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Abstract.  The thermomagnetic effect on plane wave propagation at the liquid-solid interface with 

nonclassical thermoelasticity is investigated. It is assumed that liquid-solid half-space is under initial stress. 

Numerical computations are performed for the developed amplitude ratios of P, SV and thermal waves under 

Cattaneo-Lord-Shulman theory, Green-Lindsay theory and classical thermoelasticity. The system of 

developed equations is solved by the application of the MATLAB software at different angles of incidence 

for Green and Lindsay model. The effect of initial stress and magnetic field in the lower half-space are 

discussed and comparison is made in LS, GL and CT models of thermoelasticity. In the absence of magnetic 

field, the obtained results are in agreement with the same results obtained by the relevant authors. This study 

would be useful for magneto-thermoelastic acoustic device field. 
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1. Introduction 
 

The study of acoustic wave behavior at the interface of magneto-thermoelastic solid and liquid 

media is a useful topic in acoustic non-destructive evaluation and acoustic device design. This 

problem has been investigated by many researchers for both viscous and non-viscous fluids and 

some useful solutions are found. Some of the related references are mentioned herein because it is 

not possible to embrace all of them. Chen et al. (2008) illustrated the reflection and transmission 

of plane waves in magneto-electro-elastic layered structures. Othman and Song (2008) proposed 

reflection of magneto-thermoelastic waves without initial stress. Zhang (2013) studied reflection 

and transmission of magneto-electro-elastic plane waves at the interface between solid and liquid 

media. 

The heat propagation is considered to be infinitely large in the classical dynamical theory of 

thermoelasticity. This paradox is removed by the different generalizations of thermoelasticity such 

as Lord and Shulman (L-S) and Green and Lindsay (G-L) theories. Green and Lindsay theory 
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(1973) included temperature rate among the constitutive variables and proposed theory of 

thermoelasticity in the context of classical Fourier law of heat conduction by considering center 

symmetry of body and removed the paradox of infinite thermal speed. Lord and Shulman (1967) 

proposed a generalized theory by introducing changing flux in Fourier‟s law of heat conduction 

and proposed finite speed for thermal vibrations. However, in many problems such as in nuclear 

reactors where steep heat gradients along with short time effects are involved, these theories don‟t 

give correct values. In context of these theories, Dey and Addy (1973) studied reflection of plane 

waves at a free surface under initial stresses. Sinha and Elsibai (1996) discussed thermoelastic 

reflection of waves at a solid half-space in the context of generalized theories of thermoelasticity. 

Sharma et al. (2003) investigated reflection of thermoelastic waves at the interface of a half-space 

by using thermoelastic theories. In last decade, considerable interest has been shown towards the 

phenomenon of magneto-electro-elastic plane wave propagation by many scientists; Wu et al 

(2007) discovered Lamb wave propagation in an infinite magneto-electro-elastic plate. Feng et al 

(2008) studied the Stoneley waves between two magneto-electro-elastic half planes by considering 

twenty five sets of magneto-electric interface conditions. Melkumyan (2007) investigated 

propagation of twelve surface waves in magneto-electro-elastic materials. Singh and Chakraborty 

(2013) studied reflection and refraction of thermoelastic plane waves at solid-liquid interface by 

considering three theories of thermoelasticity without considering magnetic parameter. However 

they took wrong parameter in their basic equations. Also, Kaur and Sharma (2012) discussed 

reflection and transmission of thermoelastic plane waves in the absence of magnetic field at liquid- 

solid interface. Sharma and Bhargava (2014) studied plane wave propagation at the interface of 

liquid-solid but they have not taken effect of magnetic field on plane thermoelastic waves. To the 

best knowledge of the authors, the reflection and refraction of magneto-thermoelastic plane wave 

at the interface between solid and liquid media under initial stress have not been investigated so 

far. This problem could be useful to design underwater acoustic device equipments. Therefore, 

authors have chosen engineering-oriented problem and it motivates the present study. The 

expression of reflection and refraction coefficients of magneto-thermoelastic plane wave in 

generalized theories of thermoelasticity is first formulated under boundary conditions and then 

computed numerically. The effect of initial stress, temperature and magnetic field upon the 

reflection and refraction coefficients of plane waves at liquid-solid interface are shown 

graphically. 

 

 

2. Formulation of the problem 
 

We consider a transversely isotropic, homogeneous elastic half space and non-viscous liquid 

half- space placed over it. Both the half-spaces are under initial tensile stress P along X-axis at 

absolute temperature T  (Fig. 1). Further, thermoelastic medium is subjected to uniform magnetic 

field intensity  00, 0,   parallel to Z-axis. An elastic plane SV-wave (rotational wave), P-wave 

(dilatational wave) or thermal wave (dilatational wave) is incident in medium M1 at the plane 

liquid-solid interface such that it is partially reflected as SV-wave (rotational wave) in medium M1, 

one reflected P-wave (dilatational wave) in medium M1, one reflected thermal wave 

(compressional wave) in medium M1, one refracted P-wave (compressional wave) in medium M2 

and one reflected thermal wave (compressional wave) in medium M2 as shown (Fig. 1).  
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Fig. 1 Reflection and refraction of magneto-thermoelastic plane waves 

 

 

3. Governing equations  
 
The magnetic field is taken parallel to the Z-axis, therefore third Z-component „ w ‟of the 

displacement vector and all other quantities are independent of Z. Following Lotfy (2011), the 

governing equations in the absence of all body forces are given by 

Strain-displacement relations 

. ,i

1
(u u )

2
ij i j je                                                             (1) 

where, u ( , ,0)
i

u v  is the components of displacement vector. 

Stress displacement relation 

e 2 1 ,ij ij ij ijs e
t

     
 

     
 

                                         (2) 

The modified heat conduction equation 

2 2 2 3 3
2

0 0 02 2 2
K γv ij

u v u v
c

t t x t y t x t y t
   

          
            

             

              (3) 

The components of Lorentz force 

(J ) ,     (J ) ,   0x e x y e y zF F F                                         (4) 
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The uniform magnetic field intensity  00, 0,   is parallel to Z-axis; it induces electric field 

E and magnetic field h. These variations in magnetic and electric fields are given by Maxwell‟s 

equations 

D
curl h = J + 

t




                                                           (5) 

curl  = -
t





                                                              (6) 

div  = 0,   div  = 0,    = ,   D = Ee e                                         (7) 

E = -   e

u

t


 
   

                                                         (8) 

where 
u

t




 is the particle velocity of the medium, and the influence of temperature gradient on J is 

also neglected. The steady-state deformed position is measured from dynamic displacement vector, 

which is assumed to be ignored. 

The components of magnetic intensity vector in the medium 

00,  [ h(x,z, t)]x y z e                                               (9) 

2 2

0 0 0 02 2
J ,  J ,  J 0

x e e y e e z

e v e u

y t x t
   

   
        

   
                   (10) 

From Eqs. (5)-(10) into Eq. (4) we obtain 

2 2
2 2 2 2 2 2

0 0 0 02 2
,   ,   0

x e e e y e e e z

e u e v
F F F

x t y t
     

   
        

   
               (11) 

where 
0

h = - (0,0,e)  

Following Biot [22], the dynamical equations of motion for the propagation of wave in two 

dimensions 

2

2

xyxx
x

ss u
P F

x y y t


  
   

   
                                           (12) 

2

2

xy yy

y

s s v
P F

x y x t


   
   

   
                                            (13) 

where ,xx yys s  and xys are incremental thermal stress components. The first two are principal stress 

components along X- and Y-axes, respectively and last one is shear stress component in the X-Y 

plane and u, v are the displacement components along X and Y directions respectively.  
Following Biot [22], the stress-strain relations with incremental isotropy 
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( 2 ) ( ) 2xx xx yy xxs P e P e e
x

     
 

        
 

                        (14) 

( 2 )yy xx yys e e
x

    
 

     
 

                                       (15) 

2xy xys e                                                               (16) 

where 

1
, ,

2
xx yy xy

u v v u
e e e

x x x y

    
    
    

                                 (17) 

 
 

4. Solution of the problem 
 

For lower half M1 

Using Eq. (11), Eqs. (14)-(17) in Eq. (12) and Eq. (13) we get 

 
2 2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

u P v P u u v u
P H

x x y y x x y t x t x
        

              
                 

                 

 (18) 

 
2 2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

v P u P v u v v
H

y x y x x y y t y t y
        

              
                

                 

 (19) 

Eq. (18) and Eq. (19) can be solved by choosing potential functions   and  as 

u
x y

  
 
 

 and v
x y

  
 
 

                                            (20) 

From Eqs. (18) and (20), we get 

2
2

2 2 2

0 0
( 2 ) ( 2 )

e e
H P t H P t

  
 

     

  
    

        
              (21) 

2
2

2

2

P t

 





 

 
 

 

                                                     (22) 

From Eq. (19) and (20), we get 

2
2

2 2 2

0 0
( 2 ) ( 2 )

e e
H t H t

  
 

     

  
    

      
                                  (23) 
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2
2

2

2

P t

 





 

 
 

 

                                                      (24) 

Solution using Green and Lindsay’s model 

Eq. (21) and Eq. (23) represent magneto- thermo compression waves along X- axis and Y- axis 

respectively, whereas Eq. (22) and Eq. (24) represent magneto- thermo distortional waves along X- 

axis and Y- axis respectively. For initial stress along X- axis, the four Eqs. (21)-(24) by using 

Green and Lindsay‟s theory: 
0 0,  0,ij      reduced to 

2
2

2 2 2

1 0

1

( 2 )
e

T
T

c t H P t

 
 

  

  
    

     
                              (25) 

2
2

2 2

2

1

c t





 


                                                          (26) 

where  

2
2 0
1

( 2 )eH P
c

  



  
 and 

2

2

2

P

c





 
 

 
                                   (27) 

1
c  is known as P-wave velocity and 2

c  is called SV-wave velocity. Also, for P-wave 0v   and 

for SV-wave 0.u   

Now, from Eqs. (3) and (20), we get 

   
2 2

2 2 2

0 0 02 2
= + γv ijK c

t t t t
     

       
         

      
                     (28) 

where, 

2 2
2

2 2
x y

 
  

 
  

Using Green and Lindsay‟s theory: 
0 0,  0,ij      Eq. (28) reduces as 

  
2

2 2

0 02
= + γvK c

t t t
  

     
           

                                   (29) 

Eliminating T from Eq. (25) and Eq. (29), we get 

2 2 2 3
4 20 0

0 02 2 2 2 2 2 2 3

1 1 0 0

γ γ
1 1 0

( 2 ) ( 2 )v v v v e ec c c t c c c H P t H P t t

 
    

        

           
               

              

(30) 

Or 
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 
2 2 3

2 4 23
3 0 02 2 2 3

1 1

1
1 1 0

c
c

t c t c t t


       

      
             

      

             (31) 

where, 
2

3

v

c
c


  and 

2

0

2 2

1

γ

v
c c







 is thermoelastic coupling constant in medium M1. 

The solution of ,  and T can be obtained in the following form 

( ) exp[ { }]y i kx ct                                                       (32) 

( ) exp[ { }]y i kx ct                                                       (33) 

( ) exp[ { }]C y i kx ct                                                      (34) 

where, k is wave number,   is angular frequency and c
k


  phase velocity. 

Eq. (32) should satisfy Eq. (31) because Eq. (32) is a solution of Eq. (31), so substituting Eq. 

(32) in Eq. (31) we get 

 

   

24 2 2 2
2 3

04 2 2 2 2

3 1 3

2 24 2 3 2
4 3 1

0 02 2 2 2 2

3 1 1 3

2 1

(1 1 0

cd k c ikc d
k

dy c c c dy

c ikck c ik c
k ikc

c c c c c

   

    

 

 

   
        

  

  
           

  

              (35) 

The solution of Eq. (35) will contain four values of ( )y , therefore Eq. (32) becomes 

   

   

1 1 2 1

3 2 4 2

exp exp
exp[ { }]

exp exp

ik y ik y
i kx ct

ik y ik y

   


   

  
  

    

                             (36) 

where, 
2 2

1 1
1c   , 

2 2

2 2
1c    

 
2

2 2 1
1 2 1 0 32 2

1 3

(1 )1
,

2

i c
c c L

c c


    






  
      

  
, 

 
 

2 2 22
0 1 32 2 1

1 0 3

4 1(1 ) i i c ci c
L c c


  

 




 
     
 

 

(37) 

From Eq. (33) and Eq. (26), we get 

2 2
2

2 2

2

1 0
d c

k
dy c

 
    

 
                                                       (38) 
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The solution of Eq. (38) will contain four values of ( )y , therefore Eq. (33) can be written as 

   5 3 6 3
exp exp exp[ { }]ik y ik y i kx ct                                   (39) 

where 

2

3 2

2

1
c

c
                                                                 (40) 

Here 1
  represent the amplitude of incident thermal wave 2

,  represent the amplitude of 

reflected thermal wave, 3
  represent the amplitude of incident P- wave

4
,  represent the 

amplitude of reflected P-wav 5
  represent the amplitude of incident SV-wave and 6

  represent 

the amplitude of reflected SV-wave respectively.  

Substituting Eq. (36) and Eq. (34) in Eq. (25), we get the values of ( )C y  and using that value 

of ( )C y  in Eq. (34), we get 

    

    

1 1 2 1

3 2 4 2

exp exp
exp[ { }]

exp exp

d ik y ik y
i kx ct

f ik y ik y

   

    

  
   
    

                   (41) 

where, (1 )i   , 
2 2

2 1(1 c )d     and 
2 2

1 1(1 c )f     

For upper half M2 

Using equation (11), equations (14)-(17) in equation (12) and equation (13) we get 

2 2 2 2 2 2 2
2

02 2 2 2e

u v u u v u
H

x x y y x x y t x t x
     

                  
               
             

         (42) 

2 2 2 2 2 2 2
2

02 2 2 2e

v u v u v v
H

y x y x x y y t x t y
     

                  
               
             

          (43) 

Similarly, Eq. (3) for upper half M2 can be written as 

2
2

0 02
= + γv

u v
K c

t t t x y
 

            
              

        
                           (44) 

Here, 
0 0 0

, , , , , , , ,. ,
e v

H K c                are the quantities for the upper half medium M2 as 

defined for lower half medium M1 

Let u
x


 


 and v

y


 


                                              (45) 

we get 

2
2

2 2 2

1 1

1

c t c t

 
 



    
       

    
                                    (46) 
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 
2

2 2

0 02
= + γvK c

t t t
  

      
                  

                               (47) 

where, 

2
2 0

1

( )eHc
 



  
 


 

The solutions of Eq. (46) and Eq. (47) can be obtained in the same manner as in lower half-

space medium M1 as given below 

   2 1 4 2
exp exp exp[ { }]ik y ik y i kx ct                                       (48) 

   2 1 4 2exp exp exp[ { }]d ik y e ik y i kx ct


   
 


            

                   (49) 

where 

2 2

1 1
1c    , 

2

2 2
1c    , 

 
2

2 2 1
1 2 1 0 32 2

1 3

(1 )1
,

2

i c
c c L

c c


    






   
             

    
, 

 
 

2 2 22
0 1 32 2 1

1 0 3

4 1(1 ) i i c ci c
L c c


  

 




    
          

 
, (1 )i    , 

2 2

2 1(1 c )d       and 
2 2

1 1(1 c )e       

(50) 

Here 2
   and 4

   are the amplitude of refracted thermal wave and refracted P-wave 

respectively. 

Solution using Lord and Shulman’s model 

In this model, 00, 0,  1ij     , putting this condition in the Eqs. (12-17) as for the 

Green and Lindsay‟s model, we get the solution for , , ,   and  in the same manner in the 

Eqs. (36), (39), (41), (48) and (49) respectively with 

2 2

1 1
1c   , 

2 2

2 2
1c   , 

2

3 2

2

1
c

c
   , 2 2

1 1
1c    , 

2

2 2
1c    , 1     

where 

2
2 2 1

1 2 1 32 2

1 3

(1 )1
,

2

i c
c c L

c c


 




  
     

  
, 

2
2 22

2 2 1 31
1 3

4(1 ) ic ci c
L c c



 


 
    
 

, 

2
2 2 1

1 2 1 32 2

1 3

(1 )1
,

2

i c
c c L

c c


 




   
         

    
, 

2
2 22

2 2 1 31
1 3

4(1 ) ic ci c
L c c



 


   
      

 
 

(51) 
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Solution using Classical Dynamical model 

In this model, 0 0, 0ij     , putting this condition in the Eqs. (12)-(17) as for the 

classical dynamical model, we get the solution for , , ,    and   in the same manner in the 

Eqs. (36), (39), (41), (48) and (49) respectively with 

2 2

1 1
1c   , 

2 2

2 2
1c   , 

2

3 2

2

1
c

c
   , 2 2

1 1
1c    , 

2

2 2
1c    , 1     

where 

2
2 2 1

1 2 1 32 2

1 3

(1 )1
,

2

i c
c c L

c c


 




  
     

  
, 

2
2 22

2 2 1 31
1 3

4(1 ) ic ci c
L c c



 


 
    
 

, 

2
2 2 1

1 2 1 32 2

1 3

(1 )1
,

2

i c
c c L

c c


 




   
         

    
, 

2
2 22

2 2 1 31
1 3

4(1 ) ic ci c
L c c



 


   
      

 
 

(52) 

 

 
5. Boundary conditions and Reflection and refraction coefficients  

 

The initial conditions are supplemented by the following boundary conditions: 

Continuity condition for normal displacement at 0Y   

v v                                                               (53a) 

Continuity condition for tangential displacement at 0Y   

0u                                                                (53b) 

Continuity condition for normal initial stress at 0Y   

y yf f                                                            (53c) 

Continuity condition for tangential initial stress at 0Y   

x x
f f                                                            (53d) 

Continuity condition for temperature at 0Y   

T T                                                              (53e) 

First boundary condition (53a) gives 

y x y

    
 

  
                                                     (54) 

Introducing Eq. (36), Eq. (39) and Eq. (48) in Eq. (54) for medium M1 and corresponding 
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equations for the medium M2, we get 

1 1 1 2 2 3 2 4 5 6 1 2 2 4
0                                                  (55) 

Second boundary condition (53b) gives  

0
y x

  
 

 
                                                            (56) 

Introducing Eq. (36) and Eq. (39) in Eq. (56), we get 

1 2 3 4 3 3 3 6
0                                                     (57) 

Third boundary condition (53c) gives  

yy yys s                                                                (58) 

Introducing Eqs. (14)-(17) in Eq. (58) for medium M1 and corresponding equations for the 

medium M2, we get from Eq. (20) and Eq. (46) 

 

 

2 2 2 2
2

0 2 2 2

2 2
2

0 2 2

2 2

                                                     

e

e

H
x y y x y t

H
x y t

   
     

 
   

      
        

       

      
             

    

                (59) 

Introducing Eq. (36), Eq. (39), Eq. (41) and Eq. (48) in Eq. (59), we get 

       

    

2 2 2 2

2 1 2 1 3 42 2

2 2

2

3 5 6 3 2 4

1 1
2 2

(2 ) 1 0

c c
c c

       

       

      
                

      

       

           (60) 

where, 






  and 

2

2

P

c



 . 

Fourth boundary condition (53d) gives 

0xy xys Pe                                                          (61) 

Introducing Eqs. (14)-(17), Eq. (20), Eq. (36) and Eq. (39) in Eq. (61), we get 

      2

1 1 2 2 3 4 3 5 6

1
1 0

2
                                        (62) 

Introducing Eq. (36), Eq. (41) and Eq. (49) in Eq. (53e) for medium M1 and corresponding 

equations for the medium M2, we get 

         2 2 2 2 2 2 / 2 2

2 1 1 2 1 1 3 4 2 1 2 1 1 41 1 1 1 0c c c c


         
 

              
 

    (63) 
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where, 






  and 






 
 . 

Generalizing, we obtain a system of five non-homogeneous equations for a magneto 

thermoelastic plane wave incident  

5

1

ij j i

j

c R q


       (where j=1,2. . .5)                                           (64) 

j j
R R  are the amplitudes ratios of reflected thermal, reflected P-, reflected SV-waves and 

refracted thermal, refracted P-waves to  that of incident wave respectively. The coefficients
i

q  on 

the right side of the Eq. (64) are given by: 

For incident P-wave: 

We put 
1

1c  
 cosec  and 

1 5
0   . 

1 12
,q c  

2 22
,q c   

3 32
,q c   

4 42
,q c  

5 52
,q c   2

1

3

,R



    4

2

3

,R



  6

3

3

,R



  

2
4

3

,R





  4

5

3

.R





  

(65a) 

For incident SV-wave: 

We put 
1

2c  
 cosec  and 

3 5
0   . 

1 13
,q c   

2 23
,q c  

3 33
,q c  

4 43
,q c   

5 53
,q c  2

1

5

,R



    4

2

5

,R



  6

3

5

,R



  

2
4

5

,R





  4

5

5

.R





  

(65b) 

For incident thermal wave: 

We put 
2

c c cosec  and 
1 3

0   . 

1 11
,q c  

2 21
,q c   

3 31
,q c   

4 41
,q c  

5 51
,q c   

2
1

1

,R



    

4
2

1

,R



  

6
3

1

,R



  

2
4

1

,R





  

4
5

1

.R





  

(65c) 

where 

11 1 12 2 13 14 1 15 2, , 1, , ,c c c c c             21 22 23 3 24 251,c 1,c ,c 0,c 0,c      (66) 
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   

     

2 2 2 2

31 1 32 2 33 32 2

2 2

2 2 2

34 3 35 3 41 1 42 2 43 3 44 45

1 1
2 , 2 , (2 ) ,

1
1 , 1 , , , 1 , 0, 0,

2

c c c c c
c c

c c c c c c c

     

      

      
                  

      

              

       2 2 2 2 2 2 2

51 2 1 52 1 1 53 54 2 1 55 2 11 , 1 , 0, 1 , 1 .c c c c c c c c c
 

   
    

               

For Lord and Shulman‟s model and Classical Dynamical model the matrix elements are 

11 1 12 2 13 14 1 15 2, , 1, , ,c c c c c             21 22 23 3 24 251,c 1,c ,c 0,c 0,c      

   

     

2 2 2 2

31 1 32 2 33 32 2

2 2

2 2 2

34 3 35 3 41 1 42 2 43 3 44 45

1 1
2 , 2 , (2 ) ,

1
1 , 1 , , , 1 , 0, 0,

2

c c c c c
c c

c c c c c c c

     

      

      
                  

      

              

 

       2 2 2 2 2 2 2

51 2 1 52 1 1 53 54 2 1 55 2 11 , 1 , 0, 1 , 1 .c c c c c c c c c
 

   
 

               

(67) 

Eq. (64) can be written in terms of (5×5) matrix 

11 12 13 14 15 1 1

21 22 23 24 25 2 2

31 32 33 34 35 3 3

41 42 43 44 45 4 4

51 52 53 54 55 5 5

c c c c c R q

c c c c c R q

c c c c c R q

c c c c c R q

c c c c c R q

     
     
     
      
     
     
          

                                        (68) 

 
 

6. Numerical analysis and discussion 
 

From the above theory we conclude that the amplitude ratios i
R  depend on the incident angle 

of the incident wave. In order to study in greater detail, the dependence of these amplitude 

coefficients stress and magnetic parameter together with the incident angle, we compute the 

amplitude ratios. We have taken following material constants for water-cadmium composite 

(Table 1). For the values of relevant physical constants (Table 1), the system of Eq. (68) is solved 

for reflection and refraction coefficients by the application of the MATLAB software at different 

angles of incidence varying from 0° to 90° for Lord and Shulman‟s model, Green and Lindsay‟s 

model and classical thermoelasticity. Various graphs are plotted for Lord and Shulman‟s model, 

Green and Lindsay‟s model and classical thermoelasticity using a particular value of initial stress 

parameter and in second step, the curves are plotted for different values of initial stress parameters 

and magnetic parameters using Green and Lindsay‟s model. In the following graphs the results are  
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Table 1 Material Properties 

Cadmium Water 


 

3 3
7.996 10 .kg m


     3

/1000kg m  

  
12 2

4.048 10 .N m


    10 2
2 10 /N m  

t


 
6 1

21 10 K
 

  t
  6 1

69 10 K
 

  

2

0eH
 

9 2
1.24 10 /N m  

2

0eH   9 2
1 10 /N m  

K  
1 1

96.6? .W m K
 

 K   
1 1

0.6 Wm K
 

 

v
c  1 1

233 . .J kg K
 

 v
c  1 1

4187  Jkg K
 

 

  
0 21

1.89 10 /N m    10 2
 2 10 /N m  


 0.96  

 0.96  


 0.45  

 0.45  

0
  300K  0

  300K  

  13 1
7.5 10 s


    13 1

7.5 10 s


  

 

 

shown with thermal wave incidence. To evaluate, we have introduced the initial stress parameter 

2

P
a


  in dimensionless form to calculate the matrix elements 

ijc (in Appendix).  

Here,  is the angular frequency of magneto-thermoelastic waves. We have taken scale 
1

10


 to 

plot graphs and 
0
 and

0
  are of the same order i.e. 1.4 times approximately of   and  (in 

Appendix). The subscript „T‟ with reflection and refraction coefficients ( )
i

R is used to represent 

the tensile stress and subscript „C‟ with reflection and refraction coefficients ( )
i

R represent 

compressive stress respectively. 

Comparison among models 

The comparison of different models with thermal wave incidence is shown in Figs. 2-5. The 

analysis of amplitude ratios for reflection and refraction coefficients when thermal wave is 

incident have been compared in Figs. 2-5, the initial stress parameter is taken a=+0.3 (tensile) and 

a=-0.3 (compressional). In Fig. 2, the analysis of  amplitude ratio of reflected (a) Thermal wave 

(1)R
 , (b) P wave (2)R

 and (c) SV wave (3)R


 with incident angle for magneto-

thermoelastic wave with tensile stress (a=0.3) constant value of magnetic parameter for incident 

thermal wave is shown and comparison among three models is made. We observe that the nature 

of analysis of reflection coefficients is almost similar in nature for all models of thermoelasticity. 

From Fig. 2, we observe that there is decrement of reflected thermal wave amplitude ratios with 

the increment in the incident angle. Further, the amplitude gradually decreases for the thermal 

wave reflection in Fig. 2(a). In Fig. 2(b), the reflection coefficient of P wave shows minima at 

θ=37° and θ=32° respectively in GL and LS model, while the amplitude ratio gradually decreases 

in CT model for P- wave reflection. In Fig. 2(c), reflection coefficient of SV wave in the LS model 

shows two maxima at θ=30° and θ=55°, maxima at θ=65° in the GL and maxima at θ=35° in the 
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CT model.  

 

 

 

Fig. 2 Comparison among models: analysis of amplitude ratio of reflected (a) Thermal wave (1)R
 , 

P wave (2)R
 and (c) SV wave (3)R

 with incident angle under magnetic field with tensile stress 

(a=0.3) for incident thermal wave 

 

 

Fig. 3 Comparison among models: analysis of amplitude ratio of refracted (a) Thermal wave (4)R
  

and (b) P wave (5)R
 with incident angle under magnetic field with tensile stress (a=0.3) in for 

incident thermal wave 
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Fig. 4 Comparison among models: analysis of  amplitude ratio of reflected (a) Thermal wave C
(1)R , 

(b) P wave C
(2)R and (c) SV wave C

(3)R  with incident angle under compressional stress (a=-0.3) 

for incident thermal wave 

 

 
Fig. 5 Comparison among models: analysis of amplitude ratio of refracted (a) Thermal wave 

C
(4)R and (b) P wave C

(5)R with incident angle under compressional initial stress (a=-0.3) for 

incident thermal wave 
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Fig. 3 shows the analysis of amplitude ratio of refracted (a) Thermal wave (4)R
  and (b) P 

wave (5)R
  with incident angle under magnetic field with tensile stress (a=0.3) in for incident 

thermal wave and comparison among three models is made. Fig. 3(a) and 3(b) shows the 

amplitude ratios of the refracted waves decrease slowly for L-S, GL and CT models. Fig. 4 shows 

the analysis of amplitude ratio of reflected (a) Thermal wave C
(1)R , (b) P wave C

(2)R and (c) 

SV wave C
(3)R  with incident angle under compressional stress (a=-0.3) and constant magnetic 

parameter for incident thermal wave and comparison among three models is made. Moreover, the 

nature of analysis of reflection coefficients is almost similar in nature for all the models of 

thermoelasticity under compressional stress. We observe that Fig. 4(a)-4(b) represent the  

 

 

 

 

Fig. 6 Analysis of amplitude ratio of reflected (a) Thermal wave (1)R
 , P wave (2)R

 and (c) SV 

wave (3)R
  with incident angle under tensile stresses for GL model for incident thermal wave 
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amplitude ratios of reflected thermal and P waves, in this there are minima and maxima at θ=40° 

and θ=45° for GL model, while maxima at θ=60° for CT model. The reflection coefficient of SV 

wave in the GL model shows maxima at θ=40° and maxima at θ=60° in CT model. It is observed 

that the amplitude ratio falls sharply in LS model. Fig. 5 shows the analysis of amplitude ratio of 

refracted (a) Thermal wave C
(4)R and (b) P wave C

(5)R with incident angle under 

compressional initial stress (a=-0.3) and constant magnetic field for incident thermal wave and 

comparison among three models is made. In Fig. 5(a)-5(b), the refracted amplitude ratio falls 

sharply for 10°≤θ≤50° in LS model, maxima at θ=40° in GL model and refracted ratio falls 

gradually for CT model. On observing all the graphs under tensile or compressional stresses in 

three different models of generalized thermoelasticity, there is no doubt that reflection and 

refraction coefficients are totally dependent on magnetic field, initial stress and angle of incident 

of the magneto-thermoelastic wave. 

Effect of initial stress 

In Figs. 6-9 (when thermal wave is incident), the analysis of amplitude ratios with the incident 

angle have been compared for different values of initial stress (tensile and compressional) at 

constant magnetic parameters by taking GL model as sample. In Fig. 6(a), there is a decrease in 

amplitude ratio up to θ=45° and with the increase of stress parameter, there is decrease in 

maximum value for thermal wave. In Fig. 6(b), the minima in curves occurs at θ=45° 

approximately and maxima at θ=65° for tensile stress a=0.4 and a=0.6 respectively. However, for 

tensile stress a=0.2, maxima at θ=75° for P wave. In Fig. 6(c), the maxima occurs at θ=75°, θ=65° 

and θ=65° when tensile stress a=0.2, a=0.4 and a=0.6 respectively for SV wave. In Fig. 7(a)-7(b), 

there is a decrease in amplitude ratio up to θ=45°. 

In Fig. 8, the peaks occur at θ=40°, θ=55° and θ=65° when stress a=-0.2, a=-0.4 and a=-0.6 

respectively. The nature of the curves is reversing than the previous case of tensile stress. 

Similarly, in Fig. 9(a)-9(b), the peaks occur at θ=40°, θ=55° and θ=65° when stress a=-0.2, a=-0.4 

and a=-0.6 respectively.  

 

 

 

Fig.7 Analysis of amplitude ratio of refracted (a) Thermal wave (4)R
  and (b) P wave (5)R

 with 

incident angle under tensile stresses for GL model 
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Fig. 8 Analysis of amplitude ratio of reflected (a) Thermal wave C
(1)R , (b) P wave C

(2)R and (c) 

SV wave C
(3)R with incident angle under compressional stresses in GL model 

 

 
Fig. 9 Analysis of amplitude ratio of refracted (a) Thermal wave and (b) P wave  with incident angle under 

compressional stresses in GL model 
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Effect of magnetic parameter  

In Figs. 10-13 (when thermal wave is incident), the analysis of amplitude ratios with the 

incident angle have been compared for different values of magnetic parameters at constant initial 

stress (tensile and compressional) by taking GL model as sample. In Fig. 10, the analysis of  

amplitude ratio of reflected (a) Thermal wave (1)R
 , (b) P wave (2)R

 and (c) SV wave (3)R
  

with incident angle for magneto-thermoelastic wave with tensile stress (a=0.5) at various value of 

magnetic parameter for incident thermal wave is shown. From Fig. 10, we observe that the 

amplitude ratios of the reflected thermal waves decrease with increase in incident angle. Also, it is 

seen that as the magnetic parameter increases, there is a decrease in amplitude ratio. The peak in 

the amplitude for lower value of magnetic field is observed in all the figures. The amplitude ratios 

tend to 0 at θ=90° (Fig. 10a-10c). Fig. 11 shows the analysis of amplitude ratio of refracted (a) 

Thermal wave (4)R
  and (b) P wave (5)R

 with incident angle under different values of 

magnetic field with tensile stress (a=0.5) for incident thermal wave. The amplitude ratios of the 

refracted waves decrease slowly and maximum for lower value of magnetic parameter. The 

amplitude ratios tend to 0 at θ=90° (Fig. 11a-11b). Fig. 12 shows the analysis of  amplitude ratio 

of reflected (a) Thermal wave C
(1)R , (b) P wave C

(2)R and (c) SV wave C
(3)R  with incident 

angle with compressional stress (a=-0.5) at various value of magnetic parameter for incident 

thermal wave is shown. From Fig. 12, we observe that the amplitude ratios of the reflected thermal 

waves decrease with increase in incident angle. Also, it is seen that as the magnetic parameter 

increases, there is an increase in amplitude ratio. The peak in the amplitude for higher value of 

magnetic field is observed in all the figures. The amplitude ratios tend to 0 at θ=90° (Fig. 12a-

12c). Fig. 13 shows the analysis of amplitude ratio of refracted (a) Thermal wave C
(4)R  and (b) 

P wave C
(5)R  with incident angle with compressional stress (a=-0.5) at various value of 

magnetic parameter for incident thermal wave is shown. From Fig. 13, we observe that the 

amplitude ratios of the reflected thermal waves decrease with increase in incident angle. The 

amplitude ratios tend to 0 at θ=90° (Fig. 13a-13b). 

 

 

 

Fig. 10 Analysis of amplitude ratio of reflected (a) Thermal wave (1)R
 , P wave (2)R

 and (c) SV 

wave (3)R
  with incident angle for different magnetic fields when the stress is tensile 
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Fig. 10 Continued 

 

 

Fig. 11 Analysis of amplitude ratio of refracted (a) Thermal wave (4)R
  and (b) P wave 

(5)R
 with incident angle for different magnetic fields when the stress is tensile 

 

 

Fig. 12 Analysis of amplitude ratio of reflected (a) Thermal wave C
(1)R , (b) P wave C

(2)R and (c) 

SV wave C
(3)R with incident angle for different magnetic fields when the stress is compressional 
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Fig. 12 Continued 

 

 

Fig. 13 Analysis of amplitude ratio of refracted (a) Thermal wave C
(4)R and (b) P wave C

(5)R  

with incident angle for different magnetic fields when the stress is compressional 

 

 

7. Conclusions 
 

Comparative studies of reflection and refraction of thermal wave, P wave and SV wave at the 

interface of water-cadmium in pre-stressed half space with both compressive and tensile stress is 

made in the three models of thermoelasticity. The problem is reduced to the solution of equations 

under fixed boundary conditions. The following conclusions can be drawn from the above studies: 

(1) It has been observed that the amplitude ratios i
R  of plane waves depend on the incident 

angle of the incident wave, stress parameter and magnetic parameter of the medium.  

(2) From the above graphs, it is seen that the reflection and refraction or transmission of 

magneto-thermoelastic waves under initial stress is almost same in LS, GL and CT models of 

generalized thermoelasticity, but the magnitude of amplitude ratio is slightly different for various 

values of incident angles and initial hydrostatic stress.  

(3) The magnetic field significantly affects the velocities of the waves and reflection and 
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refraction amplitude. 

This investigation is useful for seismologists and geologists to study the effect of magnetic 

field, temperature and initial stress of earth on different liquid-solid layers present in the earth 

mantle and crust. 
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Appendix 
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Nomenclature 
 

,    Lame‟s constants 
   density 
   Poisson‟s ratio 

v
c   specific heat at constant strain 

ijs  components of stress tensor 

T   absolute temperature 

0
  reference temperature chosen so that 0 0

/ 1      

P  Initial pressure ( yy xxs s ) 

ije  components of strain tensor 

K  thermal conductivity 

J   current density vector 

e
   1 / [2(1 )]  magnetic permeability  

e
  electric permittivity 

   initial uniform magnetic intensity vector 

h   induced magnetic field 

0
H   magnetic field component 

 

   induced electric field vector 

D   electric displacement vector 

  magnetic displacement vector 

F   Lorentz force 

ij   Kronecker delta 




  thermoelastic coupling constant  

u
i
 components of displacement vector 
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0
,   relaxation times 

t   time 
e   cubical dilatation 

  1/ 2( / / )v x u y     rotational component 

t
  coefficient of linear thermal expansion 

  (3 2 )
t

    

k   wave number 
 

  angular frequency  

 
c   / k  

 
2

1c  
2

0( 2 H ) /e P       

2

2c   / 2 /P   

2

3c  /
v

c  

2
c   1/

e e
   light speed squared 
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