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Abstract.  The study considers earthquake shake table testing of bending-torsion coupled structures under 

multi-component stationary random earthquake excitations. An experimental procedure to arrive at the 

optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state 

variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in 

terms of a set of system frequency response functions which could be measured experimentally without 

necessitating an idealized mathematical model to be postulated for the structure under study. The 

relationship between these optimized cross-psd functions to the most favourable/least favourable angle of 

incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system 

dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent 

motions. The proposed experimental procedure is demonstrated through shake table studies on two 

laboratory scale building frame models. 
 

Keywords:  random vibration; multi-component earthquake support motion; critical excitation models; 
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1. Introduction 
 

In dealing with dynamic response of bending-torsion coupled asymmetric structures under 

multi-component earthquake support motions, the correlations that exist between the excitation 

components is expected to play a crucial role. The idea of principal direction for excitation 

components along which the components are instantaneously uncorrelated is well-known (see, 

Kubo and Penzien 1979 for early studies and Rezaeian and Kiureghian 2012 for a more recent 

perspective). The principal axes of excitation, most often, do not coincide with the principal axes 

of the structure, thereby, leading to coupled bending-torsion oscillations of the structure. The 

mismatch of excitation and structural principal axes is clearly associated with the angle of 

incidence of seismic waves on the structure. The problem of estimating the least favourable angle 

of incidence for a given structure has been tackled by a few authors (see, for example, Singh and 

Ashtiany 1984, Lopez and Torres 1997). The development of modal combination rules taking into 
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account issues related to angle of incidence in response spectrum based response analysis has also 

been tackled (see, for example, Kiureghian and Nakamura 1993, Menun and Kiureghian 1998, 

2000, Lopez et al. 2000, Gonzalez et al. 2015). The study by Athanatopoulou (2005) proposes an 

analytical procedure to determine the critical angle of incidence in terms of response of the 

structure to two specific loading cases. The study shows that the critical angle of incidence can 

produce response which is about 80% higher than the response for the case when the excitation 

and structural principal axes coincide. The review paper by Reyes-Salazar et al. (2008) provide 

detailed review of issues connected with structural response to mufti-component seismic support 

motions specifically with reference to prevailing codified design procedures. The importance of 

including the effect of seismic angle of incidence in evaluating seismic fragility of bridge 

structures has been pointed out by Torbol and Shinozuka (2012). In the context of seismic 

qualification testing of nuclear power plant equipment under multi-component earthquake support 

motions, there exist guidelines on including the effect of directionality in load specifications 

(IEEE-344 2013) with emphasis on ensuring conservative estimates of the response. 

A random vibration analysis based approach to determine the optimal cross-psd functions 

between excitation components which lead to highest or lowest response variance has been 

developed by Sarkar and Manohar (1996, 1998). Specifically these authors have demonstrated the 

existence of excitation cross-psd function models which correspond neither to fully correlated 

motions nor to independent motions and have outlined analytical procedures to arrive at these 

optimal cross-psd functions in terms of frequency response functions. Abbas and Manohar (2007) 

have considered parametrically excited structures under combined vertical and horizontal 

earthquake support motions and determined the optimal seismic excitation psd models which 

minimize time variant reliability defined respect to a specified response process. These studies 

belong to the broader class of load modelling approaches which could be classified as critical 

excitation modelling. Extensive accounts of development of critical excitation modelling in 

earthquake engineering, including issues related to multi-component earthquake load modelling, 

have been provided by Takewaki (2002, 2013). 

The present study considers the problem of experimental determination of the optimal cross-

psd function models in the study of earthquake response of structures subjected to multi-

component earthquake ground motions. It is demonstrated that the procedure developed by Sarkar 

and Manohar (1996, 1998) can be generalized to achieve this. This idea is demonstrated by 

conducting earthquake shake table studies on two building frame models. The building frame 

models are designed to display bending-torsion coupling and shake table used is capable of 

applying multi-axis ground motion. The study assumes the earthquake excitation components are 

modelled as jointly stationary zero-mean Gaussian random processes. Furthermore, the auto-psd 

functions of the excitation components are taken to be specified while the cross-psd functions are 

not. These unknown cross-psd functions are determined so that the steady state variance of a 

chosen response variable is maximized/minimized and this exercise is shown to be based on solely 

an experimental procedure which bypasses the need for developing an idealized mathematical 

model for the structure under study. The bounds on the response quantity thus obtained are 

demonstrated to be mathematically the sharpest in nature. We would like to note that issues related 

optimal cross-psd function models in the context of spatially varying support motions has been 

recently addressed in a separate study, albeit in a different context (namely, that of vibration 

testing of a four-wheeled vehicle on a four-post test rig for road roughness induced oscillations), 

by present authors (Ammanagi and Manohar 2015). 
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2. Basis for the experimental procedure 
 
Consider a linear time invariant structural system acted upon by multi-component support 

accelerations. It is assumed that the extent of the structure is such that the spatial variability in 

ground motions can be neglected. By assuming that the system starts from rest, any generic 

response Y(t) of the structure (for example, one of the displacement, strain, or stress components) 

can, in principle, be written as 

     
3

10

t

i i

i

Y t h t X d  


                                                  (1) 

Here Xi(t),i=1,2,3 are the three support motion components, and hi(t) is the impulse response 

function which relates the excitation component Xi(t) to the response Y(t). The functions 

hi(t);i=1,2,3, can either be derived based on a postulated finite element model for the structure 

system, or, based on direct measurements in a laboratory. We focus in the present study on the 

latter option and take that the structure under study already exists and is being tested on a shake 

table. It may be noted that the techniques for measuring the impulse response functions, or, 

equivalently, the frequency response functions, are well established in the existing literature 

(Ewins 2000, McConnel 1995, Bendat and Piersol 2010). Thus, by measuring hi(t);i=1,2,3, 

experimentally, we are eliminating the need to introduce idealizations associated with 

complicating issues, such as, modelling constitutive relations, damping model, joint flexibility, and 

boundary conditions, which otherwise would be inevitable if one were to arrive at these functions 

via computational modelling. We model Xi(t),i=1,2,3 as a set of stationary, zero mean, Gaussian 

random processes with the associated power spectral density (psd) function matrix 

S(ω)=[Sij(ω)];i,j=1,2,3. In the steady state, the response psd function can be obtained as 

       *

, 1,3

YY i ij j

i j

S H S H   


                                         (2) 

Here Hi(ω) is the complex frequency response function being the Fourier transform of the 

impulse response function hi(t), and a * represents complex conjugation. By noting that

       exp i
ij ii jj ij

S S S       
, the response variance can be written as 

         
22 *

1,3 , 1,3

YY i ii i ij j

i i j
i j

H S d H S H d       
 

  


                        (3) 

Now we consider the situation in which the input is partially specified such that the auto-psd 

functions Sii(ω);i=1,2,3, are taken to be given while the cross-psd functions Sij(ω) i≠j=1,2,3 are not 

known. We aim to determine the bounds on these unknown functions which produce the lowest 

and highest steady state response variances denoted respectively by 2

YY
  and 

2

YY
 . This situation 

would be similar to the case in which the excitations are specified along their principal directions 

and one would be interested in knowing the optimal angles of incidence which 

maximize/minimize a chosen response variable. While solving this optimization problem, it should 

be noted that the unknown cross-psd functions satisfy the constraints  

     

   *

0 ;

1, 2,3

ij ii jj

ji ij

S S S

S S i j

  

 

 

  
                                              (4) 
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The first of these constraints follows from the application of the Schwarz inequality on the 

definition of the cross-psd function (Papoulis and Pillai 2002; section 9.3, equations 9.179-9.181). 

The above stated constrained optimization problem can be handled analytically (using, for 

example, the calculus of variations), numerically, or, more simply by direct inspection (Sarkar and 

Manohar 1996, 1998). To see this, we note that    *

ji ijS S   and obtain

                 * * *
2Rei j ij j i ji i j ijH H S H H S H H S            

. Furthermore, by 

writing          *
exp iij i j ij ijH H H H          and      exp iij ij ijS S      

, we 

get 

                   * *
2 cosi j ij j i ji ij ij ij ijH H S H H S H S                   

(5) 

To proceed further, we introduce further notations 

       
 

 

         

         

2,2 2 1

1, 2,

1,

1,

2,

; tan

Re Re Im Im

Im Re Im Re

, 1, 3,      

ij

ij ij ij ij

ij

ij i j i j

ij i j j i

G
H G G

G

G H H H H

G H H H H

i j j i


    



    

    


 

    
  

             

             

 

                (6) 

In order to determine the bounds 
2

YY
 and

2

YY
 , we note that the contributions from the first 

term in Eq. (3) are always positive while the second set of terms could make positive or negative 

contributions. If few we select  

          and ,     0ij ii jj ij ijS S S                                (7) 

it can be deduced that the contribution from the second set of terms would be always positive and 

hence the resulting response would lead to the upper bound
2

YY
 . Conversely, if we select 

          and ,     0ij ii jj ij ijS S S                              (8) 

the contributions from the second set of terms would always be negative, thereby leading to the 

lower bound response 
2

YY
 . Thus, the models in Eqs. (7) and (8), provide the desired optimal 

models for the cross-psd functions which, in turn, provide, respectively, the upper and lower 

bounds on the response variance 
2

Y
 .  

 

Remarks 

(a) The optimal cross-psd models are system and response variable dependent and correspond 

neither to the case of excitation components being fully correlated nor the components being 

independent.  

(b) The bounds 2

YY


 
and 

2

YY
  on the response thus obtained are mathematically the sharpest in 

nature. This is because the constraints stated in Eq. (4) are exactly satisfied and no approximations 
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have been made in arriving at bounds 2

YY
 and

2

YY
 .  

(c) The determination of the phase spectra θij(ω); i≠j=1,2,3, hold the key to the determination of 

the optimal input and response models. These spectra could be determined experimentally in terms 

of the measured FRFs, Hi(ω);i=1,2,3. 

(d) While the earlier study by Sarkar and Manohar (1996, 1998) focussed on analytical 

determination of the optimal load and response models, we consider in this study the problem of 

determining these functions experimentally. It is believed that this approach provides a counter 

point to the presently existing guidelines on testing structures under multi-component excitations 

in which the issue of angle of incidence of seismic wave is considered in an empirical manner 

(IEEE-344 2013). It is emphasised that the methods for measuring FRF-s are well established in 

the literature (Ewins 2000, McConnel 1995, Bendat and Piersol 2010) and the novel element of the 

present study lies in identifying specific forms of FRF-s which can be processed further to 

determine the optimal input cross-psd models which lead to the highest and lowest responses.  

 

 

3. Experimental procedure 
 
We consider the problem of seismic qualification testing of a given structure for a specified 

multi-component earthquake excitation using a multi-axes shake table. The load specification is 

taken to be in terms of the auto-psd functions Sii(ω);i=1,2,3 of the components of support motion 

with the cross-psd functions Sij(ω) i≠j=1,2,3 being not known. One can conceive such situation 

when the earthquake loads are specified in terms of a set of smooth design response spectra along 

the three axes and one could deduce a corresponding set of compatible auto-psd functions for each 

of the components (Nigam and Narayanan 1994). In such an exercise, the cross-psd functions 

would essentially remain unspecified. The structure under study is taken to be characterized by 

coupling between bending in two directions and torsion (see Figs.1 and 2 and Annexure A for 

details of structures which are considered in this study). The cross-psd functions play a crucial role 

in deciding upon the worst (and the most favourable) combination of excitation axes (reflecting the 

angle of incidence of the seismic wave) and the principal axes of the structure. The steps for an 

experimental procedure, based on the formulation presented in the preceding section, to determine 

the optimal cross-psd functions Sij(ω) i≠j=1,2,3 and the response bounds 2

YY


 
and 2

YY
 , are as 

follows: 

Step-1 For a specified response variable, measure the frequency response functions 

Hi(ω);i=1,2,3. This is done by using single-input single-output method where a band limited white 

noise excitation is applied along one of the axes and the desired response time history is measured. 

The sample realization of the FRF Hi(ω) is obtained by using the relation  
 

 
XY

i

XX

P
H

P





  where 

PXY(ω) is cross-psd between input and the output and PXX(ω) is auto-psd of the input. 

Subsequently, an estimator for Hi(ω) is obtained by averaging these realizations over an ensemble 

of s
N realizations. In the numerical work to follow, we take Ns=1000. 

Step-2 Estimate the optimal cross-psd functions Sij(ω) i≠j=1,2,3 using Eqs. (7) and (8). 

Step-3 Evaluate the response bounds 
2

YY


 
and 

2

YY


 
using Eqs. (2) and (3). 

Step-4 Simulate an ensemble of Xi(t),i=1,2,3 compatible with the given auto-psd functions 

Sii(ω);i=1,2,3 and the optimal cross-psd functions determined in steps 1 and 2 above. This can be 
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done by using the well-known procedure based on Fourier representation of sample time histories 

(Nigam and Naryanan 1994). Test the structure for this ensemble of excitations and estimate the 

response psd function based on the measured ensemble of response time histories. Subsequently, 

compute the associated response variances by evaluating the area under the computed psd 

function. 

 

Remarks 

(a) The response bounds 
2

YY


 and 
2

YY


 can be evaluated using Eqs. (2) and (3) once the optimal 

cross-psd functions are obtained in step 2 and one need not proceed to step 4. This, however, may 

not be consistent with the objectives of earthquake qualification testing which intends to test the 

structure under earthquake like loads.  
(b) To gain confidence in the correctness of the results obtained, additional tests could 

optionally be done with Xi(t),i=1,2,3 being fully correlated, or, independent, so that the 

corresponding estimates of the response psd functions and variances could be obtained for the 

purposes of comparison. 

(c) Additionally, one could test the structure for a family of excitations given by 

     X t T X t  for different values of θ, where T(θ) is a rotation matrix and θ is a parameter 

characterizing the angle of incidence of the seismic wave. The results on maximum and minimum 

response variances, thus obtained, would provide a means to assess the results obtained based on 

optimal cross-psd model developed in the preceding sections. 

(d) The method, as developed, is applicable only to linear time invariant systems. Extensions to 

include possible nonlinear behaviour is indeed of interest in earthquake engineering especially 

since one of the objectives of earthquake resistant design is to achieve controlled inelastic 

behaviour and codes of practice allow for inelastic responses under design basis and maximum 

credible earthquakes (see, for example, the discussion by Jaiswal and Sinha 2007 in the context of 

Indian codes of practice). Moreover, the framework of performance based earthquake engineering 

also requires the ability to handle nonlinear behaviour since questions on structural performance at 

increasingly severe excitation levels need to be addressed. Within the framework of computational 

studies one could obtain approximate solutions for the optimal cross-psd functions via the method 

of equivalent linearization, or, more acceptable solutions, through Monte Carlo simulations and 

numerical optimization schemes. However, there is no obvious way of extending such approaches 

to tackle the problem through purely experimental procedures. One possible alternative is to adopt 

the Volterra-Wiener expansion for the nonlinear system response (see, for example, Bendat 1998, 

Worden and Tomlinson 2001) and re-write Eq. (1) as 

           
3 3 3

1 2 1 2 1 2

1 1 10 0 0

,

t t t

I II

i i ij i i

i i j

Y t h t X d h t t X X d d        
  

            (9) 

where  I

i
h t ,  1 2

, ,
II

ij
h t t  are respectively the first, second, and higher order impulse response 

functions. For the purpose of illustration, the above series is truncated at the second term, and, by 

using the Fourier transform techniques, it can be shown that 
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       

       

       

3 3
*

1 1

3 3 3 3
*

1 1 1 1 1 1 1

1 1 1 1

3 3 3 3
*

1 1 1 1 1 1 1

1 1 1 1

1
, ,

2

1
, ,

2

I I

YY i ij i

i j

II II

ij ii jj i j

i j i j

II II

ij ij ji ij

i j i j

S H S H

H S S H d

H S S H d

   

         


         


 



   

     



 

     



    

  



 

 

     (10) 

which is the generalization of Eq. (2) for the case of nonlinear systems. Here  I

i
H  and 

 1 2
,

II

ij
H   are the first and the second order FRF-s which are, respectively, the one-dimensional 

and two-dimensional Fourier transforms of  I

i
h t and  1 2

,
II

ij
h t t . It may be noted that for a linear 

system    I

i i
H H   and  1 2

, 0
II

ij
H    . The above equation can further be recast as 

           

             

     

3 3 3
2 2

1 1 1 1 1

1 1 1

3 3
* *

1 1 1 1 1 1 1

, , , ,
,

*

1 1 1 1

1
,

1
, ,

2

1
,

2

I II

YY i ii ij ii jj

i i j

I I II II

i ij i ij ii jj i j

i j i i j j
i j i i j j

II II

ij ij ji i j

S H S H S S d

H S H H S S H d

H S S H

         


            


     


 

    



   

  
   

   

   

    

  

   

  

 
3

1 1 1

, , ,
,

,
i i j j
i j j i

d   


  
  

 

     (11) 

As has been done in interpreting Eq. (3), it can again be noted that the first two terms in the 

above equation always make positive contributions and last three the terms, involving the 

unknown cross-psd functions Sij(ω), can again be determined to ensure that the sum of the 

contributions from these terms results in the highest positive contribution thereby leading to the 

upper bound on the response variance. Similar calculations can also be performed, so that the sum 

of the contributions from the last three terms results in the lowest negative contribution, leading to 

the lower response bound. While the determination of such bounds for linear systems has been 

straightforward (Eqs. (7)-(8)), for nonlinear systems, however, additional difficulties, arising due 

to presence of quadrature terms and products of cross-psd terms, need to be tackled. Also, in the 

experimental work, the establishment of response bounds would now require additional efforts in 

estimating the higher order FRF-s. Methods for achieving this indeed are available in the existing 

literature (Worden and Tomlinson 2001). In the present study we limit our attention to the 

treatment of only the linear systems and we propose to pursue extensions to nonlinear systems in a 

future study. 

 

 

4. Illustrations 
 

The procedure developed in the preceding sections is illustrated with the help of two simple 

steel frame models as shown in Figs. 1 and 2. The first of these models consists of a rigid slab 

supported by four inclined columns of differing lengths. The slab is attached with three additional 
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plates to create asymmetry in mass distribution. This frame is taken to be acted upon by three-

component earthquake support motions and, given the presence of inclined columns, the inclusion 

of vertical component of excitation is particularly relevant. Fig. 2 shows a three-storied building 

frame model which has an L-shape in plan. The frame has rigid steel slabs appended with three 

additional plates as shown. This frame is shown to be acted upon by bidirectional horizontal 

earthquake support motions. In both these frames, one could expect coupling between two bending 

and torsional oscillations. The two frames were designed so that the first three natural frequencies 

were respectively as follows: frame-I: 8.21, 10.46, 21.25 Hz; frame-II: 7.83, 7.86 and 10.92 Hz. In 

both the frames the first two modes predominantly were bending in the two horizontal directions 

and third predominantly torsional about the vertical axis. It is believed that the two frames chosen 

for the study contain several of the complicating features which one could expect in realistic 

systems which require to be tested for seismic performance. Beyond this consideration, these 

frame models do not actually represent any specific prototype systems. The auto-psd of the 

horizontal support accelerations were taken to be identical and of the form (Clough and Penzien 

1993). 

 
 

   

24 4

0 2 2
2 2 2 2

2

2 2

s s s

s s s f f f

S S
    


         

 
 


      
      

                        (12) 

with ωs=30 rad/s, ηs=0.8, ωf=2 rad/s, ηf=0.99, S0=0.005 (m/s
2 
)

2
/(rad/s). The auto-psd of the vertical 

component was taken to be 0.5S(ω). The frames were instrumented with tri-axial accelerometers, 

angular accelerometers and strain gauges, and, these details, along with the details of frame 

geometry, are provided in Annexure A. The shake table used in this study has the capability to 

apply six-component support motions (three translations and three rotations) using a set of eight 

servo hydraulic actuators, 1 m×1 m table size, payload capacity of 500 kg, and a power pack with 

65 litre per minute capacity. The data acquisition system used has 96 channels with simultaneous 

sample and hold board, anti-aliasing filters, and permitted sampling rates up to 200 kS/s. 

The frequency response functions Hi(ω), i=1,2,3 were measured using the samples of band 

limited white noise (0.05-25 Hz) by averaging across 1000 samples of 25 s duration. The response 

data were acquired at the rate of 200 samples/s. A bandpass filter with 0.05-50 Hz was used to 

mitigate the effect of noise. The estimation of the response psd (step-3) was carried out with 250 

samples with the response time histories being sampled again at 200 samples/s. The response of 

the frames was studied for the following cases: (I) Xi(t), i=1,2,3 are statistically independent, (II) 

the cross-psd functions of Xi(t), i=1,2,3 are in-phase such that      ij ii jj
S S S   , (III) the 

cross-psd functions of Xi(t), i=1,2,3 are out-of-phase such that      ij ii jj
S S S    , (IV) the 

cross-psd functions of Xi(t), i=1,2,3 correspond to the most favourable excitation model such that 

        exp i
ij ii jj ij

S S S        
 

 and (V) the cross-psd functions of Xi(t), i=1,2,3 

correspond to the least favourable excitation model such that 

       exp i
ij ii jj ij

S S S        . Additionally, the system response with the support 

accelerations Yi(t), i=1,2,3 obtained using  
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                                (13) 

for different values of , 10, 0,1, 2, ,36n i        were also considered. From this an 

estimate of the most favourable and the least favourable angle of incidence were obtained and 

these cases are designated, respectively, as VI and VII. 
Tables 1 and 2, respectively, summarize the results on response standard deviations obtained 

for the frames I and II. The nomenclature for sensor labels is explained in Annexure A. For the 

purpose of detailed illustrations, response variables a1(t) (acceleration) of frame-I and ε15,yy(t) 

(bending strain) of frame-II are considered. Figs. 3 and 4, respectively, show measured frequency 

response functions of a1(t) and ε15,yy(t). The corresponding critical phase spectra determined by 

using Eqs. (7) and (8), for a1(t) and ε15,yy(t), are shown in Figs. 5 and 6 respectively. Figs. 7 and 8 

show, respectively, spectra G1,ij(ω) and G2,ij(ω), determined using Eq. (6), associated with optimal 

phase spectra of a1(t) and ε15,yy(t). The auto-psd of a1(t) and ε15,yy(t) determined by using Eqs. (2) 

and (3) for loading cases I-V are shown in Figs. 9 and 10. Figs. 11 and 12 show, respectively, the 

variation of standard deviation of responses a1(t) and ε15,yy(t) as a function of angle of incidence. 

Here the most favourable and least favourable responses are also marked for sake of reference 

although it is understood that these optimal responses do not vary with respect to θ. 

The response auto-psd functions depicted in Figs. 9 and 10 clearly show that the area under the 

spectra corresponding to the most favourable cross-psd model (case-IV) and the least favourable 

cross-psd model (case-V) provide, respectively, the lower and upper bounds on the response. 

Similarly, from Figs. 11 and 12 it is observed that the standard deviation obtained as a function of 

the angle of incidence lies within the lower and upper bounds of standard deviations determined 

 

 

 
Fig. 1 An asymmetric frame with inclined columns under three-component support motions (Frame-I) 
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Fig. 2 An L-shaped frame under bi-directional horizontal support motions (Frame-II) 

 

 

Fig. 3 FRFs Hi(ω);i=1,2,3 for a1(t) of frame-I; (a)  1
H  ; (b)  1

H  ; (c)  2
H  ; (d)  2

H  ; (e) 

 3
H  ; (f)  3

H  ; note that Hi(ω);i=1,2,3 are non-dimensional 

 

 

using critical phase spectra obtained using Eqs. (7) and (8). Likewise, the results presented in 

Tables 1 and 2 show that the response standard deviations obtained using excitations tailored to 

possess the optimal cross-psd models (cases IV and V) produce responses higher than those 

produced by other excitation models considered. Relatively minor exceptions to this occur in a few 
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cases, namely, S.Nos. 3 and 8 in Table 1, and S.No. 13 in Table 2. Here it is observed that the 

response produced by case VII (that is, when the angle of incidence is varied over 0 to 360 

degrees, see Eq. (13)) is slightly higher than the response produced by the critical cross-psd model 

(case V). While this difference is very minor for frame II (S.No.13 in Table 2), which could be 

attributed to sampling fluctuations and other experimental errors, the difference observed for frame 

I (S.Nos. 3 and 8 in Table 1) could additionally be due to the fact that in this case we are 

considering not only two horizontal earthquake excitation components, but also, a vertical 

component. The presence of vertical component, in principle, could make the system to become 

time varying in nature (due to interaction of forces due to vertical acceleration and self-weight to 

interact with horizontal displacements). While this effect gets accounted for in the determination 

of critical angle of incidence in cases VI and VII, their effect, however, are ignored while 

developing the optimal cross-psd models (cases IV and V) as the experimental procedure for 

developing these models assumes the system to be time-invariant in nature. 

 

 

 

Fig. 4 FRFs Hi(ω);i=1,2 for ε15,yy(t) of frame-II; (a)  1
H  ; (b)  1

H  ; (c)  2
H  ; (d)  2

H   

 

 
Fig. 5 Critical phase spectra of cross-psd functions for a1(t) of frame-I; (a) ϕ12(ω); (b) ϕ13(ω); (c) ϕ23(ω)  
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Fig. 6 Critical phase spectra ϕ12(ω) of cross-psd function for ε15,yy(t) of frame-II 

 

 
Fig. 7 G1,ij(ω) and G2,ij(ω) associated with a1(t) for frame-I; (a) G1,ij(ω); (b) G2,ij(ω); i,j=1,2,3 and i<j 

 

 
Fig. 8 G1,12(ω) and G2,12(ω) associated with ε15,yy(t) for frame-II; (a) G1,12(ω); (b) G2,12(ω) 
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Fig. 9 Auto-psd function of acceleration a1(t) of frame-I for different load models 

 

 
Fig. 10 Auto-psd function of strain ε15,yy(t) of frame-II for different load models 

 

 
Fig. 11 Standard deviation of response a1(t) of frame-I as a function of angle of incidence θ 
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Fig. 12 Standard deviation of response ε15,yy(t) of frame-I as a function of angle of incidence θ 

 
Table 1 Steady state standard deviations of accelerations and bending strains (in microstrains) for frame-I 

S. No. Response Case-I Case-II Case-III Case-IV Case-V Case-VI Case-VII 

1 a1 (ms
-2

) 2.1078 1.9917 2.2179 1.1017 2.7699 2.1078 2.5906 

2 a2 (ms
-2

) 2.9277 2.9328 2.9225 2.0246 3.6116 2.6277 3.4943 

3 a3 (ms
-2

) 0.2913 0.3407 0.2356 0.2316 0.4745 0.2430 0.4755 

4 α (rads
-2

) 3.7861 3.5513 4.0072 2.1554 4.9013 3.7861 4.7678 

5 ε1,yy 180.4577 174.4249 186.2952 91.2349 238.3403 144.1579 220.5909 

7 ε3,yy 114.2266 107.1109 120.9243 60.4332 149.8108 114.2266 140.0359 

8 ε4,xx 251.3623 248.3666 254.3228 159.4541 317.7111 251.3623 319.0065 

9 ε5,xx 200.8279 203.3359 198.2881 136.8029 248.8949 185.8279 242.8909 

10 ε6,yy 140.0583 130.7973 148.7437 72.9676 184.1422 140.0583 175.5264 

11 ε7,yy 261.7993 265.1871 258.3674 178.3418 324.4566 246.7993 321.0980 

 

Table 2 Steady state standard deviations of accelerations and bending strains (in microstrains) for frame-II 

S. No. Response Case-I Case-II Case-III Case-IV Case-V Case-VI Case-VII 

1 a1,x (ms
-2

) 0.7916 0.7329 0.8462 0.6389 0.9192 0.7916 0.8849 

2 a2,x (ms
-2

) 2.1415 2.1174 2.1655 1.8137 2.4255 2.1105 2.3864 

3 a2,y (ms
-2

) 2.3262 2.3333 2.3191 2.1235 2.5126 2.1423 2.4995 

4 a3,x (ms
-2

) 7.6484 7.3606 7.9257 6.6368 8.5410 7.0498 8.0772 

5 a3,y(ms
-2

) 7.9861 8.0239 7.9481 7.4814 8.4607 7.5931 8.3895 

6 α2 (rads
-2

) 3.3384 4.5831 1.1337 0.8352 4.6468 3.3384 4.0112 

7 α3 (rads
-2

) 4.4143 5.9935 1.7467 1.1363 6.1385 4.4143 5.3428 

8 ε1,yy 97.3820 102.4721 92.0108 66.8470 120.4077 95.6541 109.9644 

9 ε2,yy 173.1105 180.1826 165.7370 129.3393 207.8603 169.0044 193.9418 

10 ε4,xx 93.7609 80.6158 105.2771 70.1630 112.5137 93.2937 105.2744 

11 ε7,yy 74.5976 64.3493 83.5990 42.0211 96.7670 74.5976 83.6997 

12 ε8,yy 140.5639 139.3272 141.7898 110.1850 165.4560 140.1689 156.8956 

13 ε12,xx 144.0006 144.6620 143.3359 138.0682 149.6978 139.0002 149.8393 

14 ε15,yy 162.4670 176.7299 146.8253 131.3826 188.4933 142.4670 176.3676 
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5. Conclusions 
 
The study develops an experimental procedure to determine optimal cross-psd function models 

for components of earthquake support motions which lead to bounds on response variance of a 

given structure. The cross-psd models are obtained in terms of a set of FRFs which can be 

measured experimentally and the bounds obtained on the response variance are mathematically the 

sharpest in nature. The development of these excitation and response models do not require 

idealized mathematical models to be made for structure being tested and, therefore, the proposed 

procedure is expected to be applicable in the study of complex systems, such as, machinery and 

equipment, which are not easy to model mathematically. Illustrations on two asymmetric frame 

models are presented which corroborate the inherent features of the proposed excitation and 

response models. The extension of these studies to investigate response of active system with 

moving elements (as in pumps, rotors, turbines, and computer CPU unit) is currently being 

pursued by the present authors. Likewise, questions on treating nonlinearities in the system 

characteristics and/or parametric action of vertical component of excitation while determining the 

input optimal cross-psd models experimentally are also being pursued.   
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Annexure A. Details of steel frame models studied  
 

Figs. A1and A2 show the geometric details of the frames studied. Tables A1 and A2 

summarize the location and sensors types used in the experimental study. 

 

 

 
Fig. A1 Details of Frame-I 

 
Table A1 Geometric details and locations of sensors used (Frame I) 

Sl. No. Point 
Coordinates (in mm) 

Sl. No. Point 
Coordinates (in mm) 

X Y Z X Y Z 

1 A1 0 0 0 10 S3(α) 406.1 349.7 469.8 

2 B1 770 0 0 11 S4(ε1,xx) 120.7 27.4 522.2 

3 C1 725 578.5 0 12 S5(ε2,yy) 114.3 25.9 494.2 

4 D1 8 578.5 0 13 S6(ε3,xx) 703.6 64.8 461.2 

5 A2 129.3 29.3 559.5 14 S7(ε4,yy)  708 60.6 431.1 

6 B2 697.8 70.5 501.3 15 S8(ε5,xx) 614.4 641.3 356 

7 C2 602.2 648.2 395.5 16 S9(ε6,yy) 623.4 636 326.3 

8 D2 196.5 593.7 434.4 17 S10(ε7,xx) 181.2 592.3 395.8 

9 S2 (a1,a2 and a3)  407.2 306.8 478.5 18 S11(ε8,yy) 178.4 591.3 366.8 
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Fig. A2 Details of Frame-II 

 

Table A2 Locations of sensors used (Frame II) 

Sl. No. Sensor Response variable Sl. No. Sensor 
Response 

variable 

1 S1 atx 13 S13 ε4,yy 

2 S2 aty 14 S14 ε13,yy 

3 S3 a1,x, a1,y and a1,z 15 S15 ε6,xx

 

4 S4 a2,x, a2,y and a2,z 16 S16 ε5,xx 

5 S5 a3,x, a3,y and a3,z 17 S17 ε4,xx 

6 S6 α1 18 S18 ε9,yy 

7 S7 α2 19 S19 ε8,yy 

8 S8 α3 20 S20 ε7,yy 

9 S9 ε3,yy 21 S21 ε12,xx 

10 S10 ε2,yy 22 S22 ε11,xx 

11 S11 ε1,yy 23 S23 ε10,xx 

12 S12 ε15,yy    
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