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Abstract.  The present paper is devoted to study SH-wave propagation in heterogeneous layer laying over 

an inhomogeneous isotropic elastic half-space. The dispersion relation for propagation of said waves is 

derived with Green’s function method and Fourier transform. As a special case when the upper layer and 

lower half-space are homogeneous, our derived equation is in agreement with the general equation of Love 

wave. Numerically, it is observed that the velocity of SH-wave increases with the increase of inhomogeneity 

parameter. 
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1. Introduction 
 

The propagation of SH-waves in a hetrogeneous elastic medium can help us to understand 

earth-quakes, as the earth is made up of different hetrogeneous layers crust, mantle and core. The 

studies of nature of different layers of Earth inspired authors to work on the propagation of SH-

wave in a hetrogeneous elastic medium. The schematics of the problem is taken as heterogeneous 

upper layer placed over inhomogeneous half-space, the formulation in upper layer and lower half-

space has taken with different nonhomogeneity parameters. The problem is solved for layers with 

a unit impulse force in space and time followed by Green’s function technique. The unit impulse 

force is represented by Dirac delta function, so an idealized point source or impulse of SH-wave 

can be described by this function.  

Extensive and laudable work on wave propagation in various medium by using Green’s 

function technique has been carried out by many researchers. Watanabe and Payton (2002) 

discussed SH- waves in a cylindrically monoclinic material with Green’s function. Chattopadhyay 

et al. (2010, 2012) used Green’s function technique to study propagation of SH-waves and 

heterogeneity on the SH-waves in a viscoelastic layer over a viscoelastic half-space under the 

effect of point source. Selvamani and Ponnusamy (2013) discussed wave propagation in a 

generalized thermo-elastic circular plate immersed in fluid. Gupta and Gupta (2013) formulated 

wave motion in anisotropic initially stressed fiber reinforced thermoelastic medium. Kakar and  
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Fig. 1 Geometry of the problem 

 

 

Kakar (2012) discussed propagation of Love waves in non-homogeneous elastic media. Delfim 

Soares Jr (2012) reviewed the iterative FEM-BEM coupling scheme for the investigation of wave 

propagation models. Chen et al. (2012) studied the medium coupling effect on propagation of 

guided waves in engineering structures and human bone phantoms. Kristel et al. (2013) analyzed 

wave propagation in unbounded elastic domains using the spectral element method. Kakar and 

Gupta (2014) investigated the existence of Love waves in an intermediate heterogeneous layer 

placed in between homogeneous and inhomogeneous half-spaces using Green‟s function 

technique. Xu et al. (2014) studied wave propagation in a 3D fully nonlinear NWT based on MTF 

coupled with DZ method for the downstream boundary.  
In the present investigation, an attempt has been made to study the behaviour of SH-wave 

propagating in a heterogeneous elastic layer placed over inhomogeneous elastic half-space due to a 

point source. The heterogeneity is caused by consideration of exponential variation in rigidity and 

density in the upper elastic layer. Green‟s function technique is used to find the displacement in 

the elastic layer. Standard frequency equation of SH-waves is obtained in the special cases in 

closed form. The effects of inhomogeneity on the dimensionless phase velocity of SH-waves are 

also shown through figures with MATLAB software. 

 
 

2. Formulation of the problem 
 
Let H be the thickness of the upper layer with exponential variation of rigidity and density 

placed over inhomogeneous half-space. We consider x-axis along the direction of wave 

propagation and z-axis vertically downwards. We choose the source of disturbance P at the line of 

intersection of the interface and z-axis as shown (Fig. 1).  

The variations of heterogeneous rigidity and density in the upper and lower layer are taken as  
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where ε1 and ε2 are inhomogeneous parameters of upper layer and lower half-space respectively, 

and ς is a small positive real constant such that O(ς
2
)→0. 

 

 

3. Boundary conditions  
 

The displacement components and stress components are continuous at z=H, and at z=0 there is 

no stress, therefore the geometry of the problem leads to the following conditions 

1 0
v

z





                                                                (3a) 

1 2v v                                                                 (3b) 

1 1 2H v v
e

z z

 
 


 

                                                        (3c) 

 

 

4. Solution of the problem 
 
The equation of motion for point source can be written as  

,ij j i iF u                                                                (4) 

where τij are the stress components, ρ is the density of the medium and Fi are body forces. 

For SH-wave propagation along the x-axis, we have 

0, 0, ( , , )u w v v x z t                                 (5) 

Assuming the source is time harmonic and taking the time dependence e
iωt

 to be understood 

throughout, such that the equation of motion for upper inhomogeneous isotropic medium is 

2

1 1 1
1 1 1 12

4 ( , )
v v v

r t
x x z z t

   
      

     
       

                                (6) 

Here „r‟ is the distance from the origin, where the force is applied to a point of coordinates, 

„σ1(r,t)‟ is the disturbances produced by the impulsive force at P and t is time.  

As per our assumption 2 2( , , ) ( , )
i t

v x z t v x z e


  and 1( , ) ( )e
i t

r t r
  , Eq. (6) reduces to 

21 1
1 1 1 1 4 ( )
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x x z z
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                                   (7)  
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The disturbances caused by the impulsive force „σ(r)‟ can be written in terms of Dirac-delta 

function at the source point as 

( ) ( ) ( )r x z H                                                          (8) 

Therefore, Eq. (7) reduces to 

21 1
1 1 1 1 4 ( ) ( )

v v
v x z H

x x z z
     

     
      

      
                         (9) 

Put Eq. (1) in Eq. (9), then we get 
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Again substituting 
1 
2
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 in Eq. (10), we get 
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To solve Eq. (11), the following Fourier transforms are taken 
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In terms of Fourier transforms, Eq. (11) can be written as 
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and 
2

2 2 1
1

4
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




 
  
 

, kc   is the angular frequency, k the wave number and c is the phase 

velocity. 
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The SH-waves are excited in the layer due to the presence of a point source at the interface of 

the layer and the lower half-space. Therefore, the equation of motion for lower semi infinite half-

space by using Eq. (12) is  

2
22

2 22
4 ( )

d V
V z

dz
                                                     (15) 

where, 
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z e e e e V
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      (16) 

and 2 2

2k









, kc   is the angular frequency, k the wave number and c is the phase velocity. 

The displacement in lower half-space will determine from the Eq. (15), after assuming 

homogeneous to lower half-space, isotropic having source density distribution σ
2
(z). 

Eq. (13) and Eq. (15) are solved by Green‟s Function technique under the prescribed boundary 

conditions in Eqs. (3a), (3b) and (3d). First of all we take the upper layer and it is solved with the 

help of Green‟s function G1(z/z0). 

The Eq. (13) will satisfy G1(z/z0) as 

2
21 0

1 0 02

1 0

together with the homogeneous boundary conditio

( )
( ) ( )
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                         (17) 

Here z0 is arbitrary point in the upper medium. Multiplying Eq. (17) by G1(z/z0), Eq. (13) by 

V2(ξ,z), subtracting and integrating over 0≤z≤H, we get 

1 
1 1 2

1 0 1 0 1 0 1 0
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( / ) (0 / ) ( / ) ( )

H
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            (18) 

We know, from the properties of Green‟s function G1(H/z0)=G1(z/H) and replacing z0 by z. 

Thus we get the value of V1(z) at any point z in the upper medium from Eq. (18) as 
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1 1 1 1
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             (19) 

Similarly, if G2(z/z0) are Green‟s functions corresponding to lower homogeneous media, then 

Eq. (15) will satisfy as 
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2
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together with the homogeneous boundary 
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                           (20) 

Multiplying Eq. (15) by G2(z/z0), Eq. (20) by V2(ξ,z), subtracting and integrating with respect to 

z, z=H to z=∞, we get 

2
2 0 2 2 0 0 2 0( / ) 4 ( ) ( / ) ( )

z H H

dV
G H z z G z z dz V z

dz

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
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 
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Replacing z by z0 and using symmetry of Green‟s function, Eq. (21) become 
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Using boundary condition (3b) (v1=v2) in Eq. (19), we get 
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Similarly, using boundary condition (3b) 1 1 2H v v
e

z z
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in Eq. (23), we get 
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Similarly, we have 
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Using Eq. (24) and Eq. (16) in Eq. (19) and using the property of delta function, we get 
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In the similar manner, using Eq. (24) and Eq. (16) in Eq. (22) and using the property of delta 

function, we get 

 
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Eq. (28) is an integral equation and V2(z) can be found from this equation by using successive 

approximations. The value of V2(z) obtained from Eq. (28), when substitute in Eq. (27) gives the 

value of V1(z). We are interested to find the value of V1(z), which will give the displacement in 

upper layer, and neglecting the higher order of ς, we take the first approximation as 
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Eq. (29) represents the displacement at any point in the lower half-space. Putting this value of 

V2(z) in Eq. (27), we get 
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(30) 

We note that Eq. (30) completely represents the elastic displacements. These elastic 

displacements are due to a unit impulsive force in space and time. Also, the solution of Eq. (30) is 

incomplete because G1 and G2 are not known. We adopt the following method to find the unknown 

Green‟s function, Stakgold (1979). 

We have considered G1(z/z0) as a solution of Eq. (17). 

A solution of Eq. (17) can also be found as 

2
2

2
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d L
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where, 
/ /

1 2 2 1( ) ( ) ( ) ( ) 2M L z L z L z L z     . 

So we can write the solution of Eq. (17) as 
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The conditions as mentioned in Eq. (33), we have 
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Therefore Eq. (36) takes the form as 
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e e

 

 





 
   

 
                                                (37) 

1

1
( )

H H

H H

e e
G H H

e e

 

 





 
   

 
                                               (38) 

Green‟s function G2(z/z0) can be obtained in the similar manner as above by using the boundary 

conditions Eq. (3a) and Eq. (3b). 

0 0( 2 )

2 0

1
( )

2

z z z z H
G z z e e

 



       
 

                                     (39)  

Therefore Eq. (39) takes the form as 

0

2 0( )

z H
e

G H z





 

                                                   (40) 

2

1
( )G H H


                                                       (41) 

Substitute the value of Eqs. (36)-(41) in Eq. (30), simplifying, we get 

   
1

2 2 2 2

2 1 2
1 2

0 0 0 0 2

2 2 2
( )   1

4

H
z z H H

e e e e e k
V z

P Q P Q


       

 

                  
    
 

                (38) 
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where, 

 1

0

H H H
P e e e

       ,             0

H H
Q e e

                              (39) 

Neglecting the higher powers of  then the Eq. (38) will become as 

 

1

2

1 2 2 2

2 1 2
0 0 2

2

2
( )  

2 2

4

H
z z

H H

e e e
V z

k
P Q e e


 

     


 





   


  
        

                                (40) 

Taking the inverse Fourier transform of Eq. (40), the displacement in the upper layer may be 

obtained as 

 

1

2

1 2 2 2

2 1 2
0 0 2

2

( ) 2 e  d  
2 2

4

H
z z

i x

H H

e e e
V z

k
P Q e e


 



 


   


 







  
 

  
        


                      (41) 

Using Eq. (12) into Eq. (41), we get 

 

1 ( )
2

1 2 2 2

2 1 2
0 0 2

2

( ) 2  e  d  
2 2

4

z H
z z

i x

H H

e e e
v z

k
P Q e e


 



 


   


 








  
 

  
        


                    (42) 

The dispersion equation of SH-wave can now be obtained by putting the denominator of Eq. 

(42) equal to zero, after putting the values of P0 and Q0, we have 

   

   

1

1

2 2 2

2 1 2

2

2

2 2 2

2 1 2

2

2

2 2
0

4

2 2

4

H H H H H H H

H H H H H

k
e e e e e e e

k
e e e e e

      

    

   
   

 

   
   

 

  

 

  
                    


                        

 (43) 

Rearranging Eq. (43), we get 

 

 

1

2 2 2

2 1 2

2

2

2 2

4
tanh  

H

k

H
e


   
  

 




    
   

   
                              (44) 

Replacing α by ik, we get 

 

 

1

2 2 2

2 1 2

2

2

2 2

4
tan  

H

k

kH
k e



   
  

 



    
   

   
                                 (45) 
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We make following substitutions in Eq. (44) 

1

2
22

1

2 2

1

1
4

c
ik

c k




 
   

 
 and 

1

2 2

2

2

1
c

k
c


 

  
 

 

where, 
1

c



  and 

2
c









 respectively. 

We have 

1 1

2

222
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2 2 2 22 2
1 1 1

2 2 2 2

1 1

2 2 2 2

2 2

2 2 2 2

1 2 2 2

1
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4 4

1 1
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c
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c k c c
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c c c c
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 


 

 
 

 
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 
  

    
      

   
     

   


22

2

2 2

1

1
4

                                        

c

c k



 
  
   
  
   
   

      

(46) 

Eq. (46) is the dispersion equation of SH-waves in inhomogeneous upper layer placed in 

between two hetrogeneous half-spaces. 

 
Case-1 
 

In the absence of inhomogeneous parameters ε1 and ε2 of upper layer and lower half-space i.e., 

ε1=0 and ε2=0, Eq. (46) reduces to  

2 2 2

2 2 22
2 1 2

2 22 2
1

22 2
11 1

1 1

tan 1  +      

11 1

c c c

c c cc
kH

c cc c

cc c






 

  
         

             
   

               (47) 

Case-2 
 

When ς=0, ε1=0 and ε2=0, Eq. (46) reduces to  

2

22
2

2 2
1

2

1

1

tan 1  

1

c

cc
kH

c c

c





 
  

  
   

                                           (48) 

Eq. (48) is the classical dispersion equation of SH-waves given by Love (1911) and Ewing et 

al. (1957).  
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Table 1 Material parameters 

Layer Rigidity Density 

I 10 2
6.34 10 /N m    3

3364 /Kg m   

II 10 2
11.77 10 /N m    3

4148 /Kg m   

 
 
5. Numerical analysis 

 

To show the effect of inhomogeneity parameters 1l
k


 , 2m

k


  and 

2
n




  on nature of wave 

motion we have plotted non-dimensional phase velocity 
2

2

1

c

c
 against dimensionless wave number 

kH on the propagation of SH-wave in hetrogeneous upper layer by using MATLAB software. Figs. 

2-8 are plotted for Eq. (46) by taking parameters in Table 1, Gubbins (1990). 

Fig. 2 shows the variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number 

kH for the different values of heterogeneity parameter 1 0.1,0.3,0.5,0.7
k


  and inhomogeneity 

parameter 2 0.1,0.3,0.5,0.7
k


  at constant value of 0.2.

2




  It has been observed that phase 

velocity of SH-waves in upper layer increases with the increases of heterogeneity parameter 1

k



and inhomogeneity parameter 2

k



 
in presence of 

2




. The dimensionless phase velocity 

2

2

1

c

c
 v/s 

dimensionless wave number kH for the different values of heterogeneity parameter 

1 0.1,0.3,0.5,0.7
k


  and inhomogeneity parameter 2 0.1,0.3,0.5,0.7

k


 is plotted in Fig. 3 at 

different values of 0.1,0.2,0.3,0.4.
2




  From this curve, it can be realized that phase velocity 

increases with the increases of heterogeneity parameter 1

k


, inhomogeneity parameters 2

k


 and

0.2
2




 . Fig. 4 represents the variation of dimensionless phase velocity 

2

2

1

c

c
 v/s dimensionless 

wave number kH for the different values of heterogeneity parameter 1 0.1,0.3,0.5,0.7
k


  in the 

absence of 
2




 and inhomogeneity parameter 2

k


. It is important to mention here, when we put 

2



  

equal to zero, the SH-waves will only affected by the inhomogeneity parameter 1

k

 . It is observed 

in this curve that inhomogeneity parameters remarkably affect the SH-waves propagating in upper  
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Fig. 2 Variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the 

different values of heterogeneity parameter 1

k


 and inhomogeneity parameter 2

k

  at constant value 

of 0.2.
2




  

 

 

Fig. 3 Variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the 

different values of heterogeneity parameter 1

k


 and inhomogeneity parameter 2

k


 at different value 

of .
2




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Fig. 4 Variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the 

different values of heterogeneity parameter 1

k


 in the absence of inhomogeneity parameter 2

k


 and 

.
2




 

 

 

Fig. 5 Variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the 

different values of 
2




 at constant values of heterogeneity parameter 1 0.1

k


  and inhomogeneity 

parameter 2 0.1.
k


  
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Fig. 6 Variation of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the 

different values of heterogeneity parameter 1

k

  and inhomogeneity parameter 2

k


 at constant value 

of 0
2




  and 0.2.

2




  

 

 

layer in the absence of parameter 
2




. From this curve, it can be realized that phase velocity 

increases with the increases of parameter 1

k


 in the absence of 

2




. Fig. 5 represents the variation 

of dimensionless phase velocity 
2

2

1

c

c
 v/s dimensionless wave number kH for the different values of 

2




 at constant values of heterogeneity parameter 1 0.1

k


  and inhomogeneity parameter 2 0.1.

k


  

Fig. 6 is plotted to show the concept of homogeneity and non-homogeneity at constant value of 

0
2




  and 0.2.

2




  

 

 

6. Conclusions 
 

In this problem we have taken two layers; hetrogeneous upper layer and inhomogeneous lower 

with exponential variation in rigidity and density. We have employed Green‟s function method to 

find the frequency equation due to a point source. Displacement in the upper layer is derived in 

closed form and the dispersion curves are drawn for various values of inhomogeneity parameters. 

In a particular case, the dispersion equation coincides with the well-known classical equation of 
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Love wave when the upper layer and lower half-space are homogeneous.  

From above numerical analysis, it may be conclude that: 

a. Phase velocity 
2

2

1

c

c
 (non-dimensional) of SH-waves decreases with increase of wave number 

kH (non-dimensional). 

b. The dimension less phase velocity of SH-wave shows remarkable change with heterogeneity 

parameter 1

k


. It has been observed that the phase velocity increases with increase of heterogeneity 

parameters. 

c. The dimension less phase velocity of SH-wave increases with increase of inhomogeneity 

parameter 2

k


. 

d. Phase velocity 
2

2

1

c

c
 (non-dimensional) of SH-waves also increases with the increase of 

inhomogeneity parameter .
2




 

e. However, the dimensionless phase velocity of SH-waves increases with the increase of 

heterogeneity parameters 1

k



 
in upper layer keeping inhomogeneity parameter 2

k



 
constant, in 

absence of parameter 
2



  
in lower half-space. 

f. Also, the dimensionless phase velocity of SH-waves increases with the increase of 

parameters 2

k

  in inhomogeneity upper layer keeping heterogeneity parameter 1

k

 constant, in 

absence of parameter 
2




 

in lower half-space. 

The above results may be used to study surface wave propagation during earthquakes and 

artificial explosions. 
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