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Abstract.  The jointed rock mass behavior often plays a major role in the design of underground excavation, and 

their failures during excavation and in operation, are usually closely related to joints. This research attempts to 

evaluate the effects of two basic geometric factors influencing tunnel behavior in a jointed rock mass; joints spacing 

and joints orientation. A hybridized indirect boundary element code known as TFSDDM (Two-dimensional 

Fictitious Stress Displacement Discontinuity Method) is used to study the stress distribution around the tunnels 

excavated in jointed rock masses. This numerical analysis revealed that both the dip angle and spacing of joints have 

important influences on stress distribution on tunnel walls. For example the tensile and compressive tangential 

stresses at the boundary of the circular tunnel increase by reduction in the joint spacing, and by increase the dip joint 

angle the tensile stress in the tunnel roof decreases. 
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1. Introduction 
 

Jointed rock masses are mainly found during underground excavation. Most failures in under-

ground openings, during excavation and in operation, are reported to be closely related. Study of 

tunnel stability in jointed rock masses is of great significance to rock engineering, especially in 

tunneling and underground space development. Joints usually occur in sets which are more or less 

parallel and regularly spaced and also joint sets have different directions. In acute conditions, 

interaction between joints and tunnel stability may end in disasters. Performing model test and 

numerical analysis is a popular way to investigate the deformation and failure features of tunnel. 

Goodman et al. (1972) tested the behavior of tunnel deformation in jointed rock mass by using the 

scaled model test. Bieniawski (1974) presented the impacts of spacing and dip of joints in the 

strength of rock mass in underground excavation in rock mass classification RMR. To find out the 

impacts of the properties of joints in a rock mass on the stability of a tunnel which is excavated in 

the rock mass, Yeung and Leong (1997) performed a parametric study by using two-dimensional 

discontinuous deformation analysis (DDA). Button et al. (2006) conducted a research on the 

impacts of layering orientation in the general behavior and displacement of tunnel wall by using 
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district element method. To analyze the stability of rock blocks around a tunnel, Song et al. (2001) 

made use of a three-dimensional statistical joint modeling technique and concluded that the 

displaced blocks happened more repeatedly by increasing the joint persistence degree of scatter in 

joint set orientation and volumetric frequency of joints. Jia and Tang (2008) tried to find out the 

effect of joints orientation on tunnel stability by using a numerical method (RFPA). Palassi and 

Asadollahi (2007) in a study by using discrete element method investigated the impact of joint 

orientation in tunnel supporting system. Shou (2006) applied the 3D boundary element method to 

find out influences of the weak zone close to the tunnel. Goricki et al. (2005) studied about the 

impacts of foliations orientation on displacement around tunnels and concluded that the foliation 

does not have an influence on the displacement if its dip is 0 or 90° and also is liken to one of the 

major stresses. Besides, normal displacement is more, compared to shear displacement, in small 

dips. He also mentioned that shearing displacement has critical importance in joint dips of 40 to 

80°. Jiang et al. (2006) presented a multiple system for analyzing the characteristics of geometrical 

distribution of rock joints, and mentioned the relationship between deformation behavior and 

fractal dimension and orientation of joint sets based on fractal analysis and numerical simulation 

of underground opening in the jointed rock mass. 

Boundary element method has widely been for the stress analysis around underground opening. 

Crouch and Starfield (1983) presented the direct and indirect boundary element approaches for 

stress analysis in solid mechanics. The indirect boundary element method is further subdivided 

into Fictitious Stress Method (FSM) and Displacement Discontinuity Method (DDM), both of 

which can then be used in an effective way for solving elastostatic boundary value problems 

(BVP). FSM is more appropriate for stress and displacement analyses of BVP with stress boundary 

conditions and in continuous environments (Fatehi Marji and Manouchehrian 2010). Higher order 

DDM is more suitable for solving BVPs (Boundary Value Problems) with displacement boundary 

conditions and where discontinuities and cracks are introduced in the elastic body (Fatehi Marji 

and Hosseini-Nasab 2005, Fatehi and Hajibagherpour 2008, Fatehi Marji 2014, Ritz et al. 2012). 

In this study a hybridized indirect boundary element method (incorporating both FSM and DDM) 

is adopted to analyze the stress distribution around circular opening excavated in jointed rock 

masses. This method is highly accurate for stress distribution analysis which considers the joints 

effect (Nikadat et al. 2015, Ahmadi et al. 2015, Ansari and HodHodi 2015, Mussavi et al. 2014). 

The main purpose of the current study is to find out the effects of various dip angle and spacing of 

layered joints on the stability of tunnel which is excavated in jointed rock mass. The aim is to offer 

an insight into the influences of joints distribution on the stability of underground openings via 

numerical modeling and concluded that the dip of joints have a profound effect on the tunnel 

behavior. 

 

 

2. Boundary Element Method (BEM) 
 

Boundary Element Method (BEM) only discretizes the boundary of region of interest. Then, a 

familiar or calculated solution of a simple singular problem (known as the main solution) is made 

use of to build up the numerical solution for the whole mass by satisfying the boundary condition 

at each boundary element. BEM solutions can be summarized as: (i) Boundary discretization with 

a limited number of elements; (ii) Approximation of the local solution at boundary elements 

through shape functions; (iii) Evaluation of boundary influence coefficients; (iv) Application of 

boundary conditions and solution of the linear system of algebraic equations; (v) Evaluation of 
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field variables inside the domain. 

BEM methods can be classified into direct and indirect methods. In the direct formulation, 

there is a clear physical meaning for calculated deformation and stresses, while it has no explicit 

physical meaning for the displacements and tractions in the indirect formulation, they may be 

explained as fictitious source densities (Jing 2003). In indirect BEM, discontinuities are modeled 

by making this assumption that two opposite surfaces displace along the discontinuity plane. An 

alternative for discontinuity modeling is the Displacement Discontinuity Method (DDM) which is 

a version of dual indirect boundary element methods. This method which basically was introduced 

by Salamon (1968) and developed by Crouch and Starfield (1983) is originated in integrating the 

analytical solution of a constant displacement discontinuity over a finite line segment embedded 

within an infinite or semi-infinite elastic solid that can be orthotropic in properties. In the current 

research, a hybridized form of indirect BEM known as “two-dimensional fictitious stress 

displacement discontinuity method (TFSDDM code)” which is adopted to study the effect of joint 

spacing and joint dip on the stress distribution around tunnels. 

 

 

3. A hybridized Two-dimensional Fictitious Stress 
Displacement Discontinuity Method (TFSDDM) 

 

The hybridized fictitious stress displacement discontinuity method offers a semi analytical 

solution for the problem under investigation. The TFSDDM code which is a two-dimensional 

hybridized indirect boundary element code is developed in the current study. In this code, joint 

displacements are calculated by using displacement discontinuities. Then through using the 

fictitious stress method (FSM), the impact of joints on the distribution of stress on the tunnel wall 

and within the rock mass is obtained. The formulation of FSM is developed based on the 

definitions shown in Fig. 1 by taking the fictitious stress components, Px and Py, into account at the 

center of a typical boundary element in x and y directions, respectively (Crouch and Starfield 

1983). 

The displacements in a two-dimensional isotropic elastic solid considering a general potential 

function, f(x,y) can be written as 
 

 

 

 

Fig. 1 A boundary element with shear and normal fictitious stress components Px and Py in x and y 

directions, respectively (Crouch and Starfield 1983) 
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where G is shear modulus, υ poison ration, f(x, y) is the potential function, ux and uy are 

displacement in X and Y direction. 
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(3) 

 

and fx, fy, fxy, etc are the derivatives of this function given in appendix A for completeness (Crouch 

and Starfield 1983). In FSM, the boundary of any boundary value problem (BVP) can be 

discretized into a number of finite boundary elements as shown in Fig. 2. 

Taking the boundary conditions, 
i
sb  and 

i
nb  into account, a general system of algebraic 

equations can be obtained for determining the fictitious stress components 𝑃𝑠
𝑗
 and 𝑃𝑛

𝑗
 so that the 

displacements and stresses along the boundary and within the domain of the problem can be 

estimated by Eqs. (1) and (2), respectively. 
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(a) (b) 

Fig. 2 Representation of a crack by N elemental displacement discontinuities (Crouch and Starfield 1983) 
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Fig. 3 Constant element displacement discontinuity element (Crouch and Starfield 1983) 

 

 

where ,ij
ssC ,ij

snC etc. are the corresponding influence conditions (Crouch and Starfield 1983). In 

the hybridized fictitious stress displacement discontinuity method which is utilized in the present 

study to model the discontinuities or joints in a rock mass embodying an underground space, the 

displacement discontinuity method is used. The displacement discontinuity method is based on the 

analytical solution of the problem of a constant displacement discontinuity, or dislocation, over a 

finite line segment in an infinite elastic body like what is presented in Fig. 3. 

The elemental displacement discontinuities are explained with regard to the local coordinates s 

and n. The normal component of displacement discontinuity at the j-th segment is known as j
nD  

the tangential, or shear, component is named .j
sD  As a result, the permanent element displacement 

discontinuities Ds and Dn can be written as follows 
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In these definitions, 
j

su  and 
j

su  refer to the shear (s) and normal (n) displacements of the j-th 

segment of the crack. The superscripts + and – respectively mark the positive and negative 

surfaces of the crack (Crouch and Starfield 1983). 

The displacements and stresses in a two-dimensional isotropic elastic solid can be written as 
 

 𝑢𝑥 = 𝐷𝑥 2 1 − 𝑣 𝑓,𝑦 − 𝑦𝑓,𝑥𝑥  + 𝐷𝑦 − 1 − 2𝑣 𝑓,𝑥 − 𝑦𝑓,𝑥𝑦   

𝑢𝑦 = 𝐷𝑥   1 − 2𝑣 𝑓,𝑥 − 𝑦𝑓,𝑥𝑦  + 𝐷𝑦 2 1 − 𝑣 𝑓,𝑦 − 𝑦𝑓,𝑦𝑦   
(6) 

 

𝜎𝑥𝑥 = 2𝐺𝐷𝑥 2𝑓,𝑥𝑦 + 𝑦𝑓,𝑥𝑦𝑦  + 2𝐺𝐷𝑦 𝑓,𝑦𝑦 + 𝑦𝑓,𝑦𝑦𝑦   

𝜎𝑦𝑦 = 2𝐺𝐷𝑥 −𝑦𝑓,𝑥𝑦𝑦  + 2𝐺𝐷𝑦 𝑓,𝑦𝑦 − 𝑦𝑓,𝑦𝑦𝑦   

𝜎𝑥𝑦 = 2𝐺𝐷𝑥 𝑓,𝑦𝑦 + 𝑦𝑓,𝑦𝑦𝑦  + 2𝐺𝐷𝑦 −𝑦𝑓,𝑥𝑦𝑦   

(7) 

 

fx, fy etc are the partial derivatives of the single harmonic functions f(x, y) given in Eq. (3). The 

partial derivatives,  𝑓,𝑦𝑦𝑦  and 𝑓,𝑥𝑦𝑦  are also given in Appendix A. Two types of boundary 

conditions i.e. the shear and normal stresses boundary conditions si = (si)0, ni = (ni)0 are 

generally taken into acount in plane elasticity problems, and the shear and normal displacements 

boundary conditions usi = (usi)0, uni = (uni)0, in which (si)0, (usi)0, etc. are the corresponding stress 

and displacement values determined at the boundary of the problem. Hence, the quantities ,i
sb  

and 
i
nb  can stand for the familiar boundary values of stress and displacement and Css (i, j), etc. are 
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the corresponding influence coefficient. 
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The discretized form of displacement discontinuity equation can be formed and finally a system 

of 2(N = N) algebraic equation in 2(N = N) unknown displacement discontinuity components is 

obtained as 
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where Ass (i, j) and Bss (i, j) are the boundary influence coefficient. 

In this research, the joints are firstly modeled by considering a linear elastic behavior, and for 

final modeling, Mohr–Coulomb plastic criterion is used after the rock failure. The effective 

parameters on the joint behavior are cohesion, friction angle, tensile stress and joint’s normal and 

shear stiffness; therefore the plastic–elastic rocks feature can be simulated based on the plane 

strain (thickness of the discontinuity is not important). Joints can show three behaviors according 

to the following conditions 
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where Kn and Ks are joint normal and joint shear stiffness’s respectively, 𝜎𝑛  and 𝜎𝑠  are normal 

and shear stresses, c is joint cohesion and φ is the joint friction angle. A joint can be described as a 

long, thin crack with the compressible modeled filling. Fig. 4 presents the two springs with the 

normal and shear stiffness, Kn and Ks, respectively for modeling the linear elastic joints. According 

to Fig. 4 the relations between the stresses, strains and displacement discontinuities may be written 

as 
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Fig. 4 Linear elastic joint modeling (Crouch and Starfield 1983) 
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In which the prime sign stands for the parameters of a specific joint element and 𝜎𝑦𝑦  and  𝜎𝑥𝑦  

are induced stresses,  𝑒𝑦𝑦  is the strain of the spring at the y direction, 𝐸0 and 𝐺0 young and 

shear’s modulus and h is element thickness. 

Sliding and separation of the joint may be controlled by Mohr-Coulomb criterion as 
 

cns   tan  (16) 

 

In which Shear stress on the joints should not overpass the value obtained in Eq. (16) otherwise, 

it may result in sliding and fracture. Sliding along the joint is in linear mode and can be modeled in 

incremental mode. The initial stress gradually gets to zero through several steps. The number of 

incremental stress on joints is showed by k symbol. 
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The increase/iterative load technique may be utilized for the nonlinear analysis of a problem 
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Fig. 5 Boundary element modeling of an underground opening intersected by a fault 

(i.e., a single discontinuity) (Fotoohi and Mitri 1996) 

 

 

For modeling a tunnel in a jointed rock mass, FSM is used to model the tunnel boundary and 

the displacement discontinuity method is used to model the discontinuities or joints. As an 

example, Fig. 5 shows that if one has a total N boundary elements in a way that M elements model 

the tunnel boundary (by using FSM), then N-M elements model the joints (by using DDM). 

Hence, with hybridizing the two mentioned methods, the impact of the discontinuity (e.g., dips 

and spacing) on the stress distribution around the tunnel can be obtained (Fotoohi and Mitri 1996). 

This procedure may be formulated as 
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The most distinctive characteristic of TFSDDM code which makes it unique compared to other 

kinds of numerical codes is that since two different methods are used for modeling of joints and 

geometrical shapes of tunnels, the intersection between joints and tunnels are modeled more 

accurately and also the code illustrates a joint influence on the whole value of stress distribution 

around tunnel in a better way. The influence of each element on the other elements is presented in 

the influence coefficient matrix. It can deal with singular points very well and provide reasonably 

good results. The TFSDDM Program’s algorithm is schematically shown in Fig. 6. In this 

figure, Ɛ is the error rate which equals 0.1. The obtained convergence is compared to the allowed 

convergence and if it is less than 0.1, the circulation is repeated. 

The whole algorithm is controlled by stress release steps which were presented at the beginning. 
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Fig. 6 The TDDFSM algorithm 
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If all steps are passed and the whole element is yielded, the problem is solved and it is schematic 

of the original algorithm. 
 

 

4. Effects of joint spacing on the stress distribution 
 

One of the significant geometrical characteristics of joint’s geometrical that influences the rock 

mass behavior is Joint spacing. When joint spacing increases, the rock mass behavior gets closer to 

the intact rock behavior. Effect of joint spacing on the stress distribution in jointed rock mass 

surrounding a circular tunnel is studied by the two-dimensional hybridized fictitious stress 

displacement discontinuity method (TFSDDM) which in this study is developed according to the 

indirect boundary element method explained by Crouch and Starfield (Crouch and Starfield 1983). 

In the present study, the joints are firstly modeled by considering a linear elastic behavior and 

after the failure, they are modeled according to Mohr–Coulomb plastic criteria. The Joints 

behavior are modeled based on the cohesion ,friction, tensile stress, joint normal and joint shear 

stiffness; therefore characteristics of the plastic–elastic rocks can be simulated based on the plane 

strain rocks (thickness of the discontinuity is not important). In spite of the fact that the Effect of 

Mechanical parameters on the behavior of the joint is of paramount importance, in this research 

the mechanical parameter for all the modes is the same and only the effect of the geometrical 

parameters is probed. The most unique feature of this code, which makes it totally different from 

other kinds of numerical codes is that since two different methods are used for modeling the joint 

and geometrical shape of the tunnel, the intersection between joint and tunnel are modeled more 

accurately and also illustrates the joint influence on the whole amount of stress distribution around 

tunnel in a better way. 

Fig. 7 presents a schematic view of a circular tunnel at depth H from the ground surface. All 

models which are utilized in this study are considered to be under uniaxial stress condition and 

Mohr-Coulomb criterion is used for joint sliding. 

The geo-mechanical properties of the rock mass which were used in this study are shown in 
 

 

 

Fig. 7 Geometrical shape of the model 
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Table 1. In this table the normal and shear joint stiffness are symbolized as JKN (in MPa/m) and 

JKS (in MPa/m), respectively. The tensile strength, (Ten Str (MPa)) of the jointed rock is taken as 

zero. The cohesion (𝐶𝑗 (MPa)) and friction angle (φ𝑗  in degrees (°)) for joints are presented in the 

table. The young modulus E (MPa) and Poisson’s ratio ν are also considered for the jointed rock 

mass. 

Statement of the problem is modelled by considering a circular tunnel in a continuous elastic 

rock mass with the Young modulus, E = 37.5 GPa and Poisson’s ratio, ν = 0.25 at a considerable 

depth below the surface. The analytical solution to this problem can be acquired from the Kirsch 

solution. This problem is solved by BEM codes (TFSDDM) and the results are presented in Fig. 8. 
 

 

 

Fig. 8 The compared TFSDDM code and Analytical method (Nikadat 2014) 
 

 

Table 1 Geo-mechanical parameters of a typical jointed rock mass 

JKN (MPa/m) JKS (MPa/m) Ten Str (MPa) 𝐶𝑗  (MPa) ϴ𝑗  (°) E (Mpa) Ν 

20000 10000 0 1.5 33 37500 0.25 

 

 

  

(a) Geometrical shape of the model (b) Stress distribution Using BEM 

Fig. 9 Stress distribution at a circular tunnel boundary considering Joint spacing 10 m 
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As shown in this figure the results obtained by BEM are much closer to the analytical solution 

compared to the results obtained by Kirsch method (exact solution) (Nikadat 2014). 

The geometrical models of the problem with similar stress distribution graphs for a surrounded 

rock mass containing parallel joints of different spacing are presented in the following figures. 

Fig. 9 shows the geometry and tangential stress distribution around a circular tunnel for a rock 

mass with joint spacing of 10 meters. In this case, there is no intersection between the joints and 

tunnel walls. So, the BEM stress distribution graphs are similar to that of analytical solution which 

was presented by Kirsch. 

In Fig. 10 joint spacing is reduced to 7 meters so that one of the parallel joints intersects the 

circular tunnel at right angle. The tangential stress distribution around the tunnel is calculated by 

the BEM method. This result is very accurate because the intersection of joint with the tunnel 

boundary can be visualized by this method. In this case, compared to the previous model, the 

tension stress in the roof and the compressive stress in the wall increase. 

The joint spacing in Fig. 11 is reduced to 5 meters. Again one of the joints intersects the tunnel 

boundary at 90 degrees angle. Fig. 11 presents more tensile stress at tunnel roof and gives a picture 

of the intersection of the joint with tunnel boundary at point 1. In this case, the tensile stress in the 

roof and compressive stress in the wall increases. 

 

 

 

Fig. 10 Stress distribution at a circular tunnel boundary considering Joint spacing 7 m 

 

 

 

Fig. 11 Stress distribution at a circular tunnel boundary considering Joint spacing 5 m 
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Fig. 12 Stress distribution at a circular tunnel boundary considering Joint spacing 3.5 m 
 

 

 

Fig. 13 Stress distribution at a circular tunnel boundary considering Joint spacing 2 m 
 

 

 

Fig. 14 Stress distribution at a circular tunnel boundary considering Joint spacing 1 m 

 

 

In Fig. 12 where the joint spacing is reduced to 3.5 meters, one joint intersects the tunnel wall 

and the other two get very close to the roof and bottom of the tunnel. As a result, one layer with a 

width of less than 0.5 meter may be assumed in the tunnel roof. Fig. 12 show the BEM results in 

which the tensile stress is more at the tunnel roof and the joint intersection with tunnel boundary is 
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Fig. 15 Comparison of stress distribution diagrams for various spacing 
 

 

Table 2 Compression stress between various spacing 

 Kirsch Intact Sp 10 Sp 7 Sp 5 Sp 3.5 Sp 2 Sp 1 

Wall -7.78 -7.8 -7.9 -8.28 -8.66 -9.08 -10.25 -12.01 

Roof 2.59 2.6 2.7 3 3.18 3.34 3.5 3.8 

 

 

shown by point 1. 

In Fig. 13, the joint spacing is further reduced to 2 meters so that two joints intersect the tunnel 

wall and two joints are tangent to both roof and bottom of the circular tunnel. The BEM results are 

given in Fig. 13 which shows that mo joints have intersected the tunnel boundary at section 1 (the 

region shown by the ellipse). 

In Fig. 14 joint spacing is reduced to about 1 meter. In this case 5 joints have intersected the 

tunnel wall and two joints are tangent to the roof and bottom of the tunnel. Fig. 14 shows the stress 

distribution obtained by BEM. In this figure, all intersection points and tangents to the boundary 
 

 

 

Fig. 16 Stress distribution on the wall and roof 
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are distinguished by the method which is presented by closed regions on the graph. The tensile and 

compressive tangential stresses around the boundary of the circular tunnel increase as the joint 

spacing decreases. 

In order to make a comparison, all spacing graphs are given in a chart in Fig. 15. According to 

it, by increasing the joints spacing, stress distribution on the wall decreases. 

The stress distribution at the tunnel boundary (with decrease in the joint spacing) obtained by 

BEM is presented in Table 2. 

Graphs derived from this table are shown in Fig. 16. 

It can be concluded that with increase in joint spacing, tangential stress around the tunnel 

(especially at roof) decreases which is clearly apparent in this method. 
 

 

5. Effects of joints dips on the stress distribution around tunnel 
 

One of the most important geometrical features of joint which can influence the rock mass 

behavior is dip angle of joints. When orientation of the principal stress and joints are similar, the 

rock mass behavior approaches the intact rock behavior. The influence of joint dip angles on the 

stress distribution at the boundary of a circular tunnel excavated in a jointed rock mass is also 

studied by the BEM. In this section that the effect of the joint dip is studied the conditions are 

similar to those given in Section 4, but the joint spacing is kept constant (3.5 meters) and only joint 

dip angle changes. 

The effect of joint dip angle zero (horizontal joints) on the tangential stress distribution around 

a circular tunnel is already presented in Fig. 12. In this state, the compressive stress at the wall and 

tensile stress in the roof are in maximum. 

In the model shown in Fig. 17, two joints have intersected the tunnel boundary and the joint dip 

angle is 30 degrees. Fig. 17 shows the stress distribution at the tunnel boundary obtained by BEM 

(TFSDDM code). This figure shows that the stress is released at the intersection points and stress 

distribution diagram is cluttered. 

In Fig. 18, the joint dip angle is further increased to 60 degrees and again two joints intersect 

the tunnel boundary. In this case, since the joint dip angle increases, the displacements changes 
 

 

 

Fig. 17 Stress distribution at a circular tunnel boundary considering Joint Dip 30 degree 
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Fig. 18 Stress distribution at a circular tunnel boundary considering Joint Dip 60 degrees 

 

 

from normal to shear as a result, changes in stress distribution at intersect point of joint and tunnel 

wall are less than those of previous case. Fig. 18 also shows that tensile stress in roof and bottom 

is decreased. 

In Fig. 19 the joint dip angle reaches to 90 degrees (vertical joints). Fig. 19 shows the tangential 

stress distribution at the tunnel boundary for BEM. This figure shows that the tensile stress at the 

tunnel roof and bottom is completely vanished. Therefore, in this stress graphs are getting more 

compact comparing to the graphs shown before for non-vertical joints. The minimum tensile stress 

in the roof and the compressive stress in the walls happened in this case. The shear displacement in 

the roof increases with increase in joint dip angle. As a result the tensile stress decreases. 

Effect of joint dip angle on the tangential stress distribution at the circular tunnel boundary 

(obtained by BEM) are given in Table 3. From the figure, we can see that dip angle has significant 

effect on the stress distribution of tunnel walls. 

 

 

 

Fig. 19 Stress distribution at a circular tunnel boundary considering Joint Dip 90 degrees 
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Table 3 Stress comparison between various joint dips 

 
0 Degree 30 degree 60 degree 90 degree 

Floor 3/5 1/1 0/19 -0/17 

the right wall -9/18 -9/08 -7/67 -7/49 

Roof 3/5 2/7 0/48 -0/17 

the left wall -9/18 -8/76 -7/59 -7/49 

 

 

 

Fig. 20 Stress distribution on the wall an 4 point in different dip angle of joints 

 

 

The effect of joint dip angle on the stress distribution at the circular tunnel boundary is 

estimated numerically by using BEM (TFSDDM) at 4 point on the tunnel boundary is illustrated 

graphically in Fig. 20. These graphs show that the tangential stress is decreased as the joint dip 

angle is increased and the numerical results getting closer to each other as the dip angle increases. 

According to graphs, when the roof is in the highest state of tensile stress, the dip is zero. In the 

case of joints dip being 90°, there is minimal stress concentration and no tension stress is created 

in the roof and bottom area and the graph is more intensive. 
 

 

6. Conclusions 
 

In this study, the influence of joint geometrical parameters on the stress distribution on tunnel 

wall in jointed rock mass is investigated by the indirect boundary element method called two-

dimensional hybridized fictitious stress displacement discontinuity method (TFSDDM). This 

analysis indicated that both the dip angle and joint spacing have significant impact on the stress 

distribution around the tunnel. Based on these analyses, the following conclusions were drawn: 
 

● The results obtained by BEM in intact rock are much closer to the analytical solution 

(Exact solution). It should be noted that as BEM is a semi-analytical method, that reduces 

is one dimension of the problem and can take into account the effects of infinite 

boundaries. Truncating the boundary of model increases error chance, but in boundary 

element method unlike other numerical methods there is no need to truncate the boundary 

of the model and as a result it has high accuracy. 

● The BEM results are very accurate, because the intersection of joint with the tunnel 

boundary can be visualized by this method. BEM can discretize the tunnel boundary and 
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the joints separately; therefore the intersection points can be visualized. 

● The rock mass behavior approaches to that of intact rock behavior when the orientation of 

the principal stress and joints are the same (in the case of vertical joints). 

● The tensile and compressive tangential stresses at the boundary of the circular tunnel are 

increasing as the joint spacing decreases 

● By increasing the dip joint angle the tensile stress in the tunnel roof decreases. 

● When the joint dip angle increases, the displacements changes from normal to shear, the 

tangential stress at tunnel boundary decreases. 

● The tensile stress concentration at the roof and bottom of the tunnel is maximized when 

the dip angle of the joint is zero degree. 

● The minimum tensile stress concentration is achieved when the joint dip angle is 90 

degrees. 
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Appendix A 
 

Derivatives of the potential function F(x, y) used in the formulation of fictitious stress method 

 

22

22

)1(4

1

)1(4

1

yx

y

v
f

yx

x

v
f

y

x















 

222

22

222

)()1(4

1

)(

2

)1(4

1

yx

yx

v
gf

yx

xy

v
f

yyxx

xy

















 
 

Derivatives of the potential function F(x, y) used in the formulation of displacement 

discontinuity method 

 

𝑓,𝑥 =
+1

4𝜋(1 − 𝑣)
 𝑙𝑛   𝑥 − 𝑎 2 + 𝑦2 − 𝑙𝑛  𝑥 + 𝑎 2 + 𝑦2  

𝑓,𝑦 =
−1

4𝜋(1 − 𝑣)
 𝑡𝑎𝑛−1

𝑦

𝑥 − 𝑎
− 𝑡𝑎𝑛−1

𝑦

𝑥 + 𝑎
  

𝑓,𝑥𝑦 =
+1

4𝜋(1 − 𝑣)
 

𝑦

 𝑥 − 𝑎 2 + 𝑦2
−

𝑦

 𝑥 + 𝑎 2 + 𝑦2
  

𝑓,xx = −f,yy =
+1

4π(1 − v)
 

x − a

 x − a 2 + y2
−

x + a

 x + a 2 + y2
  

𝑓,𝑥𝑦𝑦 = −𝑓,𝑥𝑥𝑥 =
+1

4𝜋(1 − 𝑣)
 

 𝑥 − 𝑎 2 − 𝑦2

  𝑥 − 𝑎 2 + 𝑦2 2
−

 𝑥 + 𝑎 2 − 𝑦2

  𝑥 + 𝑎 2 + 𝑦2 2
  

𝑓,𝑦𝑦𝑦 = −𝑓,𝑥𝑥𝑦 =
+2𝑦

4𝜋(1 − 𝑣)
 

𝑥 − 𝑎

  𝑥 − 𝑎 2 + 𝑦2 2
−

𝑥 + 𝑎

  𝑥 + 𝑎 2 + 𝑦2 2
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