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Abstract. For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent
to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve
approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an
optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the
PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage
boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation
depth. The equations for calculating these optimum installation depths are presented, and the usefulness of
the equations is studied by using finite element analysis as well as laboratory model test results.

Keywords: prefabricated vertical drain (PVD); ground improvement; vacuum consolidation; laboratory
test; pre-loading; soft clayey deposit.

1. Introduction

Preloading a soft clayey deposit by a surcharge load and/or vacuum pressure in combination with

prefabricated vertical drains (PVDs) is a commonly used and economic ground improvement

technique. For a one-way drainage deposit PVDs are normally fully penetrated into the deposit to

shorten the preloading period. However, for a two-way drainage deposit (a sand layer underlying a

soft clayey layer), full penetration of PVDs into the deposit may not be an economical choice. Due

to vertical drainage, a thin clayey layer without PVD improvement can have the same rate of

consolidation as a layer with PVDs. Therefore, it is possible to design a PVD improvement with

partial penetration to achieve approximately the same rate of consolidation as that of a fully

penetrated case. This installation depth will be dubbed the optimum depth. Although several
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consolidation solutions have been proposed for PVD improved subsoils (e.g. Hansbo 1981), there is

no rational method proposed for determining this optimum PVD installation depth.

In the case of vacuum consolidation, if PVDs are fully penetrated into a two-way drainage

deposit, the vacuum pressure will leak through the bottom drainage boundary and cannot achieve a

desired consolidation effect. In this case, PVDs have to be partially penetrated into the deposit and

there is an optimum installation depth (H1) for vacuum pressure at which the maximum

consolidation settlement can be obtained (Chai et al. 2006). An equation for calculating H1 has been

derived by Chai et al. (2006), but there are no test data reported. 

In this paper, a method for determining the optimum PVD installation depth for a surcharge load

case under two-way drainage condition is presented and the method for vacuum pressure case is

briefly reviewed. Then, the effectiveness and limitation of the methods are studied by finite element

analysis (FEA) as well as laboratory model tests.

2. PVD installation depth under surcharge load

2.1 Equation for calculating the optimum thickness of PVD unimproved layer (Hc)

The condition for deriving an equation for calculating Hc (Fig. 1) is that the average degree of

consolidation of layer Hc under one-way drainage is the same as the average degree of consolidation

of the deposit with full penetration of PVDs. Considering both the drainage capacity of the natural

deposit and the effect of PVDs, the average degree of consolidation of a PVD improved deposit can

be calculated as follows (Carrillo 1942):

  (1)

where Uv1 = the average degree of consolidation of the deposit in the vertical direction, and Uh = the

average degree of consolidation in horizontal direction caused by a PVD. To obtain an explicit

expression for Hc, Uv1 is calculated by an approximate form of Terzaghi’s 1D consolidation theory

(Chai et al. 2001) assuming the deposit is uniform.

 (2)

Uav = 1 1 Uv1–( )– 1 Uh–( )

Uv1 = 1 exp– Cd– Tv1⋅( )

Fig. 1 Illustration of improved and unimproved layer
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where Cd = a constant (=3.2), and Tv1 = the time factor for vertical drainage and can be expressed as

follows:

 (3)

where cv = the coefficient of consolidation in the vertical direction of the deposit, t = time and H =

the thickness of the entire clayey deposit (Fig. 1). Then, Uh can be evaluated by Hansbo’s solution

(1981) as follows:

 (4)

where Th = time factor for PVD consolidation and μ = a parameter representing the effect of PVD

spacing, smear and well resistance and they can be expressed as follows:

 (5)

 (6)

where ch = the coefficient of consolidation in the horizontal direction, De = the diameter of a unit

cell (a PVD with its improvement area), ds = the diameter of smear zone, dw = the equivalent

diameter of PVD, kh, ks = the horizontal hydraulic conductivities of natural soil and the smear zone,

respectively, and qw = the discharge capacity of a PVD.

For the unimproved layer (Hc), the average degree of consolidation (Uv2) can be calculated by Eq.

(2) with corresponding time factor, . By equating the average degree of consolidation

of the PVD unimproved layer (Hc) and the average degree of consolidation of the deposit which is

fully penetrated by PVDs, Hc can be expressed as follows:

 (7)

Hc calculated from Eq. (7) ensures that the average degree of consolidation of the unimproved layer

(Hc) under one-way drainage is the same as the average degree of consolidation of the deposit with

fully penetration of PVDs. However, with the arrangement as shown in Fig. 1, for the PVD

improved layer (H – Hc), its vertical drain length is longer than that of the PVD fully penetrated

case (H/2). Theoretically, this increase of vertical drain length will increase the well resistance for

PVD consolidation and reduce the rate of consolidation due to the vertical drainage of a natural

deposit. For most practical cases, when the discharge capacity (qw) of the PVD is larger than 100

m3/year, the effect of well resistance is not significant (Bergado et al. 1996). Then this increase of

drainage length will mainly reduce the consolidation effect of the natural deposit in the vertical

direction. This effect will increase with the increase of PVD spacing, smear effect, and the thickness

of a deposit. To compensate for the effect of the longer vertical drain length of the PVD improved

layer, the average degree of consolidation of the unimproved layer (Hc) must be higher than that of
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the PVD fully penetrated case. One solution to this dilemma is to calculate Hc by assuming that the

average degree of consolidation of the unimproved layer is the same as that of the PVD fully

penetrated as well as assuming the drainage length of the natural deposit in the vertical direction is

H/8 (H = the thickness of a two-way drainage deposit). This condition results in a modified form of

Eq. (7), which is the final equation for calculating Hc.

 (7a)

Eq. (7a) is derived by assuming the deposit is uniform. Although most natural deposits are non-

uniform, it is proposed that Eq. (7a) can be used for non-uniform deposits using layer thickness

weighted average values of ch and cv. The validity of this proposal will be checked in the following

sections.

2.2 One-dimensional (1D) finite element analysis (FEA)

The usefulness of Eq. (7a) is checked by 1D FEA. The ground condition at Kubota, Saga, Japan

is considered. An approximately 9 m thick soft Ariake clay layer underlain a sand layer forms a

two-way drainage deposit. At the site, the groundwater level was about 1.0 m below the ground

surface. For most natural clayey deposits, the groundwater level is about 1.0 to 2.0 m below the

ground surface, and in consolidation analysis, ground surface is considered as a drainage boundary.

The subsoil profiles and the relevant soil properties are given in Fig. 2. In the figure, wn, wl and wp

are natural water content, liquid limit and plastic limit respectively, pc is consolidation yielding

stress,  is initial effective overburden pressure, and OCR is over-consolidation ratio. The selected
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Fig. 2 Subsoil profile and some of soil properties
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parameters for consolidation analysis are given in Table 1. All parameters are from test results

except the coefficient of consolidation, which are twice of the laboratory test data (Chai and Miura

1999). The parameters related to PVD consolidation are assumed as in Table 2.

Firstly, Hc values are calculated using Eqs. (7) and (7a) and the results are plotted in Fig. 3. In the

calculation, a value of ch/cv = 1.5 is assumed, and kh value is estimated from the layer thickness

weighted average values of ch, Cc, e0 and initial effective stress in the ground. It is clearly indicated

that the over-prediction of Hc by Eq. (7) increases with the increase of the smear effect and PVD

spacing, i.e. for the PVD improved layer, the contribution from PVD to the overall average degree

of consolidation is reduced as mentioned previously. 1D FEA was conducted to investigate the

effect of Hc on settlement rate of the deposit and the analysis results are compared with the Hc

values given in Fig. 3.

Table 1 Selected parameters for consolidation analysis

Depth
(m)

ch
(m2/day)

cv
(m2/day)

γt
(kN/m3)

Cc e0 OCR

0.0~1.0 0.030 0.020 16.0 1.00 1.54 4.0

1.0~3.0 0.021 0.014 14.6 1.38 2.28 2.0

3.0~6.0 0.036 0.024 14.3 1.07 2.50 1.2

6.0~9.0 0.048 0.032 14.0 1.62 2.75 1.1

Table 2 Parameters related to PVD consolidation

Parameter Symbol Unit Basic value Variation range

PVD spacing S m 1.2 0.8, 1.0, 1.2, 1.5, 2.0

Diameter of unit cell De m 1.36 0.90, 1.13, 1.36, 1.70, 2.26

Diameter of drain dw mm 50 -

Diameter of smear zone ds m 0.3 -

Discharge capacity qw m3/year 100 -

Hydraulic conductivity ratio kh/ks - 10 1, 5, 10

Fig. 3 Comparing the variation of Hc values Fig. 4 Effect of Hc on settlement curves
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In FEA, the effect of the PVD is modeled by the method of equivalent vertical hydraulic

conductivity method (Chai et al. 2001). For PVD spacing, S = 1.2 m (square pattern) and kh/ks = 10

case, the effect of Hc on settlement (S) – time (t) curves is compared in Fig. 4. It can be seen that

for Hc = 1.0 m, the settlement curves are almost identical to that of the fully penetrated case. The Hc

value from Eq. (7a) is 1.05 m (Fig. 3), which agrees with the FEA results.

Under the condition of kh/ks = 10, Fig. 5 compares settlement curves of the PVD fully penetrated

cases with that of partially penetrated cases with Hc values from Eq. (7a) for S = 0.8 m, 1.5 m and

2.0 m. It can be seen that the settlement curves of partially penetrated cases are very close to those

of the fully penetrated cases. Although the difference is small, there is a trend that the difference in

settlement increases with the increase of PVD spacing. Fig. 6 shows the comparison of the

settlement curves of the PVD fully and partially penetrated cases with S = 1.2 m and different kh/ks
values. Again, the partially penetrated cases yield settlement curves very close to that of the

corresponding fully penetrated cases, and the difference increases with the increase of the smear

effect.

The comparisons made in Figs. 4 to 6 use the soil profile for the soft clay deposit at Kubota,

Saga, Japan by assuming different PVD penetrated depth, spacing and smear effect. To further

verify the effectiveness of Eq. (7a), it is assumed that the thickness of the soft layer doubles from 9

m to 18 m (double the thickness of each sub-layer). In this case, for kh/ks = 10 and S = 1.2 m, Eq.

(7a) results in an Hc value of 1.81 m. Fig. 7 compares the settlement curves from FEA results with

Hc value of 0 and 1.81 m. Although the curve of the partially penetrated case is close to that of the

fully penetrated case, in this case, the difference is larger than that in Figs. 5 and 6. This

comparison indicates that with an Hc value calculated by Eq. (7a), the delay of consolidation will

increase with the increase of the thickness of a soft clayey deposit. All of the calculations made

above using kh/kv = 1.5, but the relative error will reduce with increase of kh/kv value and vice versa.

The comparisons made above demonstrate that for a two-way drainage clayey deposit, leaving a

layer without PVD improvement with a thickness of Hc as calculated by Eq. (7a), does not

drastically alter the consolidation rate. The practical implication of this finding is that for a two-way

drainage clayey deposit PVD improvement can be designed more economically. For the subsoil

condition at Kubota, Saga, Japan, the PVD partially penetration case can save about 15 to 20% of

Fig. 5 Comparison of settlement curves with different
PVD spacing

Fig. 6 Comparison of settlement curves with different
smear effect
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PVD improvement cost. Also, leaving a layer without PVDs adjacent to the sand layer has a

geoenvironmental benefit, i.e. the water squeezed out from the clayey layer collected by PVDs will

not directly enter the sand layer (normally an aquifer).

3. Optimum PVD installation depth under vacuum pressure 

3.1 Equation for calculating optimum installation depth (H1)

For a two-way drainage deposit with a vacuum pressure applied at the ground surface, assuming

the hydraulic conductivities are uniform in both PVD-improved and unimproved layers respectively,

at steady state the vacuum pressure distribution in the ground can be illustrated as in Fig. 8. Due to

the total head difference at the bottom and the top of the soft clayey deposit, there will be upward

steady flow. Based on the conditions: (1) the flow continuity in this two-layer system is at steady

state, and (2) maximizing the area A (the area between the horizontal and the vertical axes and the

vacuum pressure distribution line) as indicated in Fig. 8, an equation for calculating the optimum

PVD installation depth (H1), which will results in maximum consolidation settlement, has been

derived by Chai et al. (2006).

 (8)

where kv1 and kv2 = the vertical hydraulic conductivities of PVD-improved and unimproved layers,

respectively. The value of kv1 can be evaluated by the equivalent vertical hydraulic conductivity

method (Chai et al. 2001) as follows:

 (9)

where l = the drainage length of the PVDs. In the field, a clayey deposit may not be uniform. In
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Fig. 7 Comparison of settlement curves assuming the thickness of the deposit H = 18 m
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case the compressibility of the soil layers at the bottom end of PVDs varies significantly, the largest

A value may not guarantee the largest final settlement, i.e. Eq. (8) may not yield an optimum PVD

installation depth.

Note, at a site, if the thickness of the soft clayey layer varies significantly, it may be difficult to

determine an optimum PVD installation depth for both surcharge load and vacuum pressure.

3.2 Laboratory model test

(1) Test device: A cylindrical model was used and the sketch of the model is shown in Fig. 9. The

model mainly consists of a cylinder of 0.45 m in inner diameter and 0.9 m in height made of vinyl

chloride with a wall thickness of 15 mm; upper and lower pedestals with a thickness of 40 mm; a

piston system; and a burette connected to the drainage layer at the bottom of the model. The upper

and the lower pedestals are connected by eight 12 mm in diameter steel rods. The 40 mm thick

piston is made of vinyl chloride and a hollow shaft with an outside diameter of 100 mm is fixed to

it. To prevent the possible tilting of the piston, a guide was installed on the upper pedestal around

the shaft. Sealing between the piston and the cylinder and between the shaft and the upper pedestal

is achieved by “O” rings lubricated by silicon grease. Both air pressure and vacuum pressure can be

applied as a consolidation load. The air pressure is applied through the upper pedestal to the top of

the piston and the vacuum pressure is applied through the hollow shaft of the piston to the bottom

of the piston (surface of the model ground). To further prevent possible air pressure and/or vacuum

pressure leakage through the piston, a rubber membrane sleeve with a thickness of 1 mm is installed

inside the chamber above the piston. Considering the vertical displacement of the piston during

consolidation, the rubber membrane sleeve is folded in the vertical direction initially. A KPD-200

kPa type piezometer (manufactured by Tokyo Sokki Kenkyujo Co. Ltd., Japan) is instrumented

through the wall of the cylinder around the middle height of the model. The settlement is measured

Fig. 8 Illustration of vacuum consolidation with PVD improvement
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at the top of the shaft by a dial gauge.

(2) Materials: The soil used was remolded Ariake clay with a liquid limit wl = 108.8%, and

plastic limit wp = 59.2%. The initial water content of the clay was adjusted to about 120% (more

than its liquid limit) and cured in a plastic container for more than 1 day before putting it into the

device. A mini-PVD was formed by folding a non-woven geotextile in three layers with a cross-

sectional dimension of 30 mm wide and 9 mm in thickness under no confining pressure condition.

The geotextile used was made of polypropylene and weighted 131 g/m2. 

(3) Test procedure: To set-up the model test, the cylinder was installed on the lower pedestal and

3 layers of the geotextile were placed at the bottom of the cylinder as drainage layer. A thin layer of

silicon grease was painted on the wall of the cylinder to reduce the friction. Then clay was put

inside the cylinder layer by layer and when the thickness of the soil reached 0.4 m from the bottom,

the piezometer was installed. The thickness of the model ground was 0.78 m. After the completion

of the model ground, 4 mini-PVDs were installed to pre-determined depth with the plan locations as

indicated in Fig. 9. The method of installing mini-PVD is: a stainless steel rod was inserted inside

the mini-PVD, and it was pushed into the model ground vertically together with the mini-PVD, then

the rod was withdrawn leaving the mini-PVD inside the model ground. After that, another three

layers of the geotextile were placed on the top of the model ground as a drainage layer. Finally, the

piston, the rubber membrane sleeve, and the upper pedestal were installed and the dial gauge for

measuring the vertical displacement was set. The pre-determined air-pressure and vacuum pressure

Fig. 9 The sketch of the device
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were applied and the test was started.

(4) Test program: Four tests were conducted with the conditions as listed in Table 3. The mini-

PVD installation depth varied from 0.48 m to 0.73 m leaving an unimproved layer of 0.30 to 0.05

m in thickness, respectively. Each test lasted about 15 days. It is well known that vacuum

consolidation not only induces settlement, but also inward lateral displacement of the ground (e.g.

Chai et al. 2005). For the model described above, if only vacuum pressure is applied, there is a

possibility of forming gaps between the soil and the model wall causing leakage of vacuum

pressure. To avoid this kind of situation, both surcharge load (air pressure) and vacuum pressure

were applied. Chai et al. (2005) reported that the condition for no inward lateral displacement to

occur can be expressed as follows:

 (10)

where Ko = at-rest horizontal earth pressure coefficient; = initial effective vertical stress; and

Δσvac = vacuum pressure. Adopting a K0 value of 0.5, |Δσvac | ≤  can be obtained. Considering

the surcharge load as , a condition of surcharge load equals vacuum pressure (40 kPa) was

adopted for all tests.

3.3 FEA simulation of the model tests

To obtain detailed information about excess pore water pressure (vacuum pressure) distribution in

the model ground and to provide a cross check, the model tests were simulated by FEA. The

mechanical behavior of the model ground was modeled by modified Cam-clay model (Roscoe and

Burland 1968). The values of model parameters used are listed in Table 4. The values of λ, e0 and

k0 were calculated from laboratory incremental load consolidation test results and ν, κ and M values

were assumed. During the consolidation process, hydraulic conductivity (k) was varied with void

ratio (e) following Taylor’s equation (Taylor 1948).

 (11)

where k0 = initial hydraulic conductivity; e0 = initial void ratio; e = current void ratio; and Ck = a

constant (in this study Ck = 0.4e0). For the parameters related to the mini-PVD, because the whole

model ground was remolded, there was no smear zone, and kh/ks = 1. Then considering possible

compression of the mini-PVDs under confinement, it was assumed (back-fitted) that the diameter of

the mini-PVD, dw = 10 mm, and the discharge capacity, qw = 1 m3/year (Chai et al. 2007). For the

arrangement as shown in Fig. 9, the diameter of the unit cell, De = 0.225 m can be evaluated.

Δσvac

K0 σv0′⋅
1 K0–

--------------------≤

σvo′
Δσv0′
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k = k0 10
e e

0
–( )/C

k⋅

Table 3 List of the cases tested

Case 
Initial thickness 

(m)
Mini-PVD installation 

depth (m)
Air pressure

(kPa)
Vacuum Pressure

 (kPa)

1

0.78

0.48 (0.30)*

40 40
2 0.58 (0.20)

3 0.68 (0.10)

4 0.73 (0.05)

*The number in parenthesis is the thickness of the mini-PVD unimproved layer.
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3.4 Test and analysis results

(1) Settlement: The settlement curves are compared in Fig. 10. Fig. 11 enlarges the final part of

the curves. It can be seen that FEA simulated the settlement curves of Case-1 and 2 well. For Case-

3 and 4, the simulated settlement rate is faster than the test data for elapsed time less than 10 days.

Theoretically, an increase in the mini-PVD installation depth increases the initial settlement rate, and

it is not clear yet why the test data did not show this tendency. Nevertheless, both test and analysis

results indicate that Case-2 and 3 resulted in larger settlement than Case-1 and 4 (Fig. 11). Fig. 12

plots the final settlement at the corresponding mini-PVD installation depth. It can be observed that

from a final settlement point of view, an optimum mini-PVD installation depth exists between Case-

2 and 3. 

(2) Excess pore water pressure: As indicated in Fig. 9, a piezometer was installed around the

middle of the model ground (0.4 m from the bottom). The measured and simulated excess pore

water pressure and/or vacuum pressure (u) variation with time at the piezometer point is compared

in Fig. 13. The simulated maximum u values and dissipation rates are higher than the measured

ones. Care was taken to maintain a saturated condition of the piezometer filter during the

installation process, but the results in Fig. 13 show that the piezometer might not be 100%

saturated. At the time of terminating the tests, the measured and analyzed orders of u values for the

four cases are different. But if we extend the time for FEA to 25 days and check the final values,

the order of the predicted u values are the same as the measured ones, i.e. the largest one is Case-4

Fig. 10 Comparison of settlement time curve Fig. 11 Enlarged comparison of settlements at close
to the end of consolidation

Table 4 Model parameters adopted

λ k e0 ν M k0 (m/s)

0.265 0.027 3.2 0.3 1.2 2.51×10−9

Note: λ = slope of virgin consolidation line in e-lnp' plot ( p' is effective mean stress and e is
void ratio); κ = slope of rebound line in e-lnp' plot; M = strength parameter for Cam-clay
model, stress ratio at critical state, qc/p' (qc is deviator stress at critical state); ν = Poisson’s
ratio; e0 = initial void ratio; and k0 = initial hydraulic conductivity.
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(smaller vacuum pressure) and the smallest one is Case-1. The final vacuum pressure distribution in

the model ground is given in Fig. 14. This figure shows that the area A enclosed by the u distribution

line, the left y-axis, and the top x-axis is larger for Case-2 and 3 than that of Case-1 and 4.

Using parameters adopted, Eq. (8) gives an optimum mini-PVD installation depth of about 0.575

m, which is close to the installation depth of Case-2 of 0.58 m. From Fig. 12, it can be seen that an

Fig. 13 Excess pore water pressure variation at
piezometer point

Fig. 14 Final vacuum pressure distribution in the
model ground

Fig. 12 variation of final settlement with mini-PVD installation depth
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increase in the mini-PVD installation depth from 0.58 m to 0.68 m did not increase the final

settlement greatly. From an economic point of view, the optimum installation depth should be close

to 0.58 m. The above comparison and discussion indicate that Eq. (8) is useful for determining the

optimum installation depth of PVDs with two-way drainage condition under vacuum pressures.

4. Conclusions

Prefabricated vertical drain (PVD) improvement is commonly employed when preloading a soft

clayey deposit by a surcharge load and/or vacuum pressure. In the case of a two-way drainage

deposit, there are optimum PVD installation depths to result in a more economic design and/or a

better improvement effect. 

(1) Under a surcharge load: A semi-theoretical equation is derived for calculating the optimum

PVD installation depth for a two-way drainage condition. A partially penetrated case with the optimum

PVD installation depth can result in approximately the same average degree of consolidation as a

fully penetrated case. The effectiveness of the proposed equation has been investigated by one-

dimensional finite element analysis (FEA).

(2) Under a vacuum pressure: PVDs have to be partially penetrated into the soft clayey deposit to

prevent the vacuum pressure leaking from the bottom drainage boundary. The results of both

laboratory model test and FEA simulation indicate that there is an optimum PVD installation depth

at which the maximum vacuum consolidation settlement can be obtained and Eq. (8) is effective for

calculating this depth. 
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