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Abstract. In recent years, several computer-aided pattern recognition and data mining techniques have
been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it
learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks
are the most widely used pattern recognition methods that have been utilized to model soil behavior.
Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary
polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical
applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical
engineering with particular reference to constitutive modeling of soils. It covers applications of artificial
neural network, genetic programming and evolutionary programming approaches for soil modeling. It is
suggested that these systems could be developed as efficient tools for modeling of soils and analysis of
geotechnical engineering problems, especially for cases where the behavior is too complex and conventional
models are unable to effectively describe various aspects of the behavior. It is also recognized that these
techniques are complementary to conventional soil models rather than a substitute to them. 

Keywords: artificial intelligence; data mining; neural network; genetic programming; evolutionary com-
putation; soil modeling; geotechnical engineering.

1. Introduction

In the past few decades the finite element method (FEM) has been used successfully to predict the

response of systems across a whole range of industries including geotechnical engineering. In this

numerical analysis the behavior of the actual material is approximated with that of an idealized

material that deforms in accordance with some constitutive relationships. Therefore the choice of an

appropriate constitutive model which adequately describes the behavior of the material plays a

significant role in the accuracy and reliability of the numerical predictions.

During the past few decades several constitutive models have been developed for different

geomaterials based on mechanics (e.g., Desai et al. 1986, Duncan and Chang 1970, Einstein and

Hirschfeld 1973, Kawamoto et al. 1988, Lade and Duncan 1975, Roscoe and Schofield 1963). Most

of these models involve determination of material parameters, many of which have no physical

meaning (Shin and Pande 2000). The engineering properties of geomaterials exhibit varied and
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uncertain behavior due to the complex and imprecise physical processes associated with the formation

of these materials. Recognition of nonlinear behavior of soils and rocks becomes increasingly

important in design, stability analysis, prediction and control of failure for geotechnical engineering

projects. In spite of considerable complexities of constitutive theories, due to the erratic nature of

soils and rocks, none of the existing constitutive models can completely describe the real behavior

of various types of these materials under various stress paths and loading conditions. 

In conventional constitutive material modeling, an appropriate mathematical model is initially

selected and the parameters of the model (material parameters) are then identified from appropriate

physical tests on representative samples to capture the material behavior. When these constitutive

models are used in numerical analysis (e.g., FEA), the accuracy with which the selected material

model represents the various aspects of the actual material behavior and also the accuracy of the

identified material parameters affect the accuracy of the numerical predictions. 

In recent years, some researchers have attempted to build nonlinear constitutive models based on

computer-aided pattern recognition methods. Artificial neural network (ANN) has been the most

widely used pattern recognition technique to model the constitutive material behavior. This paper

presents a review and evaluation of different AI and data mining techniques that have been

proposed for modeling of soils. In particular, it covers the applications artificial neural networks,

genetic programming and evolutionary polynomial regression techniques in soil modeling and some

geotechnical engineering problems. 

2. Data driven techniques 

In recent years, by pervasive developments in computational software and hardware, several

computer aided pattern recognition and data mining techniques have been emerged and developed.

The main idea behind a pattern recognition system is that it learns adaptively from experience and

extracts various discriminants, each appropriate for its purpose. Although there are other general

purpose data-driven techniques, artificial neural network (ANN) and genetic programming (GP) are

the most widely used pattern recognition methods that have been utilized to model complex

engineering problems and capture nonlinear interactions between various parameters in a system. In

this approach model construction is usually divided into three stages: (i) function identification, (ii)

parameter estimation and (iii) validation. For model construction, a physical system with an output

y, dependent on a set of inputs X and parameters θ, can be mathematically formulated as

(1)

where F is a function in an m-dimensional space where m is the number of inputs. Data-driven

techniques tend to reconstruct F from input-output data. GP generates a population of expressions

for F, coded in tree structures of variable size, and performs a global search of the best fit expression

for F. ANN goal, on the other hand, is to map F rather than to find a feasible structure for it.

3. Artificial neural network

Artificial neural networks (ANNs) are computational models broadly inspired by the organization

of the human brain. The most important features of a neural network are its abilities to learn and to

y = F X, θ( )
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be error tolerant. In other words an artificial neural network is able to acquire, represent, and compute

a mapping from a multivariate space of information to another given a set of data representing that

mapping (Garrett 1994). ANN models are adaptive and capable of generalization. They can handle

imperfect or incomplete data, and can capture nonlinear and complex interactions among variables

of a system. Because of these features, the artificial neural network is emerging as a powerful tool

for modeling.

At the most abstract description, a neural network can be considered of as a black box, where

data is fed from one side, and processed by the neural network which then produces an output

according to the supplied input (Caudill 1991). Although a neural network can usually process any

kind of data (e.g., qualitative or quantitative information), the data fed into the neural network

should be pre-processed (e.g., filtered, transformed) to enable faster training and better performance.

In fact, the selection, pre-processing, and coding of information is one of the main issues to deal

with when working with neural networks. 

A neural network generally consists of an input layer, one or more hidden layers and an output

layer of neurons. The neurons are the processing units within the neural network and are usually

arranged in layers. Each layer is composed of several processing units. The processing units are fully

connected to processing units of the succeeding layer. The information is propagated through the

neural network layer by layer. Connections are the paths between neurons where all the information

flows within a neural network. A neuron collects information from all preceding neurons relative to

the flow of the information and propagates its output to the neurons in the following layer. The

output of each preceding neuron is modulated by a corresponding weight and a bias. This output is

then modified by transfer function and becomes the final output of the neuron (Dayhoff 1990). This

signal is then propagated to the neurons of the next layer. The most frequently used and efficient

learning procedure for multi-layer neural networks is the back-propagation learning algorithm based

on the generalized delta rule (Rumelhart et al. 1994). The back-propagation learning rule can be

used to adjust the weights and biases of a network in order to minimize the sum-squared error of

the network. This is done by continually changing the values of the network weights and biases in

the direction of steepest descent with respect to error. Derivatives of the error vector are calculated

for the network's output layer and then back-propagated through the network until derivatives of

error are available for each hidden layer. 

Training refers to the process that repeatedly applies input vectors to the network and calculates

errors with respect to the target vectors and then finds new weights and biases with the learning

rule. It repeats this cycle until the sum-squared error falls beneath an error goal, or a maximum

number of epochs is reached. Training a feed-forward network with the back-propagation learning

rule is most frequently used in function approximation and pattern recognition. More detailed

description of ANNs is out of the scope of this paper. Texts describing aspects and features of ANN

models and architectures in greater detail can be found in the literature (e.g., Lippmann 1987, Flood

and Kartam 1994).

3.1 Application of artificial neural network for soil modeling

Modeling of soil behavior plays an important role in dealing with issues related to soil mechanics

and foundation engineering. The application of ANN offers an alternative means for the modeling

of soil behavior. A neural network based constitutive model (NNCM) is fundamentally different

from a conventional constitutive model (Zhu et al. 1998a). One of its distinctive features is that it is
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based on experimental data rather than on assumptions made in developing the constitutive model.

Furthermore, NNCM requires no material parameters to be identified. These features ascertain the

NNCM to be an objective model that can truly represent the natural connections among variables,

rather than a subjective model which assumes the variables obey a set of predefined relations. 

The NNCM learns from experimental data and forms neural connections stimuli from the learning

process. Because of its unique learning, training and prediction characteristics, ANN has great

potential in soil engineering applications, particularly for the situations where good experimental

data are available and where conventional constitutive modeling may be difficult and time consuming.

A significant number of NNCMs have been developed for modeling of geomaterials. The

application of neural network (NN) for constitutive modeling was first proposed by Ghaboussi et al

(1990, 1991) for concrete. Later on Ellis et al. (1992) and Ghaboussi et al. (1994) applied the

concept of neural network-based constitutive modeling to model the behavior of geomaterials. These

works indicated that NNCMs can effectively capture nonlinear material behavior. 

The common procedure of using ANN for constitutive modeling involves training a neural

network using laboratory (or in-situ) data to learn the material behavior. The trained network is then

used to predict the behavior of the material under new loading conditions. The advantages of using

ANN when it is trained directly from some experimental (or in-situ) data is obvious. If the training

data contains enough and relevant information, the trained network should be able to generalize the

material behavior to new loading conditions. 

Among various types of neural networks, multi-layer feed-forward back-propagation network is

known to be the most suitable architecture to describe the nonlinear relationships, and so far, has

been the main type of neural network used to describe material constitutive behavior (Hashash et al.

2004). The role of the ANN is to attribute a given set of output vectors to a given set of input

vectors. When applied to the constitutive description, the physical nature of these input-output data

is determined by the measured quantities like stresses, strains, pore pressures, temperatures, etc. A

typical NNCM is shown schematically in Fig. 1. 

In the simple example shown in Fig. 1 one input layer, two hidden layers and one output layer are

considered for the network. Three principal strain components (ε1, ε2 and ε3) for an assumed

medium are input and a forward pass through the network including simple computations results in

Fig. 1 A simple NNCM
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the prediction of three corresponding principal stresses (σ1, σ2 and σ3) in the output layer. Every

neuron in each layer is connected to every neuron in the next layer and each such connection has

associated with it a “connection weight”. The knowledge stored in the developed network is

represented by the set of connection weights. The neural network is trained by appropriately modifying

its connection weights through the set of “training cases” until the predicted output variables agree

satisfactory with the desired variables. The “back-propagation” term (Rumelhart et al. 1986) refers

to the algorithm by which the observed error in the predicted output variables is used to modify the

connection weights.

Encouraged by the attractive features of neural networks, after exploration of the potential of

ANN for constitutive modeling during early 90’s; a number of NNCMs for different materials were

developed. Millar and Clarici (1994) showed the capability of ANN for modeling of behavior of

rocks in rock mechanics applications. They used laboratory test results of axial stress-axial strain

measurements for training and testing of ANN. Four different ANN models, in terms of number of

hidden neurons, were developed and it was shown that ANNs are able to predict the stress-strain

relationship with good accuracy. In this work, a multilayer perceptron architecture with back-

propagation training algorithm was used. The input-output set for training the model was:

Inputs: σ3, ε1, ε3 and (sign )

Output: σ1

where σ1 is the major principal stress, σ3 is the confining pressure, ε1 is the major principal strain,

ε3 is the minor principal strain and sign  is the sign of the gradient of the stress-strain

curve. The fact that the latter input parameter was required for the ANN training implied that some

indication of the history of stress state was necessary as input in the training process.

Ellis et al. (1995) modeled the stress-strain relation of sands using ANN and showed good

agreement between laboratory data and modeling results. A series of undrained triaxial tests on mortar

sand was used to develop the models. Two different types of architecture were used to evaluate the

ability of ANN for modeling sand behavior. They were the conventional neural network without

feedback and the sequential NN with feedback. 

In a sequential network (Fig. 2), at the initial phase of the training a pattern is input to the plan

units. Feed forward process occurs as in the standard backpropagation algorithm, producing the first

output pattern. This output is then copied back to the current state units for the next feed forward

process. The sequential NN has the potential in incorporating the path dependency of mechanical

behavior into the model. In order to accommodate this aspect, the input-output parameters for the

model should be variables of time. Based on the results it was found that the sequential NN worked

better than the conventional backpropagation NN. Thus the authors proposed a sequential network

with three layers which had 10 neurons in the intermediate layer and its input-output parameters

dσ1/dε1[ ]

dσ1/dε1[ ]

Fig. 2 Architecture of a typical sequential NN
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were:

Inputs: , σ3, , , OCR, Dr and Cu

Outputs:  and  

where u is the pore water pressure, OCR is the over consolidation ratio which reflects the

previous stress history, Dr is the initial relative density and Cu is the coefficient of uniformity which

characterizes the grain size distribution of sand. A constant value of 0.0405% was used for the axial

strain increment, Δε1. Based on the reported results, the NN predictions, in particular the values of

pore water pressure, were not very accurate. Later, it was argued that a prescribed strain rate

(0.0405% per minute) has to be defined in order to make predictions with this model (Najjar and

Basheer 1996). This issue limits the developed network as applicable only to a specific case with a

strain rate of 0.0405% per minute. 

Millar and Calderbank (1995) showed that a single multilayer feedforward neural network is able

to predict the deformability behavior of rock. Data used to train the neural network model was

derived from the results of a series of simulations of triaxial tests using commercial explicit finite

difference software, FLAC. The authors made some modifications to their ANN training approach

in order to resolve the deficiencies associated with the earlier work (Millar and Clarici 1994) and

make their model worthy for immediate use as a stand alone constitutive relationship in a numerical

modeling code. For this purpose the authors used the same ANN architecture as their earlier work,

but they revised the way the input-output parameters were introduced to ANN in the training

procedure. The input-output parameter sets used for the training of their revised ANN based model

were:

Inputs: , ,  and  

Outputs:  and 

where  and  are the increments of major and minor principal strains, respectively. The

data, which were produced by triaxial test simulation in FLAC using strain softening model

available within this software, had to be scaled within the interval between −0.5 and 0.5 for the

training process. Also the value of minor principal stress, σ3, was considered not to be identical for

a single test. This was done through the superposition of a component of noise to the input values

on each presentation of the data to the NN. The optimum NN structure obtained for the constitutive

relationship was then used to develop a user defined constitutive model, called NN UDM, back in

FLAC. Although the accuracy of the NN model over the training data was good however its

prediction ability was so poor and the actual behavior of the NN UDM was far from desired

behavior when it was used in place of the standard strain softening constitutive model within FLAC.

Amorosi et al. (1996) also adopted a neural network based representation for constitutive behavior

of geomaterials. The data obtained from undrained triaxial tests on a particular clay (Vallericca clay)

was used to develop the NN model. The input-output parameter sets used in this work were

Inputs: , σ3, ,  and OCR 

Outputs:  and 

The constitutive behavior of Vallericca clay was shown to be adequately represented with the

trained NN model. The developed model had a back propagation multilayered perceptron architecture
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with three layers. The input and output layers used 5 and 2 nodes respectively while the hidden

layer contained four nodes.

Logar and Turk (1997) presented a constitutive model for soft soils using a neural network. The

results from oedometer loading tests on a silty soil were used to train a feed forward neural

network. Based on the source of the available data the following input-output set was used to

develop the model

Inputs: σ', Z, w0, wl and wp

Output: e

where σ' is effective stress, Z is the depth from which the sample was taken, w0 is natural water

content, wl is liquid limit, wp is plastic limit and e is void ratio. The optimum NN structure was

obtained by a single hidden layer consisting of 35 hidden neurons. The results for approximation of

oedometer curves by NN were relatively accurate compared to the experimental measurements with

average error of around 10% for the training phase. The trained neural network was used to

determine the tangential oedometer modulus as

(2)

The above equation was then used, instead of the elastic parameter, in a finite element code to

model the amount of settlement in an embankment. The results were reported to be comparable

with those obtained using a cap model for deformation. 

Penumadu and Chameau (1997) presented a model for soil behavior within a unified environment

based on NN. The same triaxial data as used by Ellis et al. (1995) was used for training and testing

of the NN sand model. Also stress-strain data obtained from a series of strain controlled undrained

triaxial tests on clay was used for training and testing the NN clay model. The same type of NN as

the one used in Ellis et al. (1995) (feed back sequential NN) was again used in this work. The NN

architecture and results for Mortar sand were identical to those presented in Ellis et al. (1995),

however for clay a different NN architecture including one hidden layer with 10 nodes was selected.

The input-output set for the clay model was

Inputs: , , , 

Output: 

where  is shear stress and  is the rate of strain increment. 

Zhu et al. (1998a) presented a recurrent neural network (RNN) model for simulating and

predicting shear behavior of two different soils. A recurrent neural network is a network where the

connections between the units form a directed cycle. Recurrent neural networks must be approached

differently from feed forward neural networks, both when analyzing their behavior and training

them. Hidden nodes in an RNN can transmit their outputs to both input layer and output layer

simultaneously (Elman 1990). A typical architecture of an RNN with one hidden layer is shown in

Fig. 3.

Laboratory based experimental data were used for modeling including a set of strain controlled

undrained tests and a set of stress controlled drained tests performed on a residual Hawaiian

volcanic soil. The choice of input-output variables was different due to different sources of data. For
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the strain controlled test the goal was to measure stress response of the specimen to a given strain

value, therefore the selected input-output variables for RNN training were:

Inputs: iq, , iu, ,  and ie

Outputs:  and 

where q = σ1 − σ3 is deviatoric stress.

In contrast, as for a stress controlled test the shear stress and stress increment were known in

advance, the goal was to predict the strain response of the specimen due to a stress increase. Thus

for such test results, the selected input-output parameters for the RNN were:

Inputs: , , , , iu, ,  and ie

Outputs:  and 

In both models, RNN structure with one hidden layer containing 20 nodes was found to generate

the minimal sum squared error. Good agreement between the modeling results and the observed

experimental data showed the efficiency of the RNN approach in modeling complex soil behavior.

The authors suggested that such an RNN model could be applicable to other soils if appropriate

input and output parameters are chosen.

Zhu et al. (1998b) published a similar work in which the same NNCM (in terms of network type,

architecture and input-output set) was used to model soil behavior, using generally the same data as

in Zhu et al. (1998a). However in this work the authors proposed that in the network structure one

hidden layer with 20 and 35 nodes is suitable for the modeling of the strain controlled undrained

tests and stress controlled drained tests respectively. 

Ghaboussi et al. (1998) described a new indirect method, called autoprogressive training, for

training neural network material models from structural tests to learn complex stress-strain behavior

of materials. The global data measured form a structural load-deflection test was used to train the

network. The main premise of the work was that the structural tests usually generate a large number

of spatial patterns of stresses and strains that can be used for training. The term “autoprogressive

training” referred to a process in which the neural network is itself an integral part of the iterative

algorithm that is used to create the stress-strain training cases from the global response data. This

method differs from common applications of NN models in the sense that there is not a known set

of data to train the network, but the material model is extracted iteratively from global measurements

using nonlinear finite element analysis (Haj-Ali et al. 2001). The applications discussed in this

paper show a procedure that can be used to create the stress-strain training data for the neural network

material model, having knowledge of the global load vs. deflection response of the structure. In
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contrast to previous applications of neural networks in constitutive modeling, in this method there

was not “a priori” a set of directly measured information that accurately represents the material

behavior but this information must be extracted from the recorded structural response. Based on the

results of two simple examples presented in this paper, the predictions of the neural network trained

in this way were consistent. However, the minimum number of measured structural responses, and

their type and locations on the structure, that are required in order to uniquely determine a neural

network material model is an important theoretical issue that remains to be addressed. 

Sidarta and Ghaboussi (1998) modified the earlier Ghaboussi et al. (1998) work in order to

develop a neural network based constitutive model for geomaterials using autoprogressive training.

They used a non-uniform material test which had a non-uniform distribution of stresses and strains

within the specimen. Then the measured boundary forces and displacements were applied in a finite

element model of the test to generate the input and output data for training the neural network

material model. Using the data generated in that way, the autoprogressive method was used to train

the neural network material model. Three drained triaxial tests on Sacramento River sand were

considered in this work. The tests were performed with end friction condition, and the relative

densities of the samples ranged from loose to medium dense to dense. The measured axial forces

and confining pressures were directly from the test data. The radial displacements of the outer surface

of each sample were determined by assuming a parabolic distribution. These measured force and

displacement boundary conditions were used in the autoprogressive method. The components of

stress and strain, which were required to train the neural network material model, were constructed

artificially in the finite element model of the test. In the model, the components of current strain

and void ratio, (together with stresses and strains of the previous history points where necessary)

were used as input to predict the components of current stress as output. The results indicated that

the material behavior becomes increasingly more complex (requiring more history point modules)

with increasing the soil density. 

The trained neural networks were used in finite element analysis of actual triaxial test with end

friction as well as finite element analyses of hypothetical tests with no end friction. The results of

the analysis with end friction matched well with those of the actual experiment. However the results

of the forward analysis of the hypothetical tests with no end friction showed significant differences

with the actual experimental results. The work presented in this paper, introduced an improvement

over conventionally trained neural network based constitutive models for geomaterials. The attraction

of the non-uniform test, used in this study, is that a range of stress levels and a variety of stress

paths may be represented in a single test, therefore the test results contain information on material

behavior for different stress levels and stress paths. If that information could be extracted, then the

results of a single non-uniform material test may be sufficient for training a neural network constitutive

model and there is no need for a large number of conventional triaxial tests with different stress

paths to produce the training data.

Ghaboussi and Sidarta (1998) and Sidarta and Ghaboussi (1998) presented a nested adaptive neural

network (NANN) for constitutive modeling. The idea behind this approach is that the material data

has an inherent structure and one type of such inherent internal structure in data is the nested

structure. Basically nested adaptive neural networks take advantage of the nested structure of the

material test data, and reflect it in the architecture of the neural network. A nested neural network

consists of several modules. The starting point of building a NANN is to develop a base module to

represent the material behavior in the lowest function space in the data structure. This base module

is a standard multi-layer feed-forward neural network. The base module is then augmented by
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attaching added modules to form a higher level NANN. The process is theoretically open ended and

more and more modules can be added. The added modules themselves are also standard multi-layer

feed-forward neural networks. The developed NANNs were applied to modeling of drained and

undrained behavior of Sacramento River sand in triaxial compression tests. The objective was to

model a material behavior in both drained and undrained conditions for a range of initial void ratios

and initial confining pressures. First a base module was developed and then the history point

modules were added. The results indicated that the effect of history points on the material behavior

becomes increasingly more complex and difficult for the neural network to learn. With increasing

the number of history points, the number of inputs can increase significantly, which after even a few

steps this can make the network massively complex and result in much higher computational time

and cost.

Another neural network based constitutive relationship was presented by Penumadu and Zhao

(1999) to model stress-strain and volume change behavior of sand and gravel under drained triaxial

compression test conditions. The NNCMs presented in this paper were developed based on a large

database comprised of nearly 250 triaxial test results collected from literature. Two neural network

sand models (Sand-Low and Sand-High) were developed to model the test results on sand in the

low confining pressure (less than 700 kPa) and high confining pressure (higher than 700 kPa) range.

The division at 700 kPa was chosen arbitrarily by the authors. Also a single model was developed

for test results on gravel. 

A sequential neural network structure (Fig. 3) was used and like other NNCMs, back-propagation

algorithm was employed to train the neural networks. The final optimum network architecture had

three layers with eleven neurons in input layer, fifteen neurons in the hidden layer and two neurons

in output layer. The number of hidden units was determined using a trial and error procedure. The

selected input-output variables for NN training were:

Inputs: , , , , , e, ns, h, D50, Cu, Cc

Outputs: , 

Seven of the eleven inputs were used to describe the hardness of the mineral (h), shape factor (ns),

equivalent particle size and the particle size distribution (D50, Cu, Cc), void ratio (e) and effective

confining pressure ( ). The current state units of stress and strain were represented with three

inputs using deviator stress ( ), axial strain ( ) and volumetric strain ( ). For a given specimen

conditions and current state units the objective of neural network was to predict deviator stress

( ) and volumetric strain ( ) of the next state of an input axial strain increment ( ).

An interesting feature for training the network in this research was that a fixed set of axial strain

increments were chosen consistently for all the test data. This means that the value of strain

increment was chosen to increase at a constant magnitude (e.g., 0.1%). The original experimental

data (deviator stress-axial strain and volumetric strain-axial strain) were not recorded at a specific

strain increment. The authors obtained the training pattern corresponding to the considered strain

increment by digitalizing the data and using cubic spline interpolation (Press et al. 1992). It was

observed that the neural network material models obtained in this research were able to represent

the constitutive behavior of cohesionless soil with reasonable accuracy. This NNCM was later used

in Penumadu et al. (2000) to simulate triaxial tests.

Habibagahi and Bamdad (2003) used neural network to describe the mechanical behavior of

unsaturated soils. A multilayer perceptron, sequential architecture with feed back capability was
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chosen in this network. Triaxial test results on Lateritic gravel, reported by Toll (1998), were used

as database. The final network which was obtained through a trial and error procedure had three

layers with 9 neurons in the input layer and three neurons in the output layer. The optimal number

of nodes in the hidden layer was worked out to be five. The input-output parameters set for this

NNCM for unsaturated soils were:

Inputs: iq, , , , , , , Sr, ρd and θ

Outputs: ,  and 

In the input parameters set, four neurons, namely, soil water content θ, dry density ρd, degree of

saturation Sr, and soil suction , represent the initial condition of the specimen before

shearing. The other six neurons, namely, axial strain , change in suction , mean

effective stresses with respect to pore air and water pressures (  and ), volumetric

strain , and deviatoric stress iq are the input variables that must be updated incrementally during

training based on the outputs received from the previous increment of training. It was shown that

the trained network was able to model the mechanical behavior (stress-strain, volume change and

change in suction) of unsaturated soils with reasonable accuracy. The authors also proposed that the

model may be used to simulate triaxial tests (artificial tests) under similar conditions.

In addition to the works mentioned above, some other researchers have also applied NN for

constitutive modeling of geomaterials using different datasets (e.g., Banimahd et al. 2005, Najjar et

al. 1999, Wu et al. 2001). The results of these works also show the capability of NN in stress-strain

prediction of different soils.

3.2 Implementation of NNCM in finite element method

As has been described in the previous section, to date, many researchers have attempted to model

the various aspects of the constitutive behavior of geomaterials with neural networks. Although

these works are different in terms of their details and terminology; however most of their results

have indicated that NNs have the ability to represent materials responses to different load paths with

reasonable accuracy. From this, in theory, it is seen that in a numerical analysis tool such as FEM, it

is possible to replace a conventional (analytical) constitutive model with a suitably trained NNCM.

However the focus of most of the investigations has been on the description of the constitutive

behavior itself. As a result little is known about the performance of NNCMs in engineering analyses.

The main reason for this appears to be the fact that there are considerable difficulties in

incorporating a general NNCM in finite element codes (Shin and Pande 2002).

Shin and Pande (2000) presented a self learning FE code in which a NNCM was used instead of

conventional constitutive models and showed that the application of a constitutive law in the form

of a neural operator leads to some qualitative improvement in the application of FEM in engineering

practice. They presented a procedure where data for training neural network based constitutive model

were acquired from planned monitoring of structural tests. Unlike conventional procedures where

generally material testing is performed to extract the stress-strain relationship and identify material

parameters, in this work, inverse analysis was carried out to identify material parameters from

monitored global structural response. In this way the self learning capability of the software was

expected; however for this purpose the results of structure behavior needed to be available in

advance. It is obvious that depending on the mesh size of the problem under consideration, large
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amount of data may be accumulated with increasing the number of self learning cycles which can

results in severe computer storage and CPU time problems during training. To address this problem

a limited number of monitoring points were selected in the structure and the data corresponding to

these points were used to train the NNCM. Selection of the number and location of monitoring

points is therefore of considerable importance in identifying a reliable NNCM. It was stated that

such trained NNCM will need to be treated with caution for modeling the behavior of other

structures; as it is apparent that an NNCM may predict the correct response at a few points, yet may

be completely inadequate to predict the response at others. 

Shin and Pande (2001) showed that in their self learning finite element code the tangential

constitutive matrix of the material can be computed as it is possible to obtain partial derivatives of

the neural network model which has been trained though total stress and stress data. The capabilities

of the developed FE code were illustrated by analyzing a rock specimen under uniaxial cylindrical

compression (with fixed ends). Shin and Pande (2002) proposed a strategy to generate additional

data from general homogeneous material tests in order to train NNCM. This was done by taking

advantage of isotropy when it is applicable to the material under consideration. A boundary value

problem of a circular cavity in a plane stress plate was modeled with the self-learning FE code

using NNCM trained with the enhanced dataset. The self-learning FE analyses showed comparable

results with FE analyses using conventional constitutive models. 

Drakos et al. (2006) presented a NNCM and stated that the model is equivalent of the hardening

soil model. Synthetic data for training the NNCM was generated using the Hardening Soil Model

(HSM) available in the commercial software PLAXIS and choosing a set of arbitrary parameters,

typical of sands, for the HSM. The performance of the trained NNCM was then validated by using

this model for numerical analysis of two simple foundation and excavation problems. 

Lefik and Schrefler (2003) used a neural network for constitutive modeling of nonlinear material

behavior and highlighted some of the difficulties in the constitutive description in incremental form.

Hashash et al. (2004) described some of the issues related to the numerical implementation of

NNCM in finite element analysis and derived a closed-form solution for material stiffness matrix

for the neural network constitutive model. 

Javadi et al. (2002, 2003, 2004a, 2004b, 2005) carried out extensive research on application of

neural networks in constitutive modeling of complex materials in general and soils in particular.

They developed an intelligent finite element method (NeuroFE code) based on the incorporation of

a back-propagation neural network in finite element analysis. The intelligent finite element model

was applied to a wide range of boundary value problems including several geotechnical engineering

applications and it was shown that ANNs can be very efficient in learning and generalizing the

constitutive behavior of complex materials such as soils, rocks and others.

3.3 Other applications of ANN in geomechanics

ANNs have been applied to a wide range of geotechnical engineering problems such as pile

bearing capacity (e.g., Abu-Kiefa 1998, Goh 1996), site characterization (e.g., Juang et al. 2001),

soil behavior (e.g., Zhu et al. 1998), liquefaction potential (e.g., Juang and Chen 1999), slope

stability (e.g., Lu and Rosenbaum 2003), underground openings (e.g., Benardos and Kaliampakos

2004, Javadi 2006) and many others. Toll (1996) presents a review of engineering applications of

AI techniques. 
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3.4 Advantages and shortcomings of neural networks

A neural network based constitutive model has several advantages including: 

(i) It provides a unified approach to constitutive modeling of all materials; 

(ii) It does not require any arbitrary choice of the constitutive (mathematical) model. The incorporation

of an ANN in FE procedure avoids the need for complex yielding/plastic potential/failure functions,

flow rules, etc. There is no need to check yielding, to compute the gradients of the plastic potential

curve or to update the yield surface; 

(iii) There are no material parameters to be identified; 

(iv) As a neural network learns the material behavior directly from raw experimental data the

ANN based constitutive model is the shortest route from experimental research (data) to numerical

modeling;

(v) The numerical parameters of the neural network-based constitutive models are easily and

automatically defined and NNCM can be incorporated in a FE code in a very natural manner. A

trained network can be incorporated in a FE code/procedure in the same way as a conventional

constitutive model. It can be incorporated either as incremental or total stress-strain strategies. An

intelligent FE method can be used for solving boundary value problems in the same way as a

conventional FEM; 

(vi) An additional advantage of NNCM is that as more data becomes available, the material

model can be improved by re-training the ANN. 

Although it has been shown by various researchers that ANNs offer great advantages in the

analysis of many geotechnical engineering problems, but in general, they suffer from a number of

drawbacks. One of the main disadvantages of the ANN (and NNCM) is that the optimum structure

of the network (such as number of inputs, hidden layers, transfer functions, etc.) must be identified

a priori, which is usually done through a time consuming trial and error procedure. In this respect,

some attempts have been made to address optimal design of ANN structure based on a multi-

objective strategy to find trade-off between model simplicity and accuracy (Giustolisi and Simeone

2006). Another major disadvantage of neural network based models is the large complexity of the

network structure, as it represents the knowledge in terms of a weight matrix and biases which are

not accessible to user understanding. In other words NN models provide no insight into the way

inputs affect the output and are therefore considered as a black box class of model. The lack of

interpretability of NN models has inhibited them from achieving their full potential in real world

problems (Lu et al. 2001). In addition, as ANNs perform function approximation through large

parameterization and the use of simple functional structures (transfer functions), parameter estimation

and overfitting problems represent other major disadvantages of a model constructed by ANN

(Giustolisi 2002). 

4. Genetic programming

Genetic programming which was introduced in the early 90s by Koza (1992), is an evolutionary

computing method that generates a transparent and structured representation of the data provided.

Evolutionary algorithms (EAs) are search techniques based on computer implementation of some of

the evolutionary mechanisms found in nature (such as selection, crossover and mutation) in order to

solve a function identification problem. The function identification problem is to search for a function
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in a symbolic form that fits a set of experimental data. 

Genetic algorithm (GA) and genetic programming (GP) are the major types of evolutionary

algorithms. GP is a generalization and an extension of GA. GAs are generally used in parameter

optimization to evolve the best values for a given set of model parameters, whereas GPs give the

basic structure of the approximation model together with the values of its parameters. While a GA

uses a string of numbers to represent the solution, the GP combines a high level symbolic

representation with the search efficiency of the GA to form the best possible model for the system.

Representation schemes in genetic programming are composed of nodes which are elements from

a terminal set (constants e.g., 2 and/or variables e.g., x1, x2, etc.) and a functional set (mathematical

operators that generate the model e.g., ± and xy, etc.). A typical genetic programming tree,

representing the simple algebraic expression (2/x1 + x2)
2 is shown in Fig. 4. 

The result of the GP process is a set of random trees of different sizes and shapes, each exhibiting

a different fitness with respect to the objective function. If the set of applied functions is sufficiently

rich, tree structures are capable of representing hierarchical programs of any complexity. 

The nature of genetic programming (GP) allows the user to gain additional information on how

the system performs, i.e., gives an insight into the relationship between input and output data. Once

a population of computer programs has been randomly created, the process of evolving the population

proceeds using the simple principles as for GAs, with the minor difference that, strings of functions

and terminals are reproduced, crossed over and mutated rather than strings of binary codes.

Evolutionary algorithms maintain a population of structures that evolve according to the rules of

natural selection and some operators inspired from natural genetics such as reproduction or crossover.

Each individual in the population receives a measure of its fitness in the current environment. The

fitness criteria are calculated by the objective function i.e., how good the individual is at competing

with the rest of the population. At each generation a new population is created by the process of

selecting individuals according to their fitness and breeding them together using the genetic operators

(crossover and mutation). The existing population will then be replaced with the new population.

The procedure continues until the termination criterion, which can be either the maximum number

of generations or a particular allowable error, is satisfied. After the termination criterion is met, the

single best program in the final population is designated as the result of the GP process. 

Fig. 4 Typical GP tree representing function 2/x1+x2( )
2
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4.2 Application of GP in geomechanics

Application of genetic programming in the field of civil engineering is quite new and original, and

it has just started to be used in the field of geotechnical engineering. Indeed the very pioneering

works relating to investigation of the capability of genetic programming in the field of geotechnics

have been published recently by the authors (e.g., Javadi and Rezania 2006, Javadi et al. 2006,

Rezania and Javadi 2007). Javadi et al. (2006) introduced GP as a new approach for determination

of liquefaction induced lateral spreading. This is a complex geotechnical problem because of the

large number of parameters (i.e., parameters describing the earthquake strength, geology of the site

and the soil characteristics) involved. In this work GP models were trained and validated using a

database of SPT-based case histories. Separate models were presented to estimate lateral displacements

for free face and for gently sloping ground conditions. It was shown that the GP models are able to

learn, with a very high accuracy, the complex relationship between lateral spreading and its

contributing factors in the form of a function. It was also shown that the attained function can be

used to generalize the learning to predict liquefaction induced lateral spreading for new cases not

used in the construction of the model. The results of the developed GP models were compared with

those of a commonly used model and the advantages of the proposed GP model were highlighted. It

was shown that the GP based models for lateral spreading determination, offer an improvement over

the most commonly used, multi linear regression (MLR), model (Youd et al. 2002) for this problem.

Rezania and Javadi (2007) utilized genetic programming for prediction of settlement of shallow

foundations on cohesionless soils. It was shown that the application of the traditional methods for

prediction of settlement of shallow foundations could lead to very large errors. A new GP based

model was developed and presented in this paper. Comparison of the results showed that the

predictions by the proposed GP model provide significant improvements over the traditional

methods and also outperforms the ANN based models.

5. Evolutionary polynomial regression

Evolutionary polynomial regression (EPR) is a data-driven method based on evolutionary computing,

aimed to search for polynomial structures representing a system. Genetic programming and neural

network are both very powerful non-linear modeling techniques, but they have their own drawbacks.

GP tends to search for mathematical expressions for F in Eq. (1) using an evolutionary approach,

but the parameter values (vector θ) are generated as non-adjustable constants, referred to as

ephemeral random constants. Therefore the constants do not necessarily represent optimal values as

in numerical regression methods and good structures of F can be missed in the process (Giustolisi and

Savic 2006). Furthermore the number of terms in GP based expressions can greatly exceed and the

evolutionary search within GP can be quite slow. Some of the disadvantages of ANN approach have

been highlighted in section 3.4.

EPR is classified as a symbolic grey box technique which can construct clearly structured model

expressions for a given set of data. To avoid the problem of mathematical expressions growing

rapidly in length with time associated with GP, in EPR the evolutionary procedure is conducted in

the way that it searches for the exponents of a polynomial function with a fixed maximum number

of terms, rather than performing a general evolutionary search as used in conventional GP. Furthermore,

during one execution it returns a number of expressions with increasing numbers of terms up to a
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limit set by the user, to allow the optimum number of terms to be selected. 

In general, EPR is a two-stage technique for constructing symbolic models; (i) initially, using

standard genetic algorithm (GA), it searches for the best form of the function structure, i.e., a

combination of vectors of independent inputs, X (Eq. (1)) and (ii) secondly it performs a least

squares regression to find the adjustable parameters, θ, for each combination of inputs. In this way a

global search algorithm is implemented for both the best set of input combinations and related

exponents simultaneously, according to the user-defined cost function. 

The global search for the best form of function is performed by means of a standard GA over the

values in the user defined vector of exponents. The GA operates based on Darwinian evolution

which begins with random creation of an initial population of solutions. Each parameter set in the

population represents the individual’s chromosomes. Each individual is assigned a fitness based on

how well it performs in its environment. Through crossover and mutation operations, with the

probabilities Pc and Pm respectively, the next generation is created. Fit individuals are selected for

mating, whereas weak individuals die off. The mated parents create a child (offspring) with a

chromosome set which is a mix of parents’ chromosomes. It is also possible that one parent

chromosome undergoes mutation operation to form the offspring. The EPR process continues over

generations and stops when the termination criterion, which can be either the maximum number of

generations, the maximum number of terms in the target mathematical expression or a particular

allowable error, is satisfied. Description of the mathematical formulation and details of the EPR

procedure is outside the scope of the current paper and can be found in, e.g., Giustolisi and Savic

(2006).

5.1 Application of EPR in geomechanics

EPR is a recently developed methodology that was originally used for environmental modeling by

its developers (Giustolisi and Savic 2006, Giustolisi et al. 2007, Doglioni et al. 2008). However the

capability and outstanding performance of EPR approach in dealing with problems related to other

disciplines of civil engineering including geotechnical, structural and earthquake engineering were

investigated by the authors of this paper (e.g., Javadi et al. 2007, Rezania and Javadi 2006, Rezania

and Javadi 2008b). 

Javadi and Rezania (2008a) introduced the EPR as a new approach for analysis of a number of

geotechnical engineering problems. They investigated the feasibility of using this method for capturing

nonlinear interaction between input and output variables in geotechnical systems. The efficiency of

the EPR methodology was illustrated by application to a number of complex practical geotechnical

engineering problems which are difficult to solve or interpret using conventional approaches. The

merits and limitations of the proposed method were discussed. 

Rezania et al. (2008a) highlighted some of the complexities involved in the analysis of many civil

engineering phenomena and the shortcoming of traditional methods in describing such complexities.

They presented EPR as a means of for capturing nonlinear interactions between various parameters

of civil engineering systems. They illustrated the capabilities of the EPR methodology by application

to two complex civil engineering problems including evaluation of uplift capacity of suction caissons

and shear strength of reinforced concrete deep beams. The results showed that the proposed EPR

models provide significant improvement over the existing models. They also indicated that, for

design purposes, the EPR models are easy to use and provide results that are more accurate than the

existing methods. It was concluded that the new approach overcomes the shortcomings of the
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traditional and ANN-based methods in analysis of civil engineering systems. 

Rezania and Javadi (2008a) presented a new EPR-based approach for prediction of settlement of

shallow foundations. The EPR model was developed and verified using a large database of SPT

(standard penetration test) based case histories involving measured settlements of shallow foundations.

The results of the EPR model were compared with those of a number of commonly used traditional

methods and an ANN based model. It was shown that the EPR model is able to learn, with a very

high accuracy, the complex relationship between foundation settlement and its contributing factors

in the form of a function and generalize the learning to predict settlement of foundations for new

cases not used in the development of the model. They highlighted the advantages of the proposed

EPR model over the conventional methods and the ANN based model. 

Rezania et al. (2008b) used EPR for determination of liquefaction potential of sands. EPR models

were developed and validated using a database of 170 liquefaction and non-liquefaction field case

histories for sandy soils based on CPT (cone penetration test) results. Three models were presented

to relate liquefaction potential to soil geometric and geotechnical parameters as well as earthquake

characteristics. The results of the developed EPR models were compared with a conventional model

and a number of neural network based models. It was shown that the proposed EPR model provides

more accurate results than the conventional model and the accuracy of the EPR results is better than

or at least comparable to that of the neural network based models proposed in the literature. 

Javadi and Rezania (2008b) presented an innovative approach to constitutive modeling of materials

in finite element analysis using EPR. The proposed approach provides a unified framework for

modeling of complex materials, using evolutionary polynomial regression-based constitutive model

(EPRCM), integrated in finite element analysis. The advantages of EPRCM over conventional

constitutive models and NNCMs were highlighted. The proposed algorithm provides a transparent

relationship for the constitutive material model that can be easily incorporated in a finite element

model. The application of the EPRCM for material modeling in finite element analysis was

illustrated through a number of examples.

The main advantage of EPR over ANN appears to be that it provides the optimum structure for

the material constitutive model representation as well as its parameters, directly from raw experimental

(or field) data. The advantage compared with genetic programming is in producing compact and

well-structured mathematical expressions.

6. Discussion

In conventional constitutive modeling of materials, an appropriate mathematical model is initially

selected and the parameters of this model (material parameters) are then identified from appropriate

physical tests on representative samples to capture the material behavior. When these constitutive

models are used in numerical analysis, the accuracy with which the selected material model

represents the various aspects of the actual material behavior affects the accuracy of the numerical

predictions. In the past two decades, the use of artificial neural networks has been introduced as an

alternative approach to constitutive modeling of materials. These studies indicated that neural

network-based constitutive models can be very efficient in learning and generalizing the constitutive

behavior of complex materials. It has also been shown that the neural network based constitutive

model (NNCM) can be incorporated in a finite element (or finite difference) code as a material

model. Although it has been shown by various researchers that ANNs offer great advantages in
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constitutive modeling of materials, the application of NNCM in finite element analysis of

engineering problems is still in its infancy and the majority of the applications so far have been

limited to simple boundary value problems and relatively straight forward aspects of material

behavior. The main shortcomings of the NNCMs, which have prevented them from achieving their

full potential, are the back box nature of ANN and the fact that the optimum structure of the ANN

must be identified a priori. 

To address the shortcomings of the neural network-based approach, in recent years new approaches

have been proposed for modeling of soils and other geomaterials using Genetic Programming (GP)

and Evolutionary Polynomial regression (EPR). GP and EPR are evolutionary computing techniques

that generate a transparent and structured representation of the system being studied. The main

advantage of GP and EPR over ANN is that they provide the optimum structure for the material

constitutive model representation as well as its parameters, directly from raw experimental (or field)

data. The advantage of EPR compared with GP is in producing compact and well-structured

mathematical expressions. GP and EPR provide a structured representation for the constitutive

material model that can be readily incorporated in the finite element method. It is envisaged that the

establishment of a unified framework for modeling of materials with complex behavior using ANN,

GP or EPR will be valuable across the field in various disciplines of engineering. However, in the

authors’ opinion, the development of these new modeling techniques should be done in parallel with

developments in conventional constitutive modeling rather than a replacement for them. 

7. Conclusions

A considerable number of neural network-based models have been developed for constitutive

modeling of soils. Many of these models have been developed as simple prototypes to show the

applicability of these techniques in modeling of specific soils. Only few models have been integrated

in numerical (e.g., FE) models of engineering systems. The majority of these systems use neural

network as a unified approach to constitutive modeling of complex materials. The results of these

works have collectively shown the potentials of NNCM for modeling of soil behavior. More

recently, a number of other data mining systems have been proposed that appear to be able to

address few shortcomings of the neural network based models. It is envisaged that, while the

establishment of the new unified frameworks for modeling of materials will be valuable across the

board in various disciplines of engineering, however the authors believe that the development of

these new techniques should be done in parallel with developments in conventional constitutive

modeling rather than a replacement for them. Development of numerical models that include a

range of conventional constitutive models besides the new AI and data mining-based models will

increase the range of options for modeling of complex materials. In this way, for materials whose

behavior is understood and sufficiently described by one of conventional constitutive models, an

appropriate model can be selected by the user. However, for cases where the behavior is too

complicated to be described by a conventional model but a sufficient amount of experimental data is

available, the new modeling tools offer great advantages in numerical analysis of engineering systems.

In any case, it should be noted that all these models should be used by engineers and the importance

of engineering judgment in interpretation of numerical results should not be underestimated.
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