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Abstract.  The effectiveness of tuned mass dampers (TMDs) in reducing the seismic response of civil 

structures is still a debated issue. The few studies regarding TMDs on inelastic structures indicate that they 

would perform well under moderate earthquake loading, when the structure remains linear or weakly 

nonlinear, while tending to fail under severe ground shaking, when the structure experiences strong 

nonlinearities. TMD seismic efficiency should be therefore rationally assessed by considering to which 

extent moderate and severe earthquakes respectively contribute to the expected cost of damages and losses 

over the lifespan of the structure. In this paper, a method for evaluating, in a life-cycle cost (LCC) 

perspective, the seismic effectiveness of TMDs on inelastic building structures is presented and exemplified 

on the SAC LA 9-storey steel moment-resisting frame benchmark building. Results show that the LCC 

concept may provide an appropriate alternative to traditional performance criteria for the evaluation of the 

effectiveness of TMDs and that TMD installation on typical existing middle-rise buildings in high seismic 

hazard regions may significantly reduce building lifetime cost despite the poor control performance 

observed under the most severe seismic events. 
 

Keywords:  structural control; tuned mass dampers (TMD); existing structures; nonlinear dynamic 

analysis; life-cycle cost analysis; cost-effectiveness 

 

 

1. Introduction 
 

In recent years, several vibro-protecting strategies have been developed for improving 

serviceability and safety of civil structures against natural and manmade hazards. Passive control 

systems have been installed in a number of full-scale buildings throughout the world (Soong and 

Dargush 1997). Among them, the passive tuned mass damper (TMD) has been deeply studied and 

widely applied on both new and existing structures because of its simplicity, efficiency and low 

maintenance cost. In its basic configuration, a TMD is a single-degree-of-freedom (SDOF) 

appendage of the primary structure. By properly tuning its natural frequency to that of the selected 

structural target mode, a significant part of the vibratory energy of that mode is transferred to the 

appendage and dissipated through its damping (Warburton 1982). Commonly used for controlling 

the response of flexible structures to wind, water waves and traffic loading (Homma et al. 2009), 
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TMDs are more rarely employed for the seismic protection of buildings, their effectiveness in 

earthquake mitigation still being fairly controversial. 

Numerous available results show that TMDs can satisfactorily reduce the seismic response of 

structures as long as these remain linear (e.g., Villaverde and Koyama 1993, Sadek et al. 1997). 

Their effectiveness is larger for long-duration narrow-band ground motions, but has recently been 

proven acceptable even against impulsive earthquakes provided that sufficiently large mass ratios 

and proper design techniques are adopted (Hoang et al. 2008, Matta 2011, 2013). 

Fewer researchers have considered TMDs on inelastic structures under earthquake loading. 

Although a certain controversy still exists on this subject, TMDs efficiency is generally admitted 

to substantially decrease when the primary structure experiences a nonlinear response, especially 

in terms of peak response reduction. Kaynia et al. (1981) assessed the seismic effectiveness of 

TMDs on elastic-perfectly plastic SDOF systems under historical seismic records, finding a small 

reduction in the cumulative yielding ductility and an insignificant reduction in the ductility ratio. 

Sladek and Klingner (1983) studied the effect of a light TMD on a 25-storey building experiencing 

stiffness degradation under the 1940 El Centro record, concluding that peak displacement was 

almost unaffected by the TMD, and yielding at the base of the core walls could not be eliminated. 

Chowdhury et al. (1985) evaluated the same inelastic building under various earthquake records, 

reporting that the controlled peak response ranged from 0.74 to 1.05 times the uncontrolled 

response depending on the values taken by the TMD mass ratio (varying from 5% to 18%) and 

damping ratio (ranging from 4% to 19%). Examining the behaviour of an inelastic SDOF 

structure-TMD system under the 1985 Mexico City excitation, Bernal (1996) found that the peak 

displacement reduction decreased with increasing inelastic excursions. Studying TMDs on 

nonlinear structures, Ruiz and Esteva (1997) concluded that their effectiveness in reducing the 

peak response becomes small as non-linearity increases. Soto-Brito and Ruiz (1999) studied the 

effect of ground motion characteristics on the effectiveness of TMDs in reducing the maximum 

displacement of a 22-storey nonlinear structure subject to moderate- and high-intensity 

earthquakes; the TMD proved successful for moderate but not for severe earthquakes. Considering 

the peak response reduction an insufficient criterion for assessing the seismic effectiveness of 

TMDs on inelastic structures, Lukkunaprasit and Wanitkorkul (2001) and Pinkaew et al. (2003) 

adopted the accumulated hysteretic energy ratio as the performance index to measure the low-

cycle fatigue damage induced by ground motion; they showed that, although a TMD cannot 

effectively reduce the peak displacement of the controlled structure after yielding, it can 

significantly reduce fatigue damage under moderate earthquakes. The same energy perspective 

was adopted by Wong (2008), who showed that TMDs enhance the ability of inelastic structures to 

withstand strong earthquakes by storing large amounts of energy at the critical moments and 

subsequently releasing them in the form of damping energy. An approach based on seismic 

fragility curves was adopted by Wong and Harris (2012) to investigate the effectiveness of a TMD 

on an inelastic 6-storey steel moment-resisting frame (MRF); results showed that a TMD can 

enhance the structure’s ability to dissipate energy at low levels of earthquake shaking but is less 

effective during strong earthquakes. Zhang and Balendra (2013) explored the performance of 

TMDs on weakly-nonlinear structures in areas subjected to narrow-band long-distance 

earthquakes; applying their proposed optimization criterion to a TMD having 2% mass ratio and 

installed on a weakly-nonlinear SDO-structure under a narrow-band long-duration record, they 

obtained a 19% displacement reduction instead of the 16% provided by traditional design methods. 

The current state of the art thus seems to indicate that TMDs can keep effective under moderate 

earthquake loading, when the structure remains linear or weakly nonlinear, while tending to fail 
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under severe ground shaking, when the structural response becomes strongly nonlinear. As a 

consequence, a fair and thorough assessment of TMDs seismic efficiency should necessarily be 

founded on determining, based on a probabilistic seismic hazard description, to which extent 

moderate and severe earthquakes respectively contribute to the expected damage cost over the 

lifespan of the structure, i.e., on establishing how TMDs actually impact on the structure life-cycle 

cost (LCC). 

LCC assessment is a decision-support tool increasingly used in several fields of engineering for 

evaluating the efficiency of systems. In earthquake engineering, it is employed as a structural 

performance criterion accounting for the expected cost of future seismic damages and losses, 

defined by applying a cost factor to the failure probability of the structure. By applying the LCC 

concept, instead of merely looking at an asset in terms of costs to design and build (initial cost), 

investors and managers can broaden their perspective including all operation, maintenance, repair, 

replacement and disposal costs over a period of time (lifetime cost). The sum of the initial and the 

lifetime costs determines the total LCC of the building, whose minimization should be the primary 

goal of any optimal design action, either in constructing a new structure or in retrofitting an 

existing one. LCC assessment of structures in seismic areas has been the subject of several studies 

in the last decade (e.g., Beck et al. 2003, Sanchez-Silva and Rackwitz 2004, Goulet et al. 2007, 

Kappos and Dimitrakopoulos 2008), including some recent works focusing on passive (Taflanidis 

and Beck 2009) and semi-active (Hahm et al. 2013) control strategies. To the best of the author’s 

knowledge, no application of LCC analysis to structures controlled by means of TMDs has ever 

been reported in the literature, nor any other study specifically focused on the economic 

advantages of TMDs in earthquake mitigation of building structures.  

In the present paper, a method for evaluating, in a LCC perspective, the seismic effectiveness of 

TMDs on inelastic building structures is presented and exemplified on the simulated case study of 

a seismic TMD-based retrofit of the 9-storey benchmark structure proposed within the SAC Phase 

II Steel Project (Gupta and Krawinkler 1999) as representative of typical middle-size steel MRF 

office buildings designed for the Los Angeles area.  

 

 

2. Methodology 
 

Various methods have been developed to estimate lifetime cost in earthquake engineering 

(Taflanidis and Beck 2009). Among these methods, the approach developed by Wen and Kang 

(2001) and subsequently improved by Lagaros and co-authors (e.g., Lagaros et al. 2006, 

Fragiadakis and Lagaros 2011, Mitropoulou et al. 2011) appears particularly appealing for its 

simplicity. The approach makes damage and consequently lifetime cost depend, for any assigned 

structural type (in the present example: steel MRF buildings), on one or more seismic demand 

parameters evaluated at multiple hazard levels through static or dynamic nonlinear analyses. Since 

the structure-TMD interaction phenomenon can only be described in terms of time-history 

response, the variant relying on nonlinear dynamic analyses is implemented here. 

 
2.1 Seismic response evaluation 
 

In earthquake engineering, LCC assessment requires the calculation of cost components that 

are related to the performance of the structure in multiple seismic hazard levels. Incremental static 

and dynamic analyses are two available procedures for estimating the seismic response of a 
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structural system which can be incorporated into the LCC assessment methodology (Vamvatsikos 

and Cornell 2002). In the present study the so-called multiple-stripe dynamic analysis (MSDA) is 

adopted, one of the most applied multiple-hazard methods implementing nonlinear dynamic 

analysis. In MSDA, many groups of nonlinear dynamic analyses (stripes) are performed at 

increasing intensity levels, each level corresponding to a predetermined exceedance probability in 

a given period. The suite of ground motion records used for performing each stripe analysis should 

be representative of the seismic threat at the corresponding intensity, according to the hazard curve 

of the area of interest. The main objective of MSDA is to express the relation existing between the 

seismic intensity level, described by a parameter (or a vector of parameters) known as the intensity 

measure (IM), and the corresponding structural response, described by an engineering demand 

parameter (EDP), sometimes referred to as the damage index (DI). A probabilistic seismic hazard 

analysis is usually performed to characterize IMs for different hazard levels, taking into account all 

important sources of modelling uncertainty for the ground motions. Typically only a small number 

of hazard levels are considered. For each of these levels, ground motion records consistent with the 

corresponding IMs are selected from some strong-motion database by performing a seismic hazard 

disaggregation. These records are taken to represent samples of possible future ground motions for 

each hazard level and are used in MSDA to extract samples of the structural response and to 

eventually computed the EDP required for cost estimation. Due to the complexity and the 

computational effort required by 3D structural models, simplified 2D simulations are frequently 

used in the analysis. This is justified for plan-symmetric buildings and particularly in the case of 

steel framed buildings composed by 2D MRF structures. 

Selecting IM and EDP is one of the fundamental steps in MSDA. The IM is typically a 

monotonically scalable ground motion intensity measure like, among others, the peak ground 

acceleration, the peak ground velocity or the 5% damped spectral acceleration at the structure’s 

first-mode period. On the other hand, EDPs can be classified in four main categories (Ghobarah et 

al. 1999): EDPs based on maximum deformation; EDPs based on cumulative damage; EDPs 

accounting for maximum deformation and cumulative damage; and global EDPs. There is wide 

consensus that for MRF structures the storey drift demand, expressed in terms of the inter-storey 

drift ratio , is the best representative of the first category of EDPs at the storey level (Gupta and 

Krawinkler 1999). An established relation exists between  and performance-oriented descriptions, 

such as immediate occupancy, life safety and collapse prevention (FEMA-273 1997). Definite 

relations, required for LCC assessment, are also available between  and damage state, for both 

reinforced concrete buildings (Ghobarah 2004) and steel frame structures (Wen and Kang 2001).  

 

 
Table 1 Damage states in terms of drift ratio (Wen and Kang 2001) 

Damage state Drift ratio  (%) 

1-None 0.0≤<0.2 

2-Slight 0.2≤<0.5 

3-Light 0.5≤<0.7 

4-Moderate 0.7≤<1.5 

5-Heavy 1.5≤<2.5 

6-Major 2.5≤<5.0 

7-Destroyed 5.0≤ 
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The use of the inter-storey drift ratio is furthermore recommended by FEMA-350 (2000) as the 

most suitable performance criterion for frame structures.  

In the illustrative example reported in Section 3, MSDA will be implemented using seven 

hazard levels, each described by a set of ten 2-component earthquake records selected to be 

compatible with the corresponding earthquake response spectrum at the site. The peak inter-storey 

drift ratio  will be chosen as the EDP and the relation between damage state and inter-storey drift 

ratio will be the one proposed by Wen and Kang (2001) for steel MRF structures, reproduced in 

Table 1. In order to extract the EDP for each hazard level, the 2D FE structural model will be 

separately evaluated under each component of any record so as to obtain the component-EDP; then 

the larger of the two component-EDPs of each record will be taken as the record-EDP; and finally 

the mean among all record-EDPs of each set of records will give the set-EDP, eventually used for 

cost assessment. 

 
2.2 Cost evaluation 
 

According to Wen and Kang (2001) and Lagaros et al. (2006), the expected total cost CTOT of a 

structure (either uncontrolled or controlled), over a time period t which may be the design life of a 

new structure or the remaining life of a retrofitted structure, can be expressed as a function of t as 

follows 

 )()( tCCtC DSINTOT                             (1) 

where CIN is the initial cost of a new or retrofitted structure and CDS is the additional cost over the 

lifetime of the structure, defined as the present value of future damage states’ costs. CIN refers to 

the material and labour costs required for the construction of a new building or the retrofitting of 

an existing one, including structural and non-structural components. CDS refers to the potential 

damage cost from earthquakes that may occur during the life of the structure, i.e., the seismic 

lifetime cost. It accounts for the cost of structural and non-structural repair, the cost of loss of 

contents, the cost of injury recovery or human fatality and other direct or indirect economic losses 

(e.g., rental and income costs), after an earthquake. The quantification of the losses in economic 

terms depends on several socio-economic parameters. The most difficult cost to quantify is the 

cost corresponding to the loss of human lives. There are a number of approaches for its estimation, 

ranging from purely economic reasoning to more sensitive ones that consider irreplaceable the loss 

of a human being. Therefore, estimating the cost of exceeding the collapse damage state will vary 

considerably according to which approach is adopted.  

Considering N possible damage states (N=7 in the present case study, see again Table 1), the 

cost related to the i-th damage state can be formulated as follows (Mitropoulou et al. 2011) 

 
i
fat

i
inj

i
inc

i
ren

i
con

i
dam

i
DS CCCCCCC                    (2) 

where 
i
damC  is the damage repair cost, 

i
conC  is the loss of contents cost, 

i
renC  is the rental loss cost, 

i
incC  is the income loss cost, 

i
injC  is the injury cost and 

i
fatC  is the human fatality cost. Details 

about the evaluation of each damage state cost can be found in Table 2 (Wen and Kang 2001), where 

the basic costs (in the third column) represent the first component of the calculation formulas (in the 

second column). The damage state parameters, i.e., the mean damage index, the loss of function 

index, the down time index, the expected minor injury rate, the expected serious injury rate and the 

expected death rate, are derived by Mitropoulou et al. (2011) and reported in Table 3. 
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Table 2 Damage state cost calculation formulas (Wen and Kang 2001) 

Cost category Calculation formula Basic cost 

Damage repair Replacement cost×floor area×mean damage index 1500 €/m
2
 

Loss of content Unit content cost×floor area×mean damage index 500 €/m
2
 

Rental 
Rental rate×gross leasable area

 (ii)×disruption period
 (iii)×loss of function 

index 
10 €/month/m

2
 

Income Income rate×gross leasable area
 (ii)×disruption period

 (iii)×down time index 2000 €/year/m
2
 

Minor injury 
Minor injury cost per person×floor area×occupancy rate

 (i)×expected 

minor injury rate 
2000 €/person 

Serious injury 
Serious injury cost per person×floor area×occupancy rate

 (i)×expected 

serious injury rate 
2·10

4
 €/person 

Human fatality Death cost per person×floor area×occupancy rate
 (i)×expected death rate 2.8·10

6
 €/person 

(i)
 Occupancy rate: 2 persons/100 m

2
 

(ii)
 Gross leasable area: 90% of the total floor area 

(iii)
 Disruption period: 6 months 

 
Table 3 Damage state parameters for cost evaluation (Mitropoulou et al. 2011) 

Damage state 
Mean damage 

index (%) 

Loss of function 

index (%) 

Down time 

index (%) 

Expected 

minor  

injury rate 

Expected serious 

injury rate 

Expected death 

rate 

1-None 0 0 0 0 0 0 

2-Slight 0.5 0.9 0.9 3.0·10
-5

 4.0·10
-6

 1.0·10
-6

 

3-Light 5 3.33 3.33 3.0·10
-4

 4.0·10
-5

 1.0·10
-5

 

4-Moderate 20 12.4 12.4 3.0·10
-3

 4.0·10
-4

 1.0·10
-4

 

5-Heavy 45 34.8 34.8 3.0·10
-2

 4.0·10
-3

 1.0·10
-3

 

6-Major 80 65.4 65.4 3.0·10
-1

 4.0·10
-2

 1.0·10
-2

 

7-Destroyed 100 100 100 4.0·10
-1

 4.0·10
-1

 2.0·10
-1

 

 

 
Based on a Poisson process model of earthquake occurrences and the assumption that damaged 

buildings are fully and quickly restored to their original intact conditions after each significant 

seismic attack, the damage state cost in Eq. (1) can be computed using the following formula (Wen 

and Kang 2001) 

 
















 


N

i

i
o

i
DS

t

DS PC
e

tC
1

1
)(






                        (3) 

where 
i

oP  is the probability of occurrence of the i-th damage state given the occurrence of a 

significant earthquake;  is the mean frequency of occurrence of significant earthquakes, modelled 

by a Poisson process; and  is the momentary discount rate, introduced to actualize future costs to 

their current value and herein assumed equal to 4%/year. The ratio in parenthesis, which tends to t 

for  tending to 0, represents the actualized time period tt aa  , where te t
a   /)1(  is the 

actualization cost ratio (or present worth factor), so Eq. (3) can also be rewritten as 
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 



N

i

i
o

i
DSaDS PCttC

1

)()()(                            (4) 

where t is the expected number of significant earthquakes in t and 
i
DSaC  is the actualized cost 

of the i-th damage state, or even more conveniently as 

 



N

i

i
o

i
DSaDS CttC

1

)(                              (5) 

where 
i

o
i
o P   is the mean frequency of occurrence of the i-th damage state. Following Wen and 

Kang (2001), the i-th damage state is identified by the drift ratio limits listed in Table 1. When one 

of those limits is exceeded, the corresponding damage state is reached. In other words, in order for 

the i-th damage state to occur, the i-th limit i  must have been exceeded while the (i+1)-th limit 

1i  must have not. As a result, the occurrence frequency 
i
o  in Eq. (5) can be computed as 

 1 i
e

i
e

i
o                                (6) 

where 
i
e , representing the mean frequency of exceedance of i , can be expressed by a relation 

of the form 

 )( i
i
e f                                  (7) 

Eq. (7) is deduced by fitting a properly shaped function f to M known j
j

e    pairs, each 

corresponding to a preselected hazard level (i.e., a given set of records) characterized by a known 

probability of exceedance j
eP /  in the time period . For each hazard level, j  is the set-EDP 

computed through nonlinear dynamic analyses, while 
j

e  is the mean frequency of exceedance of 

j  and can be derived, according to Poisson’s law, as 

 )1ln(
1

/
j

e
j

e P 


                            (8) 

In previous works by, e.g., Lagaros et al. (2006) and Mitropoulou et al. (2011), the relation 

expressed by Eq. (7) is obtained by a least-square fitting of the M pairs through a hyperbolic 

function of the form 

  )(f                              (9) 

Depending on two fitting parameters,  and , Eq. (9) ensures an exact fitting for M=2 but 

generally causes some error for M>2. For the case study under analysis, the error was observed to 

be unacceptably large already for M as small as 3 or 4 (implying biased cost estimates) and Eq. (9) 

was concluded to be inadequate for fitting. Also, taking M=3, as in some previous studies, proved 

here insufficient to sample the entire domain of possible pairs. Various alternative functional forms 

for f were then explored, which might work properly for larger values of M (e.g., M=7 as in the 

present cast study). A good compromise between simplicity and accuracy was obtained adopting 

the following expression 
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where j and j are analytically determined so that the hyperbolic function 
j

j





 exactly 

interpolates pairs j and j+1, aj and bj are analytically determined so that the linear function 

jj ba   exactly interpolates pairs j and j+1, and the weight  is numerically determined so that the 

sum of the changes of slope of )(f  at every j , expressed by 






1

2

)()(
M

j
jj ff  , shall be  

minimum. In the range [ 2 , 1M ], Eq. (10) provides the weighed sum of the hyperbolic 

interpolation and the linear interpolation of the M–2 internal pairs, performed independently 

between any two consecutive pairs. The merge of these two types of curves allows smoothing the 

angular points which would occur at the internal pairs if either type was used alone. Outside that 

range, Eq. (10) provides the hyperbolic exact fitting of the two outermost couples (respectively left 

and right) of j
j

e    pairs. As a result, Eq. (10) ensures a function passing through all the 

available M pairs. The minimization required to identify the optimal weight  can be easily 

performed using any available numerical technique, including a simple trial & error search. An 

example of curves describing Eq. (10) will be discussed later (Fig. 5). 
Unlike in previous works (e.g., Wen and Kang 2001, or Lagaros et al. 2006) in which the drift 

ratio was taken as the largest over the entire building height (maximum drift ratio), here damage 

and costs at any given storey are assumed to only depend on the drift ratio occurred at that 

particular storey, and the global building cost is finally obtained as the sum of all storey-level 

costs. The only exception is represented by costs related to the collapse damage state (“7-

Destroyed”), which are still assumed to be governed, for all the storey levels, by the maximum 

drift ratio along the height of the building, as if the collapse of any one storey implied the collapse 

of the entire structure.  

 

 

3. Example 
 

The seismic cost-effectiveness of installing a TMD on an existing standard medium-rise office 

building is assessed by comparing its lifetime cost in, respectively, the absence and the presence of 

the control device atop. The building is a standard perimeter steel MRF structure located in Los 

Angeles (California). Because of its in-plan symmetry, structural analysis and cost evaluation will 

be performed using a planar (2D) model along the N-S direction only. 
 

3.1 The structural system with and without TMD 
 
3.1.1 The benchmark building 
The case study is the 9-storey steel MRF building structure designed for Los Angeles by 

Brandow & Johnston Associates within the SAC Phase II Steel Project (Gupta and Krawinkler 

1999), and later turned into one of the three benchmark control problems for seismically excited 

nonlinear buildings described in Ohtori et al. (2001). The structure is designed according to UBC 

1994, following all code requirements for gravity, wind and seismic design. Although not actually 

constructed, it can be considered as representative of typical medium-rise steel MRF office 

building structures in LA designed according to pre-Northridge design practice. 

The benchmark structure is 45.73 m by 45.73 m in plan and 37.19 m in elevation. The bays are 

9.15 m on centre, in both directions, with five bays each in the North-South (N-S) and East-West 

(E-W) directions. The lateral load-resisting system is made of perimeter steel MRFs with simple  
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(a) Elevation                                         (b) Plan 

Fig. 1 Schematics of the 9-storey building 

 

 

framing on one of the exterior bays so as to avoid bi-axial bending in the corner column. The 

interior bays of the structure contain simple framing with composite floors. The building 

comprises one basement level, one ground level and nine above-ground levels, the ninth of which 

is the roof. Typical floor-to-floor heights are 3.96 m, but they are 3.65 m and 5.49 m for, 

respectively, the basement and the first floor. The column bases are modelled as pinned and 

secured to the ground at the B-1 level. Concrete foundation walls and surrounding soil are 

assumed to restrain the structure at the ground level from horizontal displacement. Dimensions and 

materials of columns and beams are detailed in Gupta and Krawinkler (1999). The inertial effects 

of each level are assumed to be carried evenly by the floor diaphragm to each perimeter MRF, 

hence each frame resists one half of the seismic mass associated with the entire structure. The 

seismic mass for the ground level is 9.65·10
5
 kg, for the first level is 1.01·10

6
 kg, for the second 

through eighth levels is 9.89·10
5
 kg and for the ninth level is 1.07·10

6
 kg. The N-S MRF is 

sketched in Fig. 1. 

 
3.1.2 The uncontrolled structural model 
The uncontrolled structural model is the 2D nonlinear FE representation of the two N-S MRFs 

of the benchmark building. The model is like the one implemented by Ohtori et al. (2001) in a set 

of MATLAB files available on the web (http://www.nd.edu/~quake/), except that in the present 

version it has been modified so as to account for second order (P-delta) effects and to allow 

incorporation of the TMD into the model.  

The model represents a ductile steel MRF structure with no strength and stiffness degradation 

in the element characteristics and no connection weld fractures. A concentrated plasticity model is 

assumed, with members remaining elastic and yielding occurring only at their ends, where point 

plastic hinges are schematized by a bilinear moment-rotation relationship with 3% strain-

hardening. Inertial loads are uniformly distributed at the nodes of the respective level assuming a 

lumped mass formulation. The damping matrix is determined based on an assumption of Rayleigh 

damping, enforcing a 2% damping ratio onto the first two modes. 

As long as the structure responds in the linear elastic range, the first three natural frequencies  
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Fig. 2 Global pushover curves for the uncontrolled structural model, with or without II order effects 

 

 

are 0.443 Hz, 1.18 Hz and 2.05 Hz for the model evaluated excluding second order effects, and 

0.432 Hz, 1.15 Hz and 2.01 Hz for the model evaluated including second order effects. The 

pushover curves obtained for the uncontrolled structural model using either a uniform (k=0) or a 

quadratic (k=2) vertical pattern of horizontal accelerations are plotted in Fig. 2, with the global 

building drift ratio (defined as the displacement of the top storey divided by the building height) in 

the horizontal axis and the normalized base shear force in the vertical axis. The curves are 

consistent with those obtained by other authors (Gupta and Krawinkler 1999). 

 

3.1.3 The controlled structural model 
The controlled structural model is obtained by attaching to the top storey of the uncontrolled 

model a linear SDOF model of a TMD, characterized by a mass mt, a circular frequency t and a 

damping ratio t. The mass mt is fixed by the designer as a given percentage of the total structural 

mass ms through assigning the mass ratio =mt/ms, whereas t and t are chosen so as to achieve 

the optimum tuning of the absorber to the fundamental mode of the building. More precisely, 

denoting by s and s respectively the circular frequency and damping ratio of the target mode, by 

ms,eff its effective modal mass, defined according to Warburton (1982) as the target modal mass 

divided by the squared amplitude of the mass-normalized target modeshape at the TMD position, 

and finally denoting by eff=mt/ms,eff and r=t/s respectively the effective mass ratio and the 

frequency ratio of the TMD, any design methodology will basically consist in: (i) arbitrarily fixing 

eff based on cost-benefit considerations, and (ii) accordingly finding r and t which make the 

control be optimal with respect to some desired objective. Depending on the chosen objective, 

various analytical or numerical optimization criteria are available. The most widespread criteria 

aim at minimizing a given norm of some input-output transfer functions (TF) of the controlled 

system. Depending on the chosen norm, such criteria can be mainly distinguished into the H2-norm 

design (Hoang et al. 2008) and the H∞-norm design (Sladek and Klingner 1983, Pinkaew et al. 

2003, Matta et al. 2009).  

In the present study, the TF from the ground acceleration to the maximum inter-storey drift 

ratio, denoted as Tu, is adopted, and the H∞
f
 approach proposed in Matta (2011) is applied, which 

consists in the numerical minimization of the H∞-norm of Tu multiplied by a Kanai-Tajimi filter 
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Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective 

Table 4 Design control parameters for two possible values of TMD mass ratio 

Mass ratio  Effective mass ratio eff Structural circular frequency s Frequency ratio r Damping ratio t 

5% 11.2% 2.71 rad/s 87.7% 19.2% 

10% 22.5% 2.70 rad/s 78.1% 26.7% 

 
Table 5 The M=7 multiple hazard levels considered in the present study 

Set # j 1 2 3 4 5 6 7 
j

eP /  (%) 50 50 50 50 50 10 2 

  (years) 2 5 10 30 50 50 50 
j

e  (n/year) 3.466·10
-1

 1.386·10
-1

 6.931·10
-2

 2.310·10
-2

 1.386·10
-2

 2.107·10
-3

 4.041·10
-4

 

 

 

whose circular frequency equals the structural frequency and whose damping ratio is set to 0.3. 

The linearized structural model used for computing Tu is the one accounting for the II order 

effects. Two alternative mass ratios are considered, namely =5% and =10%. For each mass 

ratio, the optimum frequency and damping ratios, r and t, are numerically found which minimize 

the filtered Tu. The results of this design procedure are summarized in Table 4. Looking, for 

example, at the 10% mass ratio option, the optimal TMD turns out to be a SDOF appendage 

having mass mt=9.00×10
5
 kg, circular frequency t=2.11 rad/s and damping ratio t=26.7%, or 

equivalently stiffness kt=4.01 kN/mm and damping coefficient ct=1.01 kNs/mm. As qualitatively 

indicated in Fig. 1, the SDOF appendage might be conceived, for instance, as a wide reinforced 

concrete platform resting on a system of appropriate bearings vertically aligned with the building 

internal columns, so as to distribute, as uniformly as possible, the additional weight of the device 

on the inner frames only, with the seismically-resisting perimeter MRFs remaining basically 

unaffected by TMD installation. 

 
3.2 The seismic loading 
 

The cost assessment procedure requires the evaluation of the structural response at M multiple 

hazard levels of increasing intensity, aimed at the definition of an equal number of j
j

e    pairs 

for every building storey. From these pairs, the curve analytically described by Eq. (7) is then 

derived for each storey, the function f being evaluated according to Eq. (10). In this work M=7 

hazard levels are considered, whose probabilities of exceedance 
j

eP /  in the period  and mean 

frequencies of exceedance 
j

e  are chosen as summarized in Table 5. Each level is described by a 

set of 20 time histories: 10 ground motions with 2 orthogonal components each. All sets are 

defined in accordance to the seismic hazard at the building site. 
In particular, sets 5 to 7 are taken from the SAC steel research project (Somerville et al. 1997), 

and consist of recorded and simulated ground motions representing return periods of, respectively, 

72 years (50% probability of exceedance in 50 years), 475 years (10% probability of exceedance 

in 50 years) and 2475 years (2% probability of exceedance in 50 years). All ground motions are 

rotated to 45° with respect to the fault in order to minimize directivity effects and are scaled such 

that, on average, their spectral ordinates match with a least square error fit the United States 

Geological Survey’s (USGS) mapped spectral values at 0.3, 1.0 and 2.0 seconds, and an additional 

predicted value at 4.0 seconds. The weights ascribed to the four period points are 0.1 at the 0.3  
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(a) Set # 5 (50/50) (b) Set # 6 (10/50) (c) Set # 7 (2/50) 

Fig. 3 Pseudo-acceleration elastic spectra for s=5%. Thin grey lines: individual spectra; thick black 

line: mean spectra 

 

 

second period point and 0.3 for the other three period points. The target spectra provided by USGS 

are for the SB/SC soil type boundaries, modified to be representative of soil type SD (stiff soil). 

Details can be found, for example, in Gupta and Krawinkler (1999).  

Sets 1 to 4 are instead merely obtained through scaling set 5. The same scaling factor is used 

for all the records of each set and it is computed as the weighed sum of the ratios obtained dividing 

the corresponding USGS spectral values at 0.3, 1.0, 2.0 and 4.0 seconds by those corresponding to 

set 5, the weights being the same as described above.  

In Fig. 3 the individual and mean 5% damped elastic pseudo-acceleration spectra are plotted for 

sets 5 to 7. 

 
3.3 TMD performance in a traditional perspective 
 
In order to traditionally evaluate TMD seismic performance under the seven sets of seismic 

records, twelve performance indices are here computed for each ground motion set. These indices 

are formulated as in the benchmark study by Ohtori et al. (2001), except that the mean response is 

here taken instead of the maximum response within each earthquake set.  

The performance indices are dimensionless quantities defined by dividing the controlled by the 

uncontrolled response, falling into two main categories: building response and building damage. 

The first category comprises four peak response measures, namely: the maximum peak inter-storey 

drift ratio (J1), the average peak inter-storey drift ratio (J2), the maximum peak acceleration (J3) 

and the peak base shear force (J4), together with three root mean square (RMS) response measures, 

namely the maximum RMS inter-storey drift ratio (J5), the maximum RMS acceleration (J6) and 

the RMS base shear force (J7). The second category comprises five damage measures, namely the 

maximum peak ductility factor at members’ ends (J8), the maximum dissipated energy factor at 

members’ ends (J9), the number of damaged members’ ends (J10), the maximum RMS ductility 

factor at members’ ends (J11) and the total dissipated energy factor (J12), where the ductility factor 

denotes the instantaneous curvature divided by the yield curvature, the dissipated energy factor 

denotes the energy dissipated during the earthquake divided by the product of the yield curvature 

by the yield moment, and the damaged members’ ends are meant as those in which the yield 

curvature is exceeded at least once during the earthquake. J9, J10 and J12 have obviously only 

meaning for structures undergoing plastic deformations and are, therefore, undefined when the 

uncontrolled building remains elastic.  
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Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective 

Table 6 TMD with =5%-Performance indices for the M=7 hazard levels 

Set # j J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 

1 0.84 0.80 0.92 0.72 0.58 0.69 0.50 0.82 n.a. n.a. 0.54 n.a. 

2 0.84 0.80 0.92 0.72 0.58 0.69 0.50 0.82 n.a. n.a. 0.54 n.a. 

3 0.84 0.80 0.92 0.72 0.58 0.69 0.50 0.81 0.02 0.13 0.53 0.01 

4 0.84 0.81 0.93 0.74 0.69 0.70 0.50 0.77 0.68 0.38 0.69 0.72 

5 0.85 0.83 0.94 0.81 0.72 0.74 0.55 0.78 0.51 0.49 0.71 0.54 

6 0.91 0.91 1.02 0.99 0.91 0.81 0.68 0.88 0.73 0.96 0.98 0.62 

7 0.92 0.95 1.03 0.98 0.99 0.90 0.82 0.91 0.81 0.98 1.03 0.84 

 

Table 7 TMD with =10%-Performance indices for the M=7 hazard levels 

Set # j J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 

1 0.78 0.73 0.85 0.65 0.51 0.59 0.43 0.75 n.a. n.a. 0.46 n.a. 

2 0.78 0.73 0.85 0.65 0.51 0.59 0.43 0.75 n.a. n.a. 0.46 n.a. 

3 0.78 0.73 0.85 0.65 0.51 0.59 0.43 0.75 0.00 0.00 0.46 0.00 

4 0.77 0.74 0.86 0.67 0.59 0.60 0.44 0.71 0.59 0.33 0.59 0.61 

5 0.80 0.76 0.88 0.75 0.66 0.64 0.48 0.70 0.41 0.38 0.61 0.45 

6 0.85 0.87 1.02 1.02 0.80 0.74 0.64 0.82 0.61 0.95 0.85 0.49 

7 0.88 0.93 1.02 1.00 1.02 0.85 0.80 0.87 0.76 0.96 1.07 0.79 

 

 

The computed indices are reported in Tables 6 and 7 for each earthquake set, respectively for 

=5% and =10%. Results are in line with expectations. The control performance improves as the 

mass ratio increases and as the hazard level diminishes; at the highest hazards, because of 

structural nonlinearity and TMD mistuning, the control action may even result detrimental in the 

light of some criteria (e.g., J3>1 under sets 6 and 7). RMS response mitigation always exceeds 

peak response mitigation (except for J5 under set 7, due to the RMS drift ratio being governed by 

permanent residual drifts), thus confirming TMDs’ well-known property of more effectively 

reducing the post-peak response than the peak response to impulsive loads. Damage-related, 

energy-based indices are the criteria which highlight the most TMD merits, per se suggesting a 

satisfactory performance, particularly in global terms (J12), even at high hazard levels. 

The most remarkable result from Tables 6 and 7 is, however, the large variability in the values 

of the performance indices, depending on the adopted evaluation criterion and on the considered 

hazard level. Even apparently similar indices, such as J1 and J2 (both related to peak drift ratios, 

although respectively in maximum and average terms), show a different dependence on the hazard 

level, much stronger for J2 then for J1. Such variability highlights the need to find a unifying, 

concise cost-related performance measure capable to replace the numerous individual indices and 

to appropriately weigh the different economic significance of the various hazard scenarios. In the 

next Subsection, lifetime cost will be proposed as this unifying performance measure, and the peak 

drift ratio is the EDP on whose basis that cost will be computed. With this in mind, another 

remarkable result from Tables 6 and 7 is that TMD’s effects on the peak drift ratio (described by J1 

and J2) appear limited and heavily degraded as the seismic hazard increases. For example, as the 

hazard increases from 1 to 7, the average peak drift ratio (J2) varies from 0.80 to 0.95 for =5%  
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(a) =0% (uncontrolled) (b) =5% (controlled) (c) =10% (controlled) 

Fig. 4 Inter-storey drift ratios along the height of the building for the three control cases. The 7 curves 

in each graph correspond to the 7 hazard levels (orderly rightwards) 

 

 

and from 0.73 to 0.93 for =10%. In more details, this also appears in Fig. 4, where the peak drift 

ratios are plotted along the height of the building for each hazard level. In agreement with Gupta 

and Krawinkler (1999), drift ratio demands of about 1%, 2% and 4% in average are observed at, 

respectively, the 50/50, the 10/50 and the 2/50 hazard levels. No large differences between the 

uncontrolled and the controlled curve are noticeable, particularly at the highest hazard levels. Such 

discouraging results help to explain why TMD are commonly believed to be of scarce practical 

interest in controlling the seismic response of structures in the nonlinear range. The next 

Subsection will reconsider this point in the light of a life-cycle cost approach.  

 
3.4 TMD performance in a life-cycle cost perspective 
 

The procedure presented in Section 2.3 is applied to the 9-storey SAC building, with and 

without control. For each storey level, the j  term of each j
j

e    pair is computed from 

nonlinear analyses as the set-EDP. The function f() defined by Eq. (10) is derived through a 

numerical minimization, the optimal weight turning out to be =0.8. 
The procedure is detailed in Fig. 5 for the 8-th storey level, the one contributing the most to the 

total building cost, and for the three control cases, i.e., =0% (uncontrolled), =5% and =10%. 

The black markers represent the “forward step” of the procedure (time-history analysis), the white 

markers the “backward step” (extraction of the exceedance and occurrence frequencies for each 

damage state). Similar curves are obtained for the other storeys, as well as for the maximum drift 

ratio among all the storeys. 

Once the occurrence frequency is evaluated for all storey levels and for all damage states, the 

lifetime costs can be computed using Eq. (5) and Tables 1 to 3 and assuming, for the present 

example, a lifetime period t=50 years and a momentary discount rate =4%/year. 

Results are reported in Figs. 6 and 7. In Fig. 6 the lifetime cost is decomposed, for the 

uncontrolled and controlled cases, into the seven damage states for each storey level. Since the 

cost related to the first damage state (“1-None”) is null, only six damage states are actually 

represented in the bar graph using rectangles of different colours, from the second one (on the left) 

to the seventh one (on the right). For the two controlled cases, a white rectangle is added on the 

right, for comparison’s sake, to represent the complement to the uncontrolled cost. It clearly results 

that most damage cost is inflicted within the forth damage state (“4-Moderate”) and secondarily 

within the fifth one (“5-Heavy”), which achieve the most expensive combination of occurrence 
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Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective 

 
Fig. 5 Annual frequency of exceedance as a function of the inter-storey drift ratio, for the 8-th storey 

level and respectively: =0% (square markers); =5% (circles); =10% (triangles). Black markers: 

from analyses; white markers: from fitting 

 

   
(a) =0% (uncontrolled) (b) =5% (controlled) (c) =10% (controlled) 

Fig. 6 Lifetime costs for the uncontrolled and controlled cases, decomposed among storey levels and 

damage states. Legend for the damage states, from left to right: 1 (dark blue, not shown); 2 (blue); 3 

(azure); 4 (green); 5 (orange); 6 (red); 7 (brown) 

 

 

probability and damage severity, thus contributing the most to the overall lifetime cost. These 

intermediate damage states are those where TMD cost-effectiveness achieves its best. Within the 

forth damage state, the TMD reduces the building cost to 76% of its uncontrolled value for =5%, 

and to 67% for =10%; within the fifth damage state, the reduction is even larger, to respectively 

62% for =5% and 50% for =10%. The third most expensive damage state is the seventh one, 

corresponding to collapse (“7-Destroyed”). Note that the collapse cost is the same at every storey 

level, because of the assumption that the collapse of any one storey implies the collapse of the  
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(a) =0% (uncontrolled) (b) =5% (controlled) (c) =10% (controlled) 

Fig. 7 Lifetime costs for the uncontrolled and controlled cases, decomposed among storey levels and 

cost categories. Legend for the cost categories, from left to right: 
i
damC  (dark blue); 

i
conC  (blue); 

i
renC  

(azure); 
i
incC  (green); 

i
minjC ,  (orange); 

i
injC  (red); 

i
fatC  (brown) 

 

 

entire building. Even if the cost reduction within the collapse damage state is considerably less 

than for the intermediate damage states, it still keeps to an acceptable 81% for =5% and 73% for 

=10%.  

Fig. 7 is the analogue of Fig. 6, except that the cost is now decomposed in cost categories 

instead of damage states. For any of the three control cases, the category which contributes the 

most is damage repair (about 47%), followed by income (about 20%), fatalities (about 16%) and 

loss of content (about 15%). The other three categories, i.e., rental, minor and serious injuries, 

contribute for about 1% each.  

Summing along the building height, the total damage cost (CDS) for the uncontrolled structure 

turns out to be 13.7·10
6
 Euro. For the 5% and 10% controlled cases, it drops to, respectively, 

10.3·10
6
 Euro and 9.1·10

6
 Euro, i.e., to 75% and 66% of the uncontrolled cost. Smeared on the 

total area of the nine above-ground floors, these total costs are equivalent to unit damage costs of, 

respectively, 729 Euro/m
2
, 548 Euro/m

2
 and 485 Euro/m

2
. The lifetime cost saved by the TMD is 

therefore 3.4·10
6
 Euro for =5% and 4.6·10

6
 Euro for =10%; although a detailed cost-benefit 

analysis exceeds the scope of this paper, preliminary estimates indicate that these cost savings are 

much larger than the cost necessary for designing, building and maintaining the TMD system.  

The whole LCC assessment procedure was finally repeated using a mechanically linear model 

instead of the bilinear one. Only a slight improvement was observed in TMD cost-effectiveness 

with respect to the nonlinear case: for the 5% and 10% controlled cases, the total lifetime cost was 

found to be, respectively, 70% (instead of 75%) and 60% (instead of 66%) of the uncontrolled 

response. This result indicates that the influence of structural nonlinearity on TMD convenience 

may be not as dramatic as commonly expected.  

 

 

4. Conclusions 
 

In this paper a methodology for evaluating the cost-effectiveness of passive TMDs on nonlinear 

MRF building structures located in high seismicity regions is presented and exemplified on the 9-

storey SAC steel benchmark building. The method is a slight variant of previous LCC multi-

hazard approaches, relying on MSDA to compute the occurrence probability of multiple damage 

states expressed in terms of peak inter-storey drift ratios. By estimating, for the original 
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Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective 

uncontrolled building as well as for two possible TMD installations (respectively =5% and 10%), 

the expected cost of future earthquake damages and losses, the illustrative case study infers the 

economic advantage of implementing the control action. 

Results confirm that TMDs on nonlinear structures perform acceptably well under moderate 

earthquake loading, when the structure remains linear or weakly nonlinear, but may lose 

effectiveness (especially in peak response mitigation) under the most severe ground shaking, when 

strong nonlinearities occur. Traditional performance criteria, computed under increasing hazard 

levels, prove inadequate to univocally and concisely assess TMD adequacy, because: (i) different 

criteria give different indications; (ii) these criteria alone cannot weigh, on a physically sound, 

economically founded basis, the relative significance of the various hazard levels.  

By determining, for each damage state, its probability of occurrence and its expected lifetime 

cost, the LCC approach herein proposed can provide, instead, a rational and comprehensive 

measure of TMD performance, directly expressed in monetary terms and thus immediately useable 

for decision making purposes. In the present case study, the 5% and 10% TMD options are shown 

to reduce the building lifetime cost to, respectively, 75% and 66%. Reductions are particularly 

conspicuous for costs related to those intermediate damage states (“4-Moderate” and “5-Heavy”) 

which, achieving the most expensive combination of occurrence probability and damage severity, 

contribute the most to the overall lifetime cost. Although a thorough estimation of costs associated 

to TMD design, building and maintenance is not in the scope of the present paper, preliminary 

estimations indicate that TMD costs are largely compensated by building LCC savings. 

It can be concluded that, for typical middle-rise steel MRF office buildings located in high 

seismic areas, despite the poor control performance observed under the most severe earthquake 

records, the seismic cost-effectiveness of TMDs may be considerably larger than traditional 

performance criteria would suggest, only slightly inferior to that found in the assumption of a 

linear structural behaviour, and anyway of remarkable practical interest.  

Extending the present analysis to further case studies, including TMD costs into the LCC 

evaluation and adopting the LCC as the objective function for TMD optimal design will be the 

scope of future work. 
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