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Abstract. Breakdown pressures obtained from the classic, linear elastic breakdown model are compared
with the corresponding pressures obtained using a nonlinear material model. Compression test results
obtained on sandstone and siltstone are used for that purpose together with previously formulated
nonlinear model which introduces elasticity functions to address nonlinear stress-strain behaviour of rocks
exhibiting stress-dependent mechanical properties. Linear and nonlinear collapse pressures are also
compared and it is shown that material nonlinearities have significant effect on both breakdown and
collapse pressures and on tangential stresses which control breakdown pressure around a borehole. This
means that the estimates of σH made using linear models give stress values which are different than the
real values in the earth. Thus the importance of a more accurate analysis, such as provided by the
nonlinear models, is emphasised. It is shown, however, that the linear elastic model does not necessarily
over-predict borehole stresses and the opposite case can be true, depending on rock type and test
interpretation.
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1. Hydraulic fracturing and breakdown pressure

Hydraulic fracturing is one of the most important operations routinely performed in contemporary

Petroleum Engineering to enhance the production of oil and gas from underground reservoirs.

Hydrofracturing consists in initiating, then propagating a fracture from a well using the pressure of

a fluid as source of energy. Use of this technique in the petroleum industry began more than fifty

years ago, cf. Clark (1949). The hydraulic fracturing test procedure is described by Kim and

Franklin (1987), and by Haimson (1978). In tests where the fractures are clearly vertical, the current

method of interpretation applies (Haimson and Fairhurst 1969, Guo et al. 1993b), and the results

obtained are usually unambiguous and reliable. For cases where the fractures are horizontal, inclined,

or mixed mode, appropriate solutions of the problem have been also provided, cf. Ljunggren and

Amadei (1989) and Hefny and Lo (1992). Apart from well stimulations hydrofracturing has been

also used for in-situ stress determination (Bae et al. 2007, Haimson and Fairhurst 1969). It is the

only in-situ rock stress determination technique that has been successfully applied for measuring

stresses at great depths in deep and very deep boreholes where the drillhole does not have to be
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assumed to be vertical and oriented perpendicular to principal in-situ stress components. Other

methods such as wellbore breakouts or earthquake focal mechanisms principally indicate stress

directions. 

An idealized pressure-time curve of the rupture-reopening sequence of a hydraulic fracturing test

is shown in Fig. 1, in which the various parameters recorded during the test are defined. The peak

pressure observed during the first cycle before the formation fractures and the well starts to take

fluid is referred to as the breakdown pressure Pb. Breakdown pressure is an important parameter

obtained during hydraulic fracturing. When a vertical fracture is induced, the maximum in-situ

horizontal stress σH can be determined from the breakdown pressure if the minimum horizontal in-

situ stress σh (obtained as the closure pressure after fracture extension and shut-in) and the

properties of rocks such as the tensile strength To or the fracture toughness, are known. Fracture is

initiated for a pressure Pb then propagated at a lower pressure value Pp (propagation pressure). Once

a certain volume of fluid has been injected, pumping is stopped and the fracture, which is no longer

supplied, begins to close. 

Breakdown is a complex process affected by many parameters such as the injection rate, the

fracture fluid, the wellbore size, the state of stress, and the properties of rocks. As a result, many

models and fracture simulators have been put forward to analyze breakdown pressures. Models

include the classic linear elastic model by Hubbert and Willis (1957), Haimson's poroelastic model

(1968), the model eliminating the tensile strength by Bredehoeft et al. (1976), Schmitt and Zoback's

model (1989), models based on fracture mechanics (Abou-Sayed et al. 1978, Rummel 1987, Detournay

and Carbonel 1994), and many others. The most popular one, which is the classic model, is

summarized further in this paper.

Hydraulic fracturing methods have not yet reached maturity and there is a far from universal

consensus about which approaches, analyses and interpretations work best. Similarly, none of the

existing breakdown models are generally accepted because they cannot explain all observed break-

down phenomena. Therefore, the estimation of σH is accorded a low level of confidence, and the

prediction or analysis of breakdown pressure is still an open question (Rutqvist et al. 2000). Proposed

Fig. 1 Idealized hydraulic fracturing curve (after Kim and Franklin 1987)
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improvements include σH estimations from the occurance of drilling-induced fractures (Brudy and

Zoback 1999), inclusion of system stiffnes considerations (Raaen et al. 2001), borehole presurazition

by inflation of a dilatometer (Ito et al. 2001), rock heterogeneity considerations (Yang et al. 2004),

probabilistic analysis (Shin et al. 2001), and using the testing equipment with sufficiently low

compliance (Ito et al. 2006). Note that at the same time, the characteristics and geometry of a

hydraulic fracture at great depth are verifiable only at great expense. Due to limitations in test

facilities and lack of the scale law, it is difficult to simulate the propagation of hydraulic fractures in

a laboratory specimen. The reliability of a fracture model is therefore dependent on the soundness

of its underlying mechanics. If the underlying mechanics in the simulator are correct, the prediction

should not be far from reality.

In this paper it will be shown that nonlinear stress-strain rock properties can lead to substantial

uncertainties in the estimation of σH from hydraulic fracturing data. The goal of this paper is to

compare breakdown and collapse pressures obtained using linear and nonlinear rock models. This

first step towards introducing more realistic material models into breakdown pressure analysis will

be done for the isotropic in-situ stress field, σH = σh = σho. This is partly because closed-form,

nonlinear stress solutions are very hard, if not impossible, to obtain for circular openings in non-

hydrostatic in-situ stress fields and it is intended to remain on the grounds of semi-analytical

solutions for now. Also, this case is known to be a reasonable approximation in gravitating basins

where tectonic forces are negligible, cf. Gulf Coast of USA, and it is an important limiting case. If

an isotropic stress field leads to a prediction of instability, it is almost certain that an anisotropic

stress field will give more dire predictions. Once the bounds of uncertainty are quantified, then

anisotropic material properties and anisotropic stress fields can be later introduced through numeri-

cal methods.

2. The classic breakdown model

The classical treatment of hydraulic fracturing started with developments by Hubbert and Willis

(1957). Sometimes the development of the classical equation for hydraulic fracturing is credited to

them. This is not correct because they never introduced a tensile strength term in their equations.

The classic model is based on Kirsch's solution (1898) for the stress distribution around a circular

hole in homogeneous, isotropic, dry, linear elastic and unfractured rock subjected to external

compression. In this method, the drillhole direction is assumed to be parallel to one of the principal

components of the geostatic stress field. Usually, this assumption is considered valid for vertical

holes drilled from the surface. Fracturing is performed in an open hole, and the fracture is a vertical

plane. For the case of unequal in-situ horizontal stresses, σH > σh, two symmetric fracture wings

will develop perpendicularly to the least principal stress. If the two horizontal principal stresses are

equal, σH = σh = σho, the fracture direction will be indeterminate. 

The initiation pressure of a hydraulic fracture in a dry rock can easily be calculated from linear

elasticity using the expression of the hoop stress at the borehole wall:

σθ = (σH + σh) − 2(σH − σh)cos2θ − Pw   (1)

where Pw is a well pressure. If θ = 0 coincides with the direction of σH, then it can be seen that σθ

varies from a maximum (compressive) value when θ = 90, 270, to a minimum value achieved when

θ = 0, 180, and the minimum tangential stress is σθ |min = 3σh − σH − Pw.
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Well instability can be triggered either by reducing or by increasing well pressure. Compressive

rupture (shear failure) may occur at θ = 0, 180 when well pressure is reduced too much. On the

other hand, if well pressure is increased, the hoop stress σθ is reduced. It may eventually become

tensile (negative) and equal to the tensile strength To of the rock. This initiates a hydraulic fracture

in the direction of σH. The injection pressure at this stage is the breakdown pressure Pb, which is

also called the critical pressure at fracture initiation, Fig. 1. Thus, the condition for formation of the

vertical radial fracture is simply 

σ3 = To  (2)

or σθ |min = To, where To is negative (compressive stresses are assumed to be positive in this paper).

Using Eq. (1) and the fracturing criterion (2) the breakdown pressure can be calculated as:

Pb = 3σh − σH − To  (3)

Thus, breakdown pressure in a dry rock will essentially depend on the initial geostatic stresses and

the tensile strength of the rock. To account for the initial pore-water pressure Po at the test depth,

Haimson (1978) applied the effective stress law and presented the following modification of Eq. (3):

Pb = 3σh – σH – To – Po   (4)

The last equation has often been used for stress determination and is typically referred to as the

conventional method. Note that pore pressure increase acts in favour of fracture initiation, as it

lessens the breakdown pressure. Also note, that for the specific case σH = σh = σho, Eq. (4) reduces

to Pb = 2σho – To – Po which predicts fracture initiation in crustal environments characterized by a

lithostatic stress field or in internally pressurized thick cylinders subjected to a confining pressure

σho. Bredehoeft et al. (1976) eliminated tensile strength from (4) noting that To is an extremely

variable parameter. In their modification of Eq. (4) Pb has the meaning of the fracture reopening

pressure, Fig. 1, which is the peak bottomhole pressure in the second or third injection cycle. Biot’s

theory was used by Haimson (1968) who presented the following formula for breakdown pressure

in a poroelastic material:

(5)

where η = (1−2ν)/(1−ν) is a function of the Poisson’s ratio of the rock ν and α is Biot’s poroelastic

constant. The last equation was slightly modified by Schmitt and Zoback (1989) by introducing a

modified effective stress law for tensile failure: σ' = σ−βp, where 0 ≤ β ≤ 1.

Thus, the existing breakdown models are all based on some form of linear elastic theory although

there is now general agreement that linear elasticity analyses invariably underpredict opening stability

and the models which are more realistic (and less conservative) in their predictions should be

utilised. These include elastoplastic and nonlinear models. Nonlinear models link rock stresses to

rock deformation through experimentally determined elasticity functions rather than elastic constants,

as in linear elasticity. Different nonlinear approaches postulate different mathematical representations

for these functions. For example, Santarelli et al. (1986) introduced a confining stress dependent

Young's modulus, and Nawrocki and Dusseault (1995) used the assumption of stiffness related to

damage or radial distance measured from the opening wall. Note that borehole stresses predicted by

linear and nonlinear methods are significantly different. Therefore, it can be expected that the

constitutive material model assumed has important consequences on calculated breakdown and

Pb = 
3σH ση– To αηPo–+

2 αη–
--------------------------------------------------
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collapse pressures. There are other indicators that such an approach can have merit. For example,

abnormally high breakdown pressures were observed in laboratory single-well hydraulic fracture

tests, Guo et al. (1993a). Other factors that affect wellbore collapse pressure are temperature (Wang

and Dusseault 2003), chemical effects (Chen et al. 2003) and coupled phenomena (Fam et al.

2003). Phorothermoelasticity, risk analysis, time-dependent formulations, and dual porosity approach

have been also used (Tao and Ghassemi 2007, Moos et al. 2003, Cui et al. 1999, Zhang et al. 2006

respectively). An elasto-plastic fracturing model has been formulated by Aadnoy and Belayneh

(2004).

3. Method of analysis

In this article the wellbore is simulated by a hollow cylinder with Ri and Ro the inner and outer

radii of the cylinder, Fig. 2. Borehole stresses σr and σθ are also defined in Fig. 2. If Ro → ∞, the

solution approaches that of a borehole penetrating an infinite medium. Stresses are controlled by the

wellbore pressure Pw, the outer stress σho, and the mechanical properties of the rock. Boundary

stresses Pw and σho are positive when compressive, the radial stress is σr, and the tangential stress is

σθ. The radial stress component changes from the far-field stress value σho, and on the opening wall

is equal to the well pressure Pw. The critical state is reached when stresses developed at the

wellbore wall satisfy either a shear failure or a fracturing criterion. 

The nonlinear model used in this study for breakdown pressure calculations is the simplified

version (Nawrocki et al. 1998) of the model introducing stress-dependent elasticity functions

proposed by Nawrocki et al. (1996). To explicitly introduce material nonlinearities into the analysis,

that model introduced a mean stress-dependent compressibility function C(σ) and a shear stress and

minimum stress-dependent inverse shear modulus function D(σ3, τ2), assuming that hydrostatic

deformation is governed by C(σ), and deviatoric deformation is governed by D(σ3, τ2). In its

simplified version, the effect of minor principal stress σ3 on material behaviour had been neglected.

Such an approach is useful when limited data on material behaviour, such as only uniaxial

compression test results, are available, which is often the case as the uniaxial compression test is by

far the most popular test in rock mechanics. It means that the following constitutive law is used

herein:

Fig. 2 Wellbore stresses and wellbore model
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 (6)

where σ1 > σ2 > σ3 are principal stresses, σ is the mean stress, τ2 = ½ (σ1−σ3) is the shear stress,

and material nonlinearities are introduced through stress-dependent functions C(σ) and D(τ2), which

are expressed in the form of power series:

 (7)

Note, that when series (7) are truncated at the first term, that is, when C(σ) = Co and D(τ2) = Do,

then the linear equations can be recovered as a special case for the constitutive law (6). Also note

that parameters of the power series must be determined using compression test data. 

4. Breakdown pressure calculations

Mechanical properties of sandstone and siltstone have been taken into account in collapse and

breakdown pressure calculations. Cylindrical specimens 121 mm high and 61 mm in diameter made

of these two rocks have been tested in uniaxial compression. Obtained results are shown in Fig. 3a

(sandstone) and 3b (siltstone). The sandstone compression curve is convex upward, whereas that of

the siltstone downward. Thus, at a given reference stress level σ1
ref, linear approximation of a real,

nonlinear, compression curve overestimates strains for siltstone (ε1
LE > ε1

NL), and underestimates

strains for sandstone (ε1
LE < ε1

NL). This will have consequences on calculated nonlinear critical

wellbore pressures.

Results of compression tests shown in Fig. 3 provided means for estimating constitutive para-

meters used both for linear and nonlinear part of this study. Note, that the power series coefficients

Ci (i = 0, 1,..., n), and Dj ( j = 0, 1, 2,..., m) in Eqs. (7) can be determined by uniaxial compression

6ε1 = 2C σ( )σ 3D– τ2( ) σ σ1–( )

6ε2 = 2C σ( )σ 3D– τ2( ) σ σ2–( )

6ε3 = 2C σ( )σ 3D– τ2( ) σ σ3–( )

C σ( ) = Co+C1σ +…+ Cnσ
n
 =  

i 0=

n

∑ Ciσ
i

D τ2( ) = Do+D1τ2 +…+ Dmτ 2

m
 =  

j 0=

m

∑ Djτ 2

j

Fig. 3 Compression curves for a) sandstone, b) siltstone
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tests where σ1 is the axial compressive stress and σ2 = σ3 = 0. The strain measured in the direction

of σ1 is ε1 and ε2 = ε3 are lateral strains. Power series coefficients Ci and Dj can be identified by

plotting ε = ε1 + 2ε2 versus σ = σ1/3, and ε1 − ε2 versus σ1/2, respectively. Such format for coeffici-

ents determination results from Eqs. (6). Adding Eqs. (6) yields ε = C(σ)σ, whereas subtracting

them results in ε1 − ε2 = D(τ2)τ3, where τ3 = (σ1 − σ2)/2. Note that for uniaxial compression test

mean normal stress σ = σ1/3, volumetric strain ε = ε1 + 2ε2, and τ3 = σ1/2. Therefore Cs can be

identified by plotting ε1 + 2ε2 versus σ1/3 and Ds by plotting ε1 − ε2 versus σ1/2. Also note that for

linear materials both functions are linear. They deviate from linearity when material behaviour

becomes nonlinear. Then Co is the slope of the volumetric strain ε versus mean stress σ curve at

σ = 0, and Do is the slope of the ε1 − ε2 versus σ1/2 curve at τ2 = 0. Therefore, the constants Co and

Do may be viewed as the compressibility modulus and inverted shear modulus of the nonlinear

material behaving linearly for very small stresses and strains. Indeed, for linear materials, the power

law (7) is merely a straight line. To track nonlinear material behaviour, those lines have to become

curved when the uniaxial compression curve departs from linearity. Thus, the more nonlinear

material behaviour is, the more terms must be taken into account in the power series (8) to

reproduce such behaviour. Using this methodology, experimental data has been presented in format

allowing for Cs and Ds determination as discussed above. It has been found that four Cs and four

Ds coefficients reproduce accurately compressional behaviour of sandstone, whereas five Cs and

five Ds are needed for siltstone, and the specific values have been determined. As indicated above,

Co and Do coefficients have been determined first as the initial slopes of the corresponding functions

plotted as discussed. The additional coefficients have been determined by gradually increasing the

number of coefficients in the power series (7) until the sufficient accuracy required to minimize the

least squares error has been achieved. In this approach experimental data represent observed values

and the power series (7) used in constitutive relations (6) represent values given by the model. More

coefficients are required for siltstone than for sandstone because compressional behavior of silstone

is more nonlinear. This can be easily verified when comparing compression curves of both rocks,

Fig. 3. 

The question how sensitive is the result to Cs and Ds may arise. There is major results sensitivity

to increasing number of coefficient and it can be measured by qualitative and quantitative change in

borehole stresses, especially the hoop stress σθ, obtained when the number of coefficients is

increasing. For example, the quantitative change is represented by the gradual decrease of hoop

stress at the borehole wall and the qualitative change by the corresponding change of the shape of

the hoop stress distribution σθ = f (r) meaning that, when compared to linear material, nonlinear

materials can produce the maximum hoop stress not at the borehole wall but within a rock

formation, away from the borehole wall. The intensity of these effects will be different for different

materials and will depend on nonlinearity level and on other parameters such as boundary

conditions in terms of in situ stresses, wellbore pressures and geometry. However, for a given

number of power series coefficients selected to reproduce material behavior well, the results are not

that much sensitive and the sensitivity question itself becomes of secondary importance. This is

because the obtained set of coefficients is by definition the best set that has to be used to model

mechanical behavior of the material considered. There will be a different set, meaning a different

number of coefficients and their different values, when properties of the material surrounding a

wellbore change and the major qualitative and quantitative features distinct for nonlinear solution

will be still there. They can be significant at times, are of the primary importance, and define the

difference between linear and nonlinear analysis. Then varying the power series coefficients by a
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small amount has only marginal effect on the final solution compared to the major differences

already highlighted above. 

With coefficients of the power series known, the nonlinear problem can be solved using the

methodology discussed by Nawrocki et al. (1998). A basic equations set of the nonlinear problem

consists of the nonlinear relations (6), the equilibrium equation, the strain compatibility equations,

the strain-displacement relations, and the boundary conditions for radial stress:

 and (8)

Using these equations, the nonlinear problem can be reduced to solving second-order differential

equation presented in terms of radial stress σr and its two derivatives: dσr/dr, and d2σr/dr2. In the

solution process, this equation is replaced by a system of first-order differential equations, which are

solved using the shooting method. This method is commonly used in solving the so-called “two

point boundary value problems”; that is, problems where boundary values of the unknown function

are specified at two ends of the integration interval, as given by Eq. (8). 

Using shooting method, the integration is begun from the left end of the integration interval,

r = Ri, and is continued until the right end, r = Ro, is reached. The solution process assumes that,

despite boundary conditions (8) for radial stress, the boundary value of the radial stress derivative is

also known at r = Ri. Thus, beginning the integration at r = Ri, a certain value of radial stress at

r = Ro (shooting result) will result. That value is compared to the boundary condition at r = Ro. The

boundary condition for radial stress derivative dσr/dr at the left end of the integration interval r = Ri

is modified accordingly, and the process repeated until conditions (8) are satisfied. For the two

rocks considered in this article the number of iterations needed did not exceed nine. 

The standard hollow cylinder elastic stress solution has been used for calculating linear borehole

stresses. The initial Young's modulus Eo (the modulus determined at zero strain, Fig. 3) and the

corresponding initial Poisson's ratio νo have been used for the linear analysis together with the

following equations:

 (9)

Figs. 4 and 5 show distributions of normalized hoop stress versus normalized radius for both

linear and nonlinear models. For these simulations, the borehole radius Ri and external radius Ro are

assumed to be 0.3 m and 2.1 m respectively for sandstone, whereas Ri = 0.3 m and Ro = 1.5 m are

assumed for siltstone. The far field stress assumed in the analysis for sandstone is σho = 10 MPa,

and several different non-penetrating well pressures, Pw = 0 (open hole case), Pw = 20, 40, and 60

MPa, have been used. The respective values for siltstone are: σho = 5 MPa, and Pw = 0, Pw = 3, and

Pw = 6 MPa. Both linear and nonlinear results are presented for comparison in Figs. 4 and 5. 

Significant differences in σθ predictions are apparent: compared to a linear calculation, the nonlinear

model gives lower hoop stresses for sandstone and higher for siltstone. This difference is most

significant at low well pressures. Moreover, hoop stresses obtained using the nonlinear model show

σθ |max located not at the cylinder wall, as the linear elastic model predicts, but at some distance from

the wall, Fig. 4. Hoop stress obtained using the nonlinear model is more realistic than those

σr = Pw@r = Ri σr = σho@r = Ro

σθ = 
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2
r
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2
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+( )Pw–
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predicted by linear elasticity.

Obtained results have been further used for the purpose of breakdown pressure calculations. In

addition, the collapse pressure Pcoll has been also calculated. The Coulomb failure criterion has been

used for calculating well collapse pressure corresponding to the onset of shear failure:

(σ1 – σ2) – (σ1 + σ2)sinϕ – 2cocosϕ = 0 (10)

where co is cohesion, and ϕ is the angle of internal friction. Graphical representation of this criterion

is shown in Fig. 6. Instead of principal stresses σ1 and σ2, the radial and circumferential borehole

stresses are shown in Fig. 6. The tension cut-off part of the criterion has been used in breakdown

pressure calculations and two stress regimes can be seen: above the hydrostatic line (shear failure

criterion BD; breakdown criterion AB) hoop stress is a major principal stress σ1 = σθ , whereas

below it (shear failure criterion FG; breakdown criterion AF) radial stress becomes a major

principal stress, σ1 = σr. Schematic stress distributions corresponding to these two regimes are also

shown in Fig. 6. 

The following equation specifies shear failure along BD:

 (11)

whereas 

f1: σθ σr–( ) σθ σr+( )– sinϕ − 2cocosϕ = 0

Fig. 4 Normalized hoop stress for sandstone Fig. 5 Normalized hoop stress for siltstone

Fig. 6 Coulomb failure criterion with tension cut-off
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  (12)

should be used for stress combinations below the hydrostatic line. Actually, if one assumes that only

positive well pressures are admissible (no suction on the wellbore wall), then only CD, FG, and EF

represent the active criterion. Stress states corresponding to AB, BC, and AE are not possible

because with negative well pressures excluded, the minimum well pressure is zero (open hole), i.e.

σr |r=Ri = 0. Thus, with suction excluded, f1 shrinks to CD. Consequently, fracturing along AB is also

not possible as (again, with suction excluded) radial stress at the wellbore wall cannot become

tensile. On the other hand, for stress states below the hydrostatic line, AF shrinks to EF because σho

is the minimum value of well pressure for which radial stress can become a major principal stress

σ1. All stress combinations along FG are theoretically possible.

The linear elastic borehole stresses given by Eq. (9) can be readily used with breakdown criterion

σθ = To and collapse criteria (11) and (12) to establish the limits of linear elastic solution. Thus, for

linear elastic case the following equation for breakdown pressure along EF has been derived:

(13)

where To has to be substituted as a negative number. For wellbore penetrating an infinite medium

this equation shrinks to 2σho − To. The lower limit for breakdown pressure corresponding to the

fracturing regime EF is σho and the upper limit for the linear elastic breakdown pressure (Pb)
LE

max is

defined by radial stress corresponding to point F. It can be specified by calculating σθ from (12) and

assuming σθ = To:

(14)

For well pressure greater than the limit pressure specified above, we may have collapse corre-

sponding to the failure criterion f2, Eq. (12). 

Accordingly, the linear elastic collapse pressure corresponding to the CD regime can be calculated

by substituting σθ |r = a from Eq. (9) to f1 to obtain:

(15)

and the linear elastic collapse pressure corresponding to the FG regime is: 

(16)

The linear and nonlinear breakdown pressures are compared on Fig. 7. On this figure, the break-

down pressure has been presented as a function of σho. It can be seen in Fig. 7, that nonlinear

breakdown pressures are lower than the linear breakdown pressures for sandstone and greater than

the corresponding linear pressures for siltstone. In both cases the discrepancy between the linear and

nonlinear solutions increases with σho increase. 

Finally, Figs. 8 and 9 provide the comparison between linear and nonlinear collapse pressures.

Fig. 8 refers to the failure regime CD, whereas linear and nonlinear collapse pressures correspond-

f2: σθ σr–( ) + σθ σr+( )sinϕ + 2cocosϕ = 0

Pb( )
LE

 = 
2Ro

2
σho Ro

2
Ri

2
–( )To–

Ri

2
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2
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------------------------------------------------

Pb( )
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 = 
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ing to the stress regime FG are shown in Fig. 9. It can be seen that linear elastic collapse pressure

Pcoll
LE is greater than nonlinear collapse pressure Pcoll

NL for sandstone, and the opposite statement is

true for siltstone, where the major differences between those two solutions are visible at low

stresses. 

Fig. 7 Comparison of linear and nonlinear breakdown pressures

Fig. 8 Comparison of linear and nonlinear collapse pressures for stress regime CD

Fig. 9 Comparison of linear and nonlinear collapse pressures for stress regime FG
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5. Conclusions

Both the approach and methods of analysis presented in this paper should be effective in more

robust and accurate breakdown pressure analysis than provided by the classic model. They can be

used for any rock showing nonlinear behaviour in compression. A comparison between the non-

linear and linear breakdown and collapse pressures done in this paper emphasises the importance of

a more accurate analysis, such as provided by the nonlinear models. Obtained results show, that

nonlinear model predictions are quite different from linear elastic model predictions both in terms of

borehole stresses and also in terms of breakdown and collapse pressures. For the specific case of

predicting tangential stresses, which control breakdown pressure around a borehole, the linear model

predicts a substantially different tangential stress than the nonlinear model. 

One interesting conclusion is that, contrary to common assumptions, linear elastic model does not

necessarily over-predict borehole stresses. Over-predictions are common because most geomaterials

tested in compression have compression curves convex upward as for the sandstone. The opposite

case can be true, depending on rock type and test interpretation. Thus, results depend strongly on

the constitutive model and the nonlinear model can give either higher or lower Pb1 and Pcoll

pressures than the classic, linear elastic model. This means that the estimates of σH made using

linear models give stress values which are different than the real values in the earth. A sensitivity

analysis was carried out using varying but still reasonable degrees of nonlinearity in order to

estimate the typical percentage errors that may arise in practice if conventional elastic models are

used and conclude that most published data on σH are under-estimates of the actual values. Finding

the effect of material properties significant for predicted breakdown pressures, it seems worthwhile

to develop a numerical model for nonlinear breakdown pressure analysis in anisotropic in-situ stress

field. Unfortunately, the development of analytical or semi-analytical solutions does not seem

feasible in that case, and it looks like numerical approaches are the only option available.
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