, a is the length of line OA, b is the distance between origin and (x2, y2). x1, 

y1, x2, and y2 are abscissas and ordinates of point A and the intersection point of OA and curve g, 

respectively. The value of Fs determined by formula (7) equals the value of Fs determined by the 

shear strength reduction technique in formula (1). 
 

 

 

Fig. 5 Graphic approach to determining homogeneous simple slope safety factor Fs (Klar et al. 2011, 

Sun and Zhao 2013) 
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Fig. 6 Stability chart for homogeneous slopes with two benches 

 

 

3.3 Stability analysis with graphical approach for homogeneous slopes with benches 

 

Referring to the study of Klar et al. (2011) and Sun and Zhao (2013), there is a simple 

deduction for slopes with regular geometric surface which are typical in engineering practice, that 

the location of the sliding surface under the condition of overall instability relates only to the 

dimensionless parameter λcφ, and there exists the same relationship, i.e., curve g, between another 

dimensionless parameter c/γH and tanφ. Once curve g and line OA for slopes with benches are 

drawn up, the safety factor Fs can be calculated quickly according to formula (5). 

Suppose there is a soil slope with two benches (H = 12 m, a1 = a2 = 0.5, β1 = β2 = 60°, α = 0°, D 

= 4 m, γ = 20 kN/m3, c = 50 kPa, and φ = 20°). According to the upper bound theorem of limit 

analysis, the slope safety factor Fs is calculated by the method of sequential quadratic 

programming, and the result is Fs = 1.6460. 

The corresponding curve g and line OA are then drawn. The coordinates of A and B are (0.2083, 

0.3640) and (0.1266, 0.2213), respectively. According to formula (5), the slope safety factor Fs is 

0.2083/0.1266 = 1.6453 and Fs = 0.3640/0.2213 = 1.6448, which are similar. 

 

 

4. Stability charts for homogeneous slopes with benches 
 

4.1 Stability charts for simple slopes 

 

The objective function of the safety factor Fs of a homogeneous slope with benches is 

optimized by the nonlinear sequential quadratic programming. 

The stability charts (as shown in Fig. A1 in Appendix II) are drawn for simple homogeneous 

slopes (the angles are 30°, 45°, 60°, 75° and 90°). 

To calculate the safety factor Fs of a certain slope, both curve g and line OA are necessary. 

Curve g can be chosen only by angle β, and line OA can be determined according to the physical 
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parameters of the soil and the total height of the slope. Thus, slope stability can be quickly 

assessed with the charts given in this paper. 
 

4.2 Stability charts for homogeneous slopes with benches 

 

Design charts are presented below for homogeneous slopes with benches commonly used in 

practice, for the slope angles of 30°, 45°, 60° and 75°; The width of the bench is 2 m, 3 m, or 4 m. 

The safety factor Fs for homogeneous bench slopes with other parameters can be calculated simply 

by interpolation. 

To develop stability charts for homogeneous slopes with two to five benches, a large number of 

cases were analyzed using the nonlinear programming. Only considering the normal condition for 

homogeneous slopes with two to five benches under self-weight, the stability charts regardless of 

the exterior conditions were obtained as shown in Figs. A2-A5 in Appendix II. It should be noted 

that H = 2.5 h means a1/a3 = 0.5 and a2 = a3, and H = 3h means a1 = a2 = a3 in Fig. A3; H = 3.5 h 

means a1/a4 = 0.5 and a2 = a3 = a4, and H = 4h means a1 = a2 = a3 = a4 in Fig. A4; H = 4.5 h means 

a1/a5 = 0.5 and a2 = a3 = a4 = a5, and H = 5 h means a1 = a2 = a3 = a4 = a5 in Fig. A5. 

It can be observed from Figs. A2 to A5 in Appendix II that curve g is steeper when the slope 

angle β increases. When the other parameters of multi-stage slopes under simple conditions (e.g., 

the mechanical parameters c, γ, and φ and geometric parameters βi and H) are determined, the 

width of the bench D and the depth coefficient αi make little difference to the slope safety factor Fs. 

For the stability assessment of a certain homogeneous slope with benches, charts should be 

applied appropriately according to the geometry of a slope, especially the depth coefficients and 

the width of the benches. To simplify the description of slope geometry, a slope with a depth 

coefficient of a1/a2 = 0.5 is presented as the ratio of the total height H to the height of the last stage 

h (H = 1.5 h), while H = 3 h means a1 = a2 = a3. The same method is applied to the rest of the cases. 

This paper presents stability charts for homogeneous slopes with bench widths of 2 m, 3 m, and 4 

m and different angles (30°, 45°, 60°, 75° and 90°). The charts have c/γH and tanφ on the axes, 

avoiding the influence of single parameters such as slope total height H, cohesion c, and unit 

weight of soil γ. 
 

 

5. Examples 
 

5.1 Case 1 (H = 4 h, D = 4 m) 
 

A homogeneous slope with four benches of height 28 m and constant toe angle 45° is used to 

illustrate the application of stability charts presented with depth coefficients of a1 = a2 = a3 = a4 (H 

= 4 h) and bench width of 4 m. The physical parameters of the soil are γ = 20 kN/m3, c = 50 kPa 

and φ = 28°. Hence, c/γH = 50/(20×28) = 0.09 and tanφ = 0.53. 

It can be determined from Fig. A4(f)) in Appendix II that x for the intersection point is 0.06 

(0.0617), and the safety factor Fs can thus be computed by formula (5) for Fs = 0.09/0.06 = 1.50. It 

can be seen that the safety factor Fs presented in the stability chart is slightly less than the value 

1.56 calculated using programming, which verifies the validity of the charts. 
 

5.2 Case 2 (H = 1.8 h, D = 3 m) 
 

A homogeneous slope with two benches having height 18 m, depth coefficient of a1/a2 = 0.8, 

constant toe angle 30° and bench width of 3 m is used to examine the application of stability charts. 
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The following soil characteristics were considered: γ = 17.8 kN/m3, c = 20 kPa and φ = 15°. Based 

on the above data, c/γH = 0.06 and tanφ = 0.27 can be obtained. 

The ordinates of the intersection point can be found equal to 0.24 (0.2406) and 0.24 (0.2419) 

from Fig. A2(b) and (e) respectively in Appendix II. Accordingly, both of the safety factors Fs are 

calculated as 1.13 by formula (5). So the charts are valid because the safety factor Fs obtained in 

this paper is slightly less than that of 1.14 calculated by programming. 
 

5.3 Case 3 (H = 3 h, D = 2.5 m) 
 

Consider a homogeneous slope with three benches as an example, with height 18 m (a1 = a2 = 

a3), constant toe angle 60°, bench width 2.5 m and three soil parameters: γ = 15 kN/m3, c = 35 kPa 

and φ = 25°. Hence, the values of c/γH and tanφ are computed as 0.13 and 0.47, respectively. 

The y-coordinates of the intersection can be determined as 0.35 (0.3547) and 0.35 (0.3534) 

from Fig. A3(d) and (e) respectively in Appendix II. The safety factors Fs are the same value 1.34, 

which can be computed by formula (5). The charts in this paper can obtain less safety factor Fs 

than the programming (1.37), proving that the charts is accurate again. 
 

5.4 Case 4 (H = 2.7 h, D = 3.3 m) 
 

To further demonstrate the application of stability charts, another homogeneous slope with 

three benches is adopted, which is characterized by height 27 m (with depth coefficients of a1/a2 = 

0.7 and a2 = a3), constant toe angle 45° and bench width 3.3 m, and whose physical parameters are 

γ = 18.5 kN/m
3
, c = 40 kPa and φ = 25°. Therefore, the dimensionless parameters c/γH = 0.08 and 

tanφ = 0.47 are computed. 

It can be found from Figs. A3(b) and (c) in Appendix II that the vertical ordinates for the 

intersection point is 0.36 (0.3646) and 0.34 (0.3449), respectively. The safety factors Fs can thus be 

computed by formula (5) for 1.31 and 1.38. Therefore, the safety factor Fs for the case of (H = 2.5 

h, D = 3.3 m) can be obtained as 1.33 through interpolation calculation. At the same time, the 

safety factor Fs for the case of (H = 3 h, D =3.3 m) can be calculated from Figs. A3(e) and (f) in 

Appendix II as 1.33. Thus, the safety factor Fs for the case of (H = 2.7 h, D = 3.3 m) can be 

obtained as 1.33 by interpolation calculation and is slightly less than the value 1.34 calculated 

using nonlinear programming, verifying the validity of the charts. 
 

 

6. Conclusions 
 

The objective function of the safety factor Fs of the overall stability for homogeneous slopes 

with benches was implemented. 
 

 This paper gives stability charts on the basis of the shear strength reduction technique under 

simple condition where the safety factors Fs of homogeneous slopes with benches can be 

quickly calculated. It can be used in engineering practice for the primary design, checking 

the software results, and quick stability assessment of slopes with benches. 

 On the one hand, when other parameters of slopes with benches under simple conditions are 

determined, the width of the bench D and the depth coefficient αi make little difference to 

the slope safety factors Fs. On the other hand, increasing the number of slope benches and 

reducing the depth coefficient are useful for reducing the lateral pressure of the slopes and 
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construction difficulty and enhancing the slope stability. This is of great importance in the 

case of slopes with high fill and deep excavation. 
 

The slope stability analysis in this paper, which was based on homogeneous slopes with 

benches, can be further developed to obtain stability charts under other environmental loads, such 

as the surcharge load, seismic load and pour water pressure. There is scope to further discuss and 

improve the application of stability charts for slopes with benches in engineering practice. 
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Stability analysis of homogeneous slopes with benches 
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Fig. A1 Stability charts for simple slopes 
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Stability analysis of homogeneous slopes with benches 

  

(a) H = 1.5 h, D = 2 m (b) H = 1.5 h, D = 3 m 

 

 

 

 

(c) H = 1.5 h, D = 4 m (d) H = 2 h, D = 2 m 

 

 

 

 

(e) H = 2 h, D = 3 m (f) H = 2 h, D = 4 m 

Fig. A2 Design charts for slopes with two benches under the simple condition 
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(a) H = 2.5 h, D = 2 m (b) H = 2.5 h, D = 3 m 

 

 

 

 

(c) H = 2.5 h, D = 4 m (d) H = 3 h, D = 2 m 

 

 

 

 

(e) H = 3 h, D = 3 m (f) H = 3 h, D = 4 m 

Fig. A3 Design charts for slopes with three benches under the simple condition 
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Stability analysis of homogeneous slopes with benches 

  

(a) H = 4.5 h, D = 2 m (b) H = 4.5 h, D = 3 m 

 

 

 

 

(c) H = 4.5 h, D = 4 m (d) H = 5 h, D = 2 m 

 

 

 

 

(e) H = 5 h, D = 3 m (f) H = 5 h, D = 4 m 

Fig. A4 Design charts for slopes with five benches under the simple condition 
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