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Abstract.    This study aimed to develop upper and lower bounds to predict the tunnel support pressure under the 
pile tip during the circular tunnel excavation. Most previous studies on the upper and lower bound methods were 
carried out for the single ground structures, e.g., retaining wall, foundation, ground anchor and tunnel, in the 
homogeneous ground conditions, since the pile-soil-tunnel interaction problem is very complicated and sophisticated 
to solve using those bound methods. Therefore, in the lower bound approach two appropriate stress fields were 
proposed for single pile and tunnel respectively, and then they were superimposed. In addition, based on the 
superimposition several failure mechanisms were proposed for the upper bound solution. Finally, these upper bound 
mechanisms were examined by shear strain data from the laboratory model test and numerical analysis using finite 
element method. 
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1. Introduction 
 

One procedure for developing the possible failure mechanism for a tunnelling pressure problem 
is to consider the stress discontinuities adopted for a “lower bound” approach and to couple these 
with the slip characteristic directions in the zones between the stress discontinuities. If the best 
lower bound solution and the best upper bound mechanistic solution correspond and provide an 
identical answer, this solution is acceptable as satisfying both equilibrium and kinematic 
compatibility and does not violate failure criterion. In contrast to the above tunnel pressure most 
previous studies focused on the ground movements, surface settlements and tunnel behaviour 
associated with the tunnelling operations so far (Goh and Hefney 2010, Wang et al. 2010, Do et al. 
2014, Mazek 2014). 

In relation to the upper and lower bound methods several previous studies were carried out for 
the single ground structures only, e.g., retaining wall, foundation, ground anchor and tunnel etc., in 
the homogeneous ground conditions (Chen 1975, Atkinson and Potts 1977, Davis et al. 1980, 
Atkinson 1981, Leca and Dormieux 1990, Kame et al. 2012). In addition, Sloan and Assadi (1993) 
carried out stability analysis of shallow tunnels in soft ground using the finite element formulation 
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of those two bound methods. Recently, basic bound solution concepts for  soil were introduced 
to assess the ultimate bearing capacity of an embedded wall by Lee (2006). Subsequently, Lee 
(2007) has done assessment of tunnel collapse load by upper and lower bound approaches with FE 
analysis. Recently, collapse mechanism of deep tunnel considering effects of seepage forces in 
layered soil was derived using a new curved failure mechanism based on the framework of upper 
bound theorem (Yang and Yan 2015). 

Bound calculations are relevant to homogeneous, isotropic materials as plastic failure is 
developed. Lower bounds are based on equilibrium across assumed “stress discontinuities” and 
Mohr’s circle is used to determine the stress changes. Upper bounds incorporate a complete 
kinematically admissible rupture mechanism. The best answers are obtained when the rupture 
mechanisms and the stress discontinuity pattern are common (Lee 2004). 

In this paper, the author presents several upper bound mechanisms together with a lower bound 
solution to obtain the tunnel support pressure, P0 for the pile-soil-tunnel interaction, as shown in 
Fig. 1. From Fig. 1 a row of loaded piles are assumed to be wall for the plane-strain condition, and 
soil is considered as frictional dry material, i.e., no cohesion (c = 0). Obviously, there is an 
interactive zone between the pile tip and the tunnel crown. 

The author used the deformation patterns, the shear strain contours and the principal strain and 
stress directions from the physical model tests and FEA data to assist in his choice of stress fields 
for lower bound solution and for possible kinematically admissible mechanisms with which to 
develop the upper bound solutions. 

In this paper, first of all an assumed stress field in the lower bound is proposed for single pile 
and tunnel respectively, and then together with two stress fields they are superimposed to obtain 
the lower bound solution for the pile-tunnel interaction problem. In addition, based on the 
superimposed stress field a number of appropriate mechanisms can be derived for the upper bound 
solution. Finally, tunnel pressures from these upper bound mechanisms are compared to the lower 
bound solution. In terms of theory the best (or reasonable) upper bound solution should be close to 
the lower bound solution. Subsequently, shear strain data from the laboratory model test using the 
close range photogrammetry and numerical analysis using finite element method are also 
compared with the best upper bound mechanism. 

 
 

Fig. 1 Tunnelling position below the pile tip for plane-strain condition 
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2. Basic bound solution concepts for ϕ′ material 
 

2.1 Lower bound 
 
For the author’s tests on a granular material, the control is the critical state friction angle, cs 

shown by the limiting stress envelope in Fig. 2(a). Where, S (= (σ1 + σ3) / 2) is effective mean 
normal stress and t (= (σ1  σ3) / 2) is shear stress. A stress discontinuity will separate two stress 
states with one common plane across which equilibrium is maintained resulting in a common 
stress state point C, as shown in Fig. 2(b).  is defined as the angle of mobilised friction on this 
common plane or discontinuity. The change in principal stress direction across the discontinuity is 
B ‒ A =  as also shown in Fig. 2(b). In Fig. 2(c), the line  cuts circle OA at C1 and circle OB at 
C2 by geometry. OB ‒ C2 is parallel to OA ‒ C1, therefore  XOBC2 is equal to 2A (i.e.,  OBOAC1). 
As  XOBC1 is 2B then  C1OBC2 = 2B ‒ 2A = 2. If OBD is set at 90 to OC1C2 then  C1OBD 
=  C2OBD = . OBD can be expressed in terms of SB and  and of tB and  

 
 cossin BBB tSDO   (1)

 
 

(a) Mohr circle of stress with a limiting envelope 
for ϕ  material 

(b) Two stress states with discontinuity and a 
common point (C) 

 

(c) Relationship between  and  in Mohr circles 

Fig. 2 A limiting stress envelope; discontinuity; common point (C); ; and  in association 
with Mohr circles 
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Thus,  can be determined as below 
 

 cossinsin   (2)
 

From the angles  OBC2C1 (i.e.,  P = 90 ‒ ) and  as shown in Fig. 3(a), they give  
OBOAC1 = P +  and  OAOBC1 = P ‒ . Therefore, 2A = P +  = 90 +  ‒  and 2B = 180 ‒ 
(P ‒ ) = 90 +  + . These angles (i.e., A and B) can be rewritten as below 
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The geometry associated with both A and B angles above, is shown in Fig. 3(b). The distance 
between OA – OB represents the change in SA to SB, as shown in Fig. 3(c). The stress ratios, i.e., 
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as P = 90 ‒ , the above Eq. (5) can be rewritten as below 
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if SB ‒ SA = S, we can obtain Eq. (7) as below 
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For very small changes in  across a discontinuity such as   0; cos  1; sin  d  
0; 2sin  2d ;   , the above Eq. (7) can be rewritten as below 
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for a whole sequence of small angle changes the discontinuities will form a fan. This will change 
the principal stress direction,  provided 
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(a) Calculation of A and B based on  and  (b) Discontinuity with 1 directions 
 

(c) Geometry of SA and SB with tA and tB 

Fig. 3 1 directions associated with  and  and geometry of stress ratio (t and S) 
 
 

giving Eq. (10) below 

A

B

S

S



  tan2exp  (10)

 
In order to be able to draw acceptable fields based on straight lines rather than the log spiral 

above, the author chose to generate stress characteristic lines ( and ), based on a  of 15 and 

for a  of 26. These were chosen to provide simple whole angles when using 
2


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reason should be clear in Table 1 below. The mobilised friction angle () and the angles of major 
principal stress (1) direction (A and B) were calculated, giving the values of ; A and B as 

shown and from Eq. (6) the stress ratio change should be .3.1
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Table 1 Parameters for stress characteristic lines 
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(a) Stress characteristic lines with  = 26 
and  = 15 

(b) Mohr circles with stress discontinuity 
() for E and F 

Fig. 4 Stress characteristic lines related to Mohr circles 
 
 
Both  (positive, blue line) and  (negative, red line) stress discontinuity planes for a 

succession of zones are shown in Fig. 4(a). The  (dotted red line) stress discontinuity (between E 
and F) cuts Mohr circles E and F at point C, as shown in Fig. 4(b). 

 
2.2 Upper bound 
 
To obtain the upper bound solution in this study, four key assumptions are summarised as 

below: 
 

(1) The material is permeable and drains. The water is, therefore, not involved in any 
displacements. In the author’s case, the whole experiment is dry. 

(2) The granular soil dilates at failure on the “obliquity ( or )” planes, as shown in Fig. 
5(a). The corner of the element moves from the point a to a as the shear occurs giving rise 
to the angle of dilation, . To maintain coincidence of principal axes (i.e., 1 and 1 
directions are the same), normality is assumed for the material behaviour resulting in the 
angle of  being equal to , as shown in Fig. 5(b). This assumption is known to be 
incorrect for granular material. No soil has ever been known to dilate at more than 22 to 
25 whereas  is usually much greater than 30. However, in an upper bound approach 
any assumption made will only influence the accuracy. It is known that if the mechanism 
chosen is closely associated with the best stress field, the error will be minimised. The 
author’s assumption of  = 15 and the approach above provides an acceptable upper 
bound. 

(3) Upper bounds involve an assessment of internal work for the virtual work 
calculation. This involves work done on the shear plane. The relationship between the 
normal force, N and the shear force, T, is associated by  giving a resultant force, R, as 
shown in Fig. 5(c). The dilation,  away from the line of the shear plane means the 
movement shown in Fig. 5(d). If  =  then the resulting force, R and the displacement 
are at right angles to each other (see Fig. 5(e)). Hence, no internal work is done by R. This 
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means that no internal work is done on failure or shear planes. This is obviously an 
extreme situation, but the result is of course considerable displacements of the external 
forces which form the remaining component of the virtual work balance. The large 
movement of the displaced resulting forces compensates for the elimination of internal 
work. 

(4) In relation to the rupture fan mechanism, the ruptures are formed of two sets governed by 
the zero extension line directions (see Fig. 6(a)). These are separated by the angle of 90 + 
. The rupture plane o-a-b-n is a smooth curve through the fan field for a small angle 
change (i.e., ) in the fan. The  rupture will curve through the same angle. As the plane 
a-b must be at 90 +  to the radius b-P, for a small angle of  the radius P-b becomes R 
+ R and the length a-x is Rd. Therefore 
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(d) Movement direction with  (e) Relation between R and displacement 

Fig. 5 Fundamental requirements for  material in the upper bound 
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
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and then integrating below Eq. (12) 
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The radius changes can be expressed as Eq. (13) 
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If  is equal to , the equation of a log spiral can be expressed as 
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(a) Zero extension line directions (b) Logarithmic spiral fan system 
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(c) Displacement diagram for a log spiral fan mechanism (d) Identical displacement diagram of log spiral

Fig. 6 Physical logarithmic spiral fan mechanism for  material in the upper bound 
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where  is a full fan angle (see Fig. 6(b)). 
If  is equal to 0 (i.e., no dilation; no volume change; undrained conditions), the radius ratio, 

RA/RB is equal to 1. This means that the shape is a circle as shown in Fig. 6(a). Fig. 6(c) shows the 
displacement diagram associated with the physical failure fan in relation to Fig. 6(b). If  is very 
small (i.e.,   0), the displacement diagram will be an identical type of log spiral, as shown in 
Fig. 6(d). 
 
 
3. Stress fields for single pile and tunnel 
 

3.1 Single pile 
 
As an alternative, in order to satisfy  = 15 (change of σ1 rotation from high stress zone to 

low stress zone),  of the single stress fan from the stress zone A to B is set to 189 ( = 189) 
and the length of embedded pile is set to 370 mm from the ground surface with its width of 25 mm 
(Fig. 7). It is noted that the interface friction angle between the pile and surrounding soil was 
assumed to be w = 13. The stress situation in zone A against the side of the pile is as described 
by the Mohr circle of stress, as shown in Fig. 8. This gives rise to a principal stress direction at 9 
as shown. From zone B below the pile 1 therefore rotates 189. The author has drawn  = 15 
zones from 0 to 180 and a single 9 zone to the side friction area B. The extended stress 
characteristic lines from Fig. 7 are shown in Fig. 9. These will be used with the tunnel 
characteristic lines for the pile-soil-tunnel interaction later (see Section 4). 

 
 

 

Fig. 7 Stress fan with logarithmic spiral fan, =189 
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Fig. 8 Mohr’s circle of stress in the low stress zone A at the pile side 
 
 

 

Fig. 9 Postulated  and  stress characteristic lines with 1 directions for the pile-soil-tunnel interaction 
 
 

O
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A
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A: Lowest stress zone;
B: Highest stress zone
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Fig. 10 Stress characteristic lines in association with  = 26 and  = 15 for the tunnel 
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3.2 Tunnel 
 
Fig. 10 shows the two stress discontinuities  (+, blue) and  (-, red) for a material with  = 

26 and  = 15. The tunnel diameter (d0) is set to 100 mm. Mohr’s circles of stress for typical 
zones A and B are shown in Fig. 11. The two discontinuity lines together with the major principal 
stress directions are shown. The fully developed diagram of discontinuities around the tunnel is 
drawn to scale in Fig. 12. The resulting circumferential arrangement of principal stress 1 
directions was as observed in both the model test and the FEA data (Lee 2004). 

 
 

 

Fig. 11 Mohr circles with stress characteristic lines in the zone A 
 
 

Fig. 12 Postulated  and  stress characteristic lines with 1 directions for the tunnel 
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4. Pile-soil-tunnel interaction 
 

4.1 Introduction 
 
It might appear unusual to consider the established classic upper and lower bound approach for 

the pile-soil-tunnel interaction situation at this late stage. The problem is a complex interactive one 
and the availability of both the numerical and the model strain data provided key insights into the 
possible locations of stress discontinuities and into the potential shapes of failure mechanisms and 
the resulting rotations of the principal stress directions. 

The author had adopted the technique of superimposing the two independent 15 slip line fields 
onto each other identifying the area in which coincidence of principal stress directions occurs, then 
taking the relevant  slip line characteristics from the pile tip to the coincidental area from the 
single pile and then on from there to the tunnel invert area using the independent tunnel case. The 
number of stress drops along the key characteristics provided a lower bound relationship between 
the pile tip and the tunnel wall. Combining this key  characteristic with the isotropic zone and a 
similar key  characteristic to the tunnel crown, a possible mechanism of soil blocks was 
developed and assuming a fully associated flow rule an upper bound assessment was then made. 

 
4.2 Closed form upper and lower bound approach 
 
In order to calculate the tunnel pressure, P0 for the lower bound the stress characteristic lines 

for the single pile proposed above (Fig. 9) are superimposed on the stress characteristic lines for 
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Fig. 13 Lower bound solution for O+2 
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(a) Upper bound mechanism O+2(a) (b) Upper bound mechanism O+2(b) 

 

 

 

 
(c) Upper bound mechanism O+2(c) (d) Upper bound mechanism O+2(d) 

Fig. 14 Upper bound mechanisms for O+2 
 
 

the single tunnel (Fig. 12). For the superimposition a case of O+2 was considered in this study, i.e., 
tunnel is located just below the pile tip (the offset distance from the tunnel centre to the pile tip is 
one times the tunnel diameter). 

The matching principal stress direction occurs in the solid circular area (1 direction from the 
tunnel = 1 direction from the pile). There are 5 stress drops from the pile tip and a further 1 stress 
drops to the tunnel crown from this circular area. Consequently, a total of 6 stress discontinuities 
appear to be involved with the lower bound calculation, i.e., there are 6 stress discontinuities 
finishing at the same physical level. Therefore, the value of P0 at the tunnel crown level will be Eq. 
(15). 

 
kPa

K

SS

K
P BBA

n
AB

BA 65.11
)3.1(

)(

)3.1(

)(

/

)(
6

3
6

11
0 













 (15)

 
Where n is a total number of stress drops (see Fig. 13). 
It is noted that the tunnel lining wall pressure, P0 equals to 3. From Fig. 13 the dotted shear 
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Fig. 15 Corresponding displacement diagrams for O+2 
 
 

Table 2 Tunnel pressure according to the upper bound mechanisms 

Mechanism O+2(a) O+2(b) O+2(c) O+2(d) 

Tunnel pressure, P0 (kPa) 27.6 39.1 50.7 16.1 

 
 

band made by the two potential failure lines represents the combined path and was used to develop 
the upper bound mechanism consisting of several blocks. 

The author postulated 4 admissible upper bound mechanisms as shown in Fig. 14. In addition, 
corresponding displacement diagrams are also presented in Fig. 15. It is noted that right sides of all 
the mechanisms are considered in the corresponding displacement diagrams due to the symmetric 
condition. 

Table 2 shows tunnel pressure, P0. Among them, the lowest tunnel pressure, P0 (= 16.1 kPa) 
was calculated by the upper bound mechanism O+2(d) (see Figs. 14(d) and 15(d)). The detailed 
calculation procedure is presented in Appendix. 

In terms of theory the best (or reasonable) upper bound solution should be close to the lower 
bound solution. For this reason the best upper bound mechanism might be O+2(d). This 
mechanism will be compared to maximum shear strain contours from both the model test and FEA. 
The purpose of this comparison is looking for the dotted shear band in the lower bound solution 
shown in Fig. 13 as well as the upper bound mechanism of O+2 shown in Fig. 14(d). 

Two features are interesting to note. The first is that between the pile tip and the near side of the 
tunnel there is a band across which the principal strain direction (1) flips 90. This band probably 
represents a zone of isotropic conditions. The  slip characteristic dominates the mechanisms 
below this band between the pile tip and the tunnel invert while the  characteristic dominates 
another component of the developing mechanism above the isotropic band between the pile shaft 
and the tunnel crown. In a mechanism, the isotropic material will be moved as a non-deformed 
block between these two shear systems. The second feature to note is that close to the pile tip and 
the shaft, the stress and zero extension directions match the single pile case while close to the 
tunnel the principal stresses remain close to the circumferential pattern of the single tunnel. The 
interaction between tunnel and pile clearly links at the points where the principal stress direction 
from each independent system coincided. If the coincidence spreads over a considerable area, the 
mechanism will easily form. 
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Table 3 Material parameters used in the FEA 

Material c (kPa)   ()  () E0 (MPa) mE* (MPa/m) A (m
2) bulk (kN/m3) K0 

Tunnel - 0.2 - - 15500 - 0.003 - - 

Soil 0.1 0.35 26 15 1.6 10 - 24 0.66

Note: *based on the Gibson’s soil; c: cohesion; : Poisson’s ratio; : angle of shearing resistance; 
: dilation angle; E0: Young’s modulus at reference level; bulk: bulk unit weight of soil; 
K0: earth pressure coefficient at rest; A: cross sectional area for 2-noded bar element 

 
 

 
(a) VL = 10.94% 

 

 

(b) VL = 18.65% 

Fig. 16 Maximum shear strain (max) contours at large volume loss 
 
 
4.3 Comparison between model test and FEA data 
 
In order to check the feasibility of the upper bound mechanism O+2(d), maximum shear strain 

(max) data from both model test and FEA are presented at relatively large volume loss of tunnel 
(VL = 10.94% and VL = 18.65%), as shown in Fig. 16. Mohr-Coulomb model was used to represent 
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soil behaviour and a bar model was adopted for the tunnel boundary system. Table 3 shows 
material properties used in the FE analysis. 

It is noted that values of those volume loss lead to tunnel failure and in order to obtain clear 
failure mechanisms for the upper bound solution the tunnel volume loss should be bigger than 5% 
in reality. This is only due to the academic interest. However, in tunnel practice the volume loss 
should be controlled as low as possible for the safety, i.e., less than 5% in granular material and it 
depends on the soil conditions (Attewell et al. 1986). In addition, more detailed information of 
model test and FEA can be found in Lee (2004). In this study, the author mainly focuses on both 
the upper and lower bounds with the superimposition method for the pile-soil-tunnel interaction 
problem. 

From the above comparison it is found that the shear band in the lower bound is well matched 
with the shear strain distribution from both the model test and FEA. In addition, the upper bound 
mechanism of O+2 consisting of several blocks is similar to the shear strain distribution. As expect 
the superimposition approach in the lower bound may provide the most reasonable upper bound 
mechanism which is in consistency of the shear strain distribution. 

Fig. 17 shows the P0 values obtained from FEA data for the critical element adjacent to the 
tunnel against increasing volume loss. Also, shown are the author’s two bound solutions. The 
stresses from the FEA data show an asymptotic pattern during developing volume loss, which fall 
very close to the band defined by the bound solutions. For the critical element above the tunnel 
crown the FE stresses are closer to the lower bound solution at relatively large volume loss. 

It is noticed that the tunnel support pressure obtained by the FEA data lies between the upper 
and lower bounds at volume losses greater than 14%. These volume loss values are relatively large 
and do not occur in reality as they lead to tunnel failure (as stated before). However, at small 

 
 

 

Fig. 17 Comparison between closed form bound solutions and FEA data for O+2 
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volume loss values (approaching 5%) which occur in tunnel practice so that the support pressure 
approaches only the upper bound not the lower bound. 

The author was impressed that the values given by the bound approaches were so comparable 
with the stresses from the FEA data. In addition, FE values greater than the LB were expected as 
critical FE elements were not on the tunnel surface, but at least one layer of element into the soil 
mass. 

 
 

5. Conclusions 
 

A superimposition method for predicting tunnel support pressure under the pile tip has been 
proposed in this study. 
 

● The assessment of the single pile and an independent tunnel by upper and lower bound 
plastic failure analysis proved quite difficult, particularly regarding the influence of the side 
area of the deep pile and along the vertical axis of the tunnel, between the ground surface 
and the tunnel crown, where the self-weight influence was only approximately allowed for. 

● These restrictions, however, did not significantly influence the patterns of the stress 
discontinuities and rupture planes below the pile tip and in the zones of either side of the 
tunnel centre line. These areas formed the zones relevant to pile-soil-tunnel interaction. 

● The resulting combination of the two independent bound solutions has given a very 
acceptable method of assessing the pile-soil-tunnel interaction situation, and the resulting 
mechanisms agree well with the shear mechanisms indicated by both the FE analysis and the 
physical model test. 

● In the small volume loss (less than 5%), the upper bound approach gives more accurate 
results of tunnel support pressure than that of the lower bound. 
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Appendix 
 
 
Calculation of the upper bound for O+2 
 
 
1. Work by pile working load (Pw) and soil self-weight () 
 

Pw = 144 kN/m2,    = 20 kN/m3,   L* = 0.075 m 
 
*longitudinal length of soil container box in the model test 
 

Pw & Blocks Area (m2) W (kN) S (m) W  S (kN-m) 

Pw 0.0009375 0.1350000 0.0500 0.0067500 

A 0.0003125 0.0004687 0.0500 0.0000234 

B 0.0005228 0.0007842 0.0327 0.0000256 

C 0.0008359 0.0012538 0.0910 0.0001141 

D 0.0004649 0.0006974 0.1148 0.0000800 

Total 0.0069932 

Note: 
(1) Settlement (or displacement), S of the pile is assumed to be 50 mm together with the block A. 
(2) All the values of S are corresponding to vertical displacements. 
 
 
2. Work by tunnel: unknown value of P0 
 

P0 LT** (m) LT**L* (m2) S (m) LT**L*S (m3) 

P0D 0.0707107 0.0053033 0.0817 0.00043347 

Total 0.00043347P0 

**tunnel orthogonal length to P0D’s direction 
 
 
3. UB (Upper Bound) solution 
 

Work by pile working load (Pw) and soil self-weight () = Work by tunnel: unknown value of P0 
 
0.0069932 = 0.00043347P0 
P0 = 16.133 kPa 
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