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Abstract.  A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two 

transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical 

theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained 

with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic 

field, temperature and initial stress on the amplitude ratios after numerical computations are shown 

graphically with MATLAB software for the particular model. 
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1. Introduction 
 

The Earth is under high initial stress, the main cause of these initial stresses in the medium is 

slow process of creep and quenching, difference of temperature and gravity changes. The coupled 

field of magneto-thermoelasticity arises due to mutual interactions between thermal field, an 

externally applied magnetic field and the elastic deformation present in the solid body. That is 

why; it is of large interest to study the influence of these initial stresses and magnetic field on the 

propagation of thermoelastic waves in the Earth. Inspite of the fact that the Maxwell equations 

governing the electro-magnetic field have been known for quite a long time (Landsu and Lifshitz 

1960), the interest in the coupled fields of magneto-thermoelasticity is of recent origin. This is due 

to the fact only recently has been recognized the possibility of applying these coupled theories in 

such practical situations as optics, acoustics, geophysics, plasma physics and earthquake science. 

Duhamel (1937) purposed coupling of strain and temperature fields by introducing dilation term in 

the equation of thermal conductivity, but this equation was inconsi stent to laws of 

thermodynamics. Duhamel’s theory was further modified by several others scientists and solved 

number of interesting problems. It was Biot (1965) who gave a satisfactory solution of the  
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equations of thermal conductivity with the theory of coupled thermoelasticity. Keeping this 

drawback in view some researchers such Lord and Shulman (1967), Fox (1969), Gurtin and Pipkin 

(1969), Meixner (1970) modified the Fourier law so as to obtain an equation of heat conduction in 

hyberbolic differential form. These works include the time needed for acceleration of the heat flow 

in the heat conduction equation and takes into account the coupling between the temperature and 

strain fields. The equations thus obtained are hyberbolic. This paradox in the existing coupled 

theory of thermoelasticity has also been discussed by Boley (1999). Effects have been made to 

modify the classical Fourier constitutive law (subjected to themodynamical constraints), 

connecting the heat flux vector and temperature gradient. This is done with a view to obtain a 

wave-type equation of heat conduction incorporating the so-called “second sound effect” or the 

“thermal relaxation effect”. Montanaro (1964) introduced hydrostatic initial stress to study the 

isotropic linear thermo elasticity by using Biot‟s equations. Chattopadhyay and Kumar (2006) 

investigated reflection and refraction of waves for isotropic and anisotropic medium without 

initial stress. Chattopadhyay et al. (2007) considered the problem of reflection and refraction of 

quasi P and SV waves at the interface of fibre-reinforced media without initial stress and 

temperature. Singh (2009) discussed SV-wave for homogeneous and inhomogeneous elastic half-

spaces without initial stress. Deswal et al. (2011) reviewed reflection and refraction of waves in 

thermally conducting viscous liquid half-spaces. Kumar and Kumar (2012) discussed reflection 

and refraction of thermoelastic waves at the interface of a prestressed elastic half-space with voids 

half-space. Shekhar and Parvez (2013) investigated plane waves in transversely isotropic 

dissipative half space under rotation and magnetic field. Chakraborty (2011) took wrong parameter 

in the basic equation for study elastic waves under initial stress and temperature field. Chakraborty 

and Singh (2013) presented a model for reflection and refraction of elastic SV-waves at the 

interface of two solid half spaces under initial stress and temperature without magnetic field. 

Therefore, the authors have taken magnetic field, temperature and stress to study reflection and 

refraction of elastic waves in an elastic medium without energy dissipation because magnetic field 

of the medium also an important factor along with initial stress and temperature in the reflection 

and refraction of elastic waves. MATLAB software (Version 7.6.0.324 (R2008a), Trademark of 

Mathworks. Inc. U.S. Patent) is used to represent the various graphs associated with the reflection 

and refraction amplitude ratios. 

 

 

 
Fig. 1 Reflection and refraction of magneto-thermoelastic plane waves 
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2. Formulation of the problem 
 

We consider two transversely isotropic, homogeneous elastic half spaces under constant 

magnetic field (along z-axis) and initial tensile stress P along x-axis at absolute temperature T (Fig. 

1). An elastic plane SV-wave (rotational wave) is incident in medium M1 at the plane interface 

such that it is partially reflected as SV-wave (rotational wave) in medium M1, partially refracted 

SV-wave (rotational wave) in medium M2, one reflected P-wave (dilatational wave) in medium 

M1, one refracted P-wave (compressional wave) in medium M2, one reflected thermal wave 

(compressional wave) in medium M1 and one refracted P-wave (dilatational wave) in medium M2 

as shown (Fig. 1). Therefore, on striking the SV-wave at y=0 making an angle θ in the solid half 

space M1, it will have one reflected rotational wave making an angle θ and two reflected 

compressional waves at an angle θ1 and θ2 (Fig. 1). The incident SV-wave has refracted 

components in the upper half space at angles of 2 1,   and       for refractive SV-wave, refractive P-

wave and refracted thermal wave respectively. 
 

 

3. Governing equations 
 
The magnetic field is taken parallel to the Z-axis, therefore third Z-component „w‟of the 

displacement vector and all other quantities are independent of Z. Following Lotfy (2011) the 

governing equations in the absence of all body forces are given by 

Strain-displacement relations 

. ,i

1
(u u )

2
ij i j je                                                              (1) 

where, u ( , ,0)i u v  is the components of displacement vector. 

Stress displacement relation 

e 2 1 ,ij ij ij ijs e
t

     
 

     
 

                                         (2) 

The modified heat conduction equation 

2 2 2 3 3
2

0 0 02 2 2
K γp ij

u v u v
c

t t x t y t x t y t
   

          
            

             
                (3) 

The components of Lorentz force 

(J ) ,     (J ) ,   0x e x y e y zF F F                                           (4) 

The uniform magnetic field intensity H(0,0,H0) is parallel to Z-axis; it induces electric field E 

and magnetic field h. These variations in magnetic and electric fields are given by Maxwell‟s 

equations 

D
curl h = J + 

t




                                                            (5) 
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curl  = -
t





                                                               (6) 

div  = 0,   div  = 0,    = ,   D = Ee e                                          (7) 

E = -   e

u

t


 
   

                                                        (8) 

where ∂u/∂t is the particle velocity of the medium, and the influence of temperature gradient on J 

is also neglected. The steady-state deformed position is measured from dynamic displacement 

vector, which is assumed to be ignored. 

The components of magnetic intensity vector in the medium 

00,  [ h(x,z, t)]x y z e                                              (9) 

2 2

0 0 0 02 2
J ,  J ,  J 0x e e y e e z

e v e u

y t x t
   

   
        

   
                  (10) 

From Eqs. (5)-(10) into Eq. (4) we obtain 

2 2
2 2 2 2 2 2

0 0 0 02 2
,   ,   0x e e e y e e e z

e u e v
F F F

x t y t
     

   
        

   
              (11) 

where h=-H0(0,0,e) 

Following Biot (1965), the dynamical equations of motion for the propagation of wave in two 

dimensions 

2

2

xyxx
x

ss u
P F

x y y t


  
   

   
                                           (12) 

2

2

xy yy

y

s s v
P F

x y x t


   
   

   
                                           (13) 

where sxx, syy and sxy are incremental thermal stress components. The first two are principal stress 

components along X- and Y-axes, respectively and last one is shear stress component in the X-Y 

plane and u, v are the displacement components along X and Y directions respectively.  
Following Biot (1965), the stress-strain relations with incremental isotropy 

( 2 ) ( ) 2xx xx yy xxs P e P e e
x

     
 

        
 

                     (14) 

( 2 )yy xx yys e e
x

    
 

     
 

                                           (15) 

2xy xys e                                                                (16) 

where 
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1
, ,

2
xx yy xy

u v v u
e e e

x x x y

    
    
    

                                    (17) 

 
 
4. Solution of the problem 

 

From Eq. (12), Eq. (13), Eq. (14), Eq. (15), Eq. (16) and Eq. (17), we get 

 
2 2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

u P v P u u v u
P H

x x y y x x y t x t x
        

              
                 

                 

 (18) 

 
2 2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

v P u P v u v v
H

y x y x x y y t y t y
        

              
                

                 

 (19) 

From Eq. (18) and (19) by using classical dynamical theory: 0 0, 0,ij     we get 

 
2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

u P v P u u v u
P H

x x y y x x y t x
       

          
              

             

        (20) 

 
2 2 2 2 2 2

2

02 2 2 2
2

2 2
e

v P u P v u v v
H

y x y x x y y t y
       

          
             

             
         (21) 

Eq. (3) can be modified by using classical dynamical theory: 0 0, 0,ij     as 

2
2

02
= +γp

u v
K c

t t t x y
 

         
        

        

                             (22) 

Eq. (20) and Eq. (21) can be solved by choosing potential functions ϕ and ψ as 

u
x y

  
 
 

 and v
x y

  
 
 

                                              (23) 

From Eq. (20) and (23), we get 

2
2

2 2 2

0 0( 2 ) ( 2 )e eH P t H P t

  
 

     

  
    

        
                    (24) 

2
2

2

2

P t

 





 

 
 

 

                                                       (25) 

From Eq. (21) and (23), we get 

2
2

2 2 2

0 0( 2 ) ( 2 )e eH t H t

  
 

     

  
    

      
                          (26) 
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2
2

2

2

P t

 





 

 
 

 

                                                        (27) 

Eq. (24) and Eq. (26) represent magneto- thermo compression waves along x- axis and y- axis 

respectively, whereas Eq. (25) and Eq. (27) represent magneto- thermo distortional waves along x- 

axis and y- axis respectively. For initial stress along x- axis, the four Eqs. (24)-(27) reduced to two 

equations as 

2
2

2 2 2

1 0

1

( 2 )e

T
T

c t H P t

 
 

  

  
    

     
                               (28) 

2
2

2 2

2

1

c t





 


                                                          (29) 

where,  

2
2 0
1

( 2 )eH P
c

  



  
  and 

2

2

2

P

c





 
 

                                    (30) 

c1 is known as P-wave velocity and c2 is called SV-wave velocity. Also, for P-wave v=0 and for 

SV-wave u=0. 

Now, from Eqs. (21) and (23), we get 

 2 2

0= +γpK c
t t

 
    

          
                                         (31) 

where, 
2 2

2

2 2x y

 
  

 
. 

The solution of Eq. (28), Eq. (29) and Eq. (31) is plane harmonic waves travelling 

perpendicular to the x-y plane, which is given as  

1 exp[ { ( sin cos ) }]i k x y t                                            (32) 

1 exp[ { ( sin cos ) }]i l x y t                                            (33) 

1 exp[ { ( sin cos ) }]i k x y t                                          (34) 

where, k and l are compression and rotational wave numbers, ω is angular frequency. 

From Eq. (28), Eq. (32) and Eq. (34), we get 

2
2 2

1 1 12

1

0c k
c

 




 
    

 
                                               (35) 

From Eq. (31), Eq. (32) and Eq. (34), we get 
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 2 2

0 1 1 0pi k i c k                                                (36) 

In order to satisfy Eq. (35) and Eq. (36), the determinant of the coefficients of both Eq. (35) and 

Eq. (36) will be zero, therefore 

 

2
2 2

1 2

1

2 2

0

0

p

c k
c

i k i c k

 



  

 
  

 

  

                                       (37) 

Expanding Eq. (37), we get 

 4 21 0i i                                                    (38) 

where, 

2
2

02

2 2 2

1 1 1 1

γ
, ,

p p

c

kc c c c c c

 
 

 


  
     

 
                                    (39) 

The roots of Eq. (38) and are given as 

1 2

1 1 2 2

,
k c k c

 
                                                      (40) 

Eq. (38) is biquadratic in Δ, it means that there are two compessional waves travelling with two 

different velocities. Therefore, on striking the rotational wave at y=0 making an angle θ in the 

solid half space it will have one reflected rotational wave making an angle θ and two reflected 

compressional waves at an angle θ1 and θ2 (Fig. 1). Therefore from the above discussion we can 

take displacement potential and perturbation temperature in the following form 

1 1 1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t                   (41) 

0 1exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i l x y t i l x y t                       (42) 

1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t                    (43) 

where, α1,α2 represent amplitudes of the reflected P-wave, thermal P-wave and β0 represents 

amplitude of incident SV wave and β1 is the amplitude of reflected SV-waves respectively. 

Since incident wave strikes the interface at y=0 making an angle θ with x-axis as shown (Fig. 

1), the wave gets reflected in medium M1 and refracted in the second medium M2 giving three 

waves one refracted SV-wave at an angle θ’, one refracted P-wave at an angle θ’1 and one 

refracted thermal wave at an angle θ’2. Therefore, for medium M2, the quantities c1,c2,φ,τT,Δ1,Δ2,Δ 

in medium M1 changed to-as given below 

2
2 20

1 2 2

1

( 2 ) 2
, , ,e

p

P

H P
c c

c c


   


  

 
               

   
 

2
/0 2
1 22 2

1 1 1 2 2 1 1

γ
,   ,   ,   .

p

c

c c k c k c k c c

  





 
        

         
 

(44) 
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The angles θ,θ1,θ2,θ’,θ’1,θ’2 are related to respective wave numbers k1,k2,l,k’1,k’2,l’ as 

Also, and are related to respective wave numbers as 

1 1 2 2 1 1 2 2sin sin sin sin sin sink k l k k l                                     (45) 

Eq. (45) can be written in terms to Snell‟s law as 

1 2 1 2

1 1 1 2 1 1 1 1 2 1

sin sin sin sinsin sin

c c c c c c

      
    

          
                               (46) 

We can take displacement potential and perturbation temperature for medium M2 in the 

following form 

1 1 1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t                             (47) 

1 exp[ { ( sin cos ) }]i l x y t                                                 (48) 

1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t                             (49) 

Introducing Eq. (41) and Eq. (43) in into Eq. (31), we get 

 

2

1 2

1 i

 


 


 
 
  
 

 and 
 

2

2 2

2 i

 


 


 
 
  
 

                              (50) 

Now substituting Eq. (50) in Eq. (49), we get  

   

2 2

1 1 2 2 2 22 2

1 2

exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t
i i

    
       

  

 
   
         
      
   

  (51) 

Similarly for medium M2, introducing Eq. (47) and Eq. (49) in into Eq. (31), we get 

 

2

1 2

1 i

 


 


 

  
    
 

 and 
 

2

2 2

2 i

 


 


 

  
    
 

                           (52) 

Now substituting Eq. (52) in Eq. (49), we get  

   

2 2

1 1 2 2 2 22 2

1 2

exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t
i i

    
       

  

 
     

                 
          
   

 (53) 

 
 
5. Boundary conditions and Reflection and refraction coefficients 

 

The initial conditions are supplemented by the following boundary conditions: 

i. Continuity condition for displacement at Y=0 

u u  

v v  

0w w   

(54a) 
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ii. Continuity condition for initial stress at Y=0 

x xf f    i.e., 
xy xy xy xys Pe s P e      

y yf f     i.e., 
yy yys s  

(54b) 

iii. Continuity condition for temperature at Y=0 

T T

y y

 


 
 (54c) 

iv. Continuity condition for temperature at Y=0 

T T  (54d) 

Introducing Eq. (14), Eq. (15), Eq. (16) and Eq. (23) in the first boundary condition (i) for 

medium M1 and corresponding equations for the medium M2, we get 

2 2 2 2 2 2

2 2 2 2
2 2

2 2

P P

x y x y x y x y

     
 

              
            

             

                      (55) 

Introducing Eq. (14), Eq. (15), Eq. (16) and Eq. (23) in the second boundary condition (ii) for 

medium M1 and corresponding equations for the medium M2, we get 

 

 

2 2 2 2
2

0 2 2 2

2 2 2 2
2

0 2 2 2

2 2

                                                     2 2

e

e

H
x y y x y

H
x y y x y

   
    

   
    

    
      

     

       
             

     

            (56) 

Using Eq. (41), Eq. (42), Eq. (47), Eq. (48) Eq. (51) and Eq. (53) in Eq. (54), Eq. (55) and Eq. 

(56), we get 

1 2 1 2 1 1 1

0 0 0 0 0 1 0

sin sin sin sin cos cos cos
c

c

     
      

     

              
                              

           (57) 

1 2 1 1 1 2 1 1
1 2 1 2

1 0 2 0 1 1 0 1 2 0 0 0

cos cos cos cos sin sin sin
c c

c c

     
      

     

                       
                        

                        

 (58) 

2 2 2 2

1 2 1 2
1 2 1 22 2 2 2

1 0 2 0 1 0 2 0

sin 2 sin 2 sin 2 sin 2

                                                                      cos 2

   
     

   




                   
                 

                  

 1 1

0 0

cos 2 cos 2


  
 

   
     

   

                (59) 

 
 

 
 

2
2 2 2 1 1

1 1 22
1 01

2
2 2 2 2 2

2 2 22
2 02

1
1 2 sin 1 sin

1
                                              1 2 sin 1 sin

i

i

 
  



 
  







    
        

      

    
         

      

 
(60) 
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 
 

 
 

2
2 2 2 1 1

1 1 22
1 01

2
2 2 2 2 2

2 2 22
2 02

1
                     1 2 sin 1 sin

1
                                   1 2 sin 1 sin

i

i

 
   



 
   







      
            

       

      
           

      

     1 1
1 1 1

0 0

                             1 sin 2 1 sin 2 1 sin 2
 

       
 




   
          

   

 

     

 

1 1 2 2 1 1 1

2 2 2
1 0 2 0 1 1 01 2 1

2 2 2

2
2 2 02

cos cos cos

cos
                                                                           

i i i

i

         

     

   

 

  



       
      

               

  


     
0


 



 
(61) 

       
1 2 1 2

2 2 2 2
0 0 0 01 2 1 2

0
i i i i

        

        

   
          

          
                 

 
(62) 

where 

,






  ,







  

2

1

,
P

c



  

2

1

,
P

c





 

  1 2

2

,
2

P

c



  

1 2

22

P

c





 

 
 and 1

1

1 2
.

1 2










             (63) 

Now eliminating 1 2 1 2 1

0 0 0 0 0

, , , ,
    

    

          
         
         

 and 1

0





 
 
 

 from Eq. (57), Eq. (58), Eq. (59), Eq. 

(60), Eq. (61) and Eq. (62), we can write 6 non-homogeneous equations into matrix form as 

11 12 13 14 15 16 1 1

21 22 23 24 25 26 2 2

31 32 33 34 35 36 3 3

41 42 43 44 45 46 4 4

51 52 53 54 55 56 5 5

61 62 63 64 65 66 6 6

c c c c c c r q

c c c c c c r q

c c c c c c r q

c c c c c c r q

c c c c c c r q

c c c c c c r q

     
     
     
     

      
     
     
     
          

                                      (64) 

where,  

11 12 13 14 15 16sin , sin , sin , sin , cos , cos ,c c c c c c     
 

          
 

1 1
21 1 22 2 23 1 24 2 25

1 2 1 1 1 2

cos ,c cos ,c cos ,c cos ,c sin ,
c c

c
c c

    
          

             
             

 
 

2 2 2 2

26 31 32 2 33 1 34 22 2 2 2

1 2 1 2

2
2 2 2 1

35 36 41 1 1 22
11

c sin , sin 2 , sin 2 ,c sin 2 ,c sin 2 ,

1
c cos 2 ,c cos 2 , 1 2 sin 1 sin ,

c c

c
i

      


     





           
             

           

   
            

     
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 
 

2
2 2 2 2

42 2 2 22
22

1
1 2 sin 1 sin ,c

i


  




   
        

    

 
 

2
2 2 2 1

43 1 1 22
11

1
c 1 2 sin 1 sin ,

i


   




    

            
     

 

 
 

 
2

2 2 2 2
44 2 2 45 122

22

1
c 1 2 sin 1 sin ,  c 1 sin 2 ,

i


      




   

              
     

 

 
   

1 2
46 1 51 522 2

1 21 2

cos cos
c 1 sin 2 ,  ,  ,c c

i i

   
  

 

      
    

 

   
1 1 2 2

53 54 55 5622 2
1 1 1 2 21 2

cos cos1
c ,  c ,  c 0,  c 0,

i i

     

  

 
     

    
               

 

       
61 62 63 64 65 662 2 2 2

1 2 1 2

,  ,  c ,  c ,  c 0,  c 0,c c
i i i i

    

    

   
 

       
          

 

 1 2 3 4 1 5 6cos , sin , cos 2 , 1 sin 2 , 0, 0.q q q q q q               

1
1

0

r




 
  
 

Reflection coefficients of P-wave (R1)  

2
2

0

r




 
  
 

Reflection coefficients of thermal wave (R2) 

1
3

0

r




 
  
 

Refraction coefficient of P-wave (R3) 

2
4

0

r




 
  
 

Refraction coefficient of thermal wave (R4) 

1
5

0

r




 
  
 

Reflection coefficient of SV-wave (R5) 

1
6

0

r




 
  
 

Refraction coefficient of SV-wave (R6) 

 
 
6. Numerical analysis and discussion 

 

Above theory clearly indicates that the amplitude ratios iR , (i=1,2……6) depend on the angle 

of incidence of the incident wave. In order to study in greater detail, the dependence of these 
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amplitude coefficients on temperature, stress and magnetic parameter together with the angle of 

incidence, we compute the amplitude ratios. Following material constants are taken for solid-solid 

interface (Table 1). For the values of relevant physical constants (Table 1), the system of Eq. (64) 

is solved for reflection and refraction coefficients by the application of the MATLAB software at 

different angles of incidence varying from 0° to 90°. The matrix elements are calculated for 

thermo parameters, magnetic parameters, initial stress parameters and particular angle of incidence 

(see Appendix). The variations of the amplitude coefficients of various reflected and transmitted 

waves are shown graphically with the angle of incidence of the incident SV (rotational) wave for 

the various values of coupling parameters, stress parameters, temperature parameters and magnetic 

parameters. 

 

6.1 The incident wave is SV wave and both the surfaces are under tensile initial stress 
a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433 

 

Fig. 2 shows the variation of refraction amplitude ratio of SV wave with angle of incidence 

when both the half-spaces are under initial tensile stress, refraction coefficient of the 

corresponding refracted SV-wave shows three maxima at angles of incidence 50°, 20° and 60° 

respectively for values of initial stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433. Beyond the value 

of incident angle 70° there is sharp decrease in refraction coefficient of SV wave. Fig. 3 shows the 

variation of reflection amplitude ratio of SV wave with angle of incidence when both the half-

spaces are under initial tensile stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433. Reflection 

coefficient of SV-wave shows three maxima at angles of incidence 50°, 20° and 70° respectively 

for values of initial stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433. Fig. 4 shows the variation of 

refraction amplitude ratio of thermal wave with angle of incidence when both the half-spaces are 

under initial tensile stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433, magnetic 

parameter
292

0 N/m101Hμe  for medium M1 and 292

0 N/m101.1'' Hμe  for medium M2 and 

coupling parameters 0.005   for medium M1 and 0.003   for medium M2 respectively. Fig. 5 

represents the variation of refraction amplitude ratio of P wave with angle of incidence when both 

the half-spaces are under initial tensile stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433, magnetic 

parameter
292

0 N/m101Hμe  for medium M1 and 
292

0 N/m101Hμe for medium M2 and coupling 

parameters 0.005   for medium M1 and 0.003   for medium M2 respectively. Refraction 

coefficient of P wave is almost constant for incidence angle 50°
 
and beyond angle 50°, sharp 

decrease in amplitude ratio of the refracted P wave. Fig. 6 shows the variation of refraction 

amplitude ratio of thermal wave with angle of incidence when both the half-spaces are under initial 

tensile stress a=0.2, 0.3, 0.4 and b=0.233, 0.333, 0.433.  Refraction coefficient of thermal wave is 

almost constant for incidence angle 40°.
 
The reflection coefficient of P-wave with angle of 

incidence when both the half-spaces are under initial tensile stress a=0.2, 0.3, 0.4 and b=0.233, 

0.333, 0.433 are shown in Fig. 7.  

 

6.2 The incident wave is SV wave and upper half space is stress free b=0 
 

Fig. 8 shows the variation of refraction amplitude ratio of SV wave with angle of incidence 

when upper half -spaces is stress free but magnetic parameter  292

0 N/m101.1Hμe ,  
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Table 1(Medium constants) 

Medium M1 Medium M2 

  
0.005   0.003 

ρ 4×10
3
 kg/m

3
 ρ’ 2.2×10

3
 kg/m

3
 

2

0eH
 1×10

9
 N/m

2
 

2

0eH   1.1×10
9
 N/m

2
 

λ 8×10
10

 N/m
2
 λ’ 4×10

10
 N/m

2
 

  0.005   0.003 

αt 16.6×10
-6

 K
-1

 t  15.6×10
-6

 K
-1

 

K 401 W/(m.K) K’  301 W/(m.K)  

cp 0.39 KJ/Kg K c’p 0.33 KJ/Kg K 

μ 4×10
10

 N/m
2
 μ’  2×10

10
 N/m

2
 

  0.8   0.8 

  0.9   0.9 

Δ1 ≈1 1
  ≈1 

Δ2 0.07 2
  0.05 
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Fig. 2 Variation of refraction amplitude ratio of SV wave with angle of incidence when both the 

half-spaces are under initial tensile stress 
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Fig. 3 Variation of reflection amplitude ratio of SV wave with angle of incidence when both the 

half-spaces are under initial tensile stress 
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Fig. 4 Variation of refraction amplitude ratio of thermal wave with angle of incidence when both 

the half-spaces are under initial tensile stress 
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Fig. 5 Variation of refraction amplitude ratio of P wave with angle of incidence when both the 

half-spaces are under initial tensile stress 
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Fig. 6 Variation of refraction amplitude ratio of thermal wave with angle of incidence when both 

the half-spaces are under initial tensile stress 
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Fig. 7 Variation of reflection amplitude ratio of P-wave with angle of incidence when both the 

half-spaces are under initial tensile stress 

 

0 10 20 30 40 50 60 70 80 90
-4

-3

-2

-1

0

1

2

3

4

5

6
Upper surface stress free

Incident angle

R
e

fr
a

c
ti
o

n
 c

o
e

ff
ic

ie
n

t 
o

f 
S

V
-w

a
v
e

 (
R

6
)

 

 

a=0.2,b=0

a=0.3,b=0

a=0.4,b=0

 
Fig. 8 Variation of refraction amplitude ratio of SV wave with angle of incidence when upper 

half-spaces is stress free 
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Fig. 9 Variation of refraction amplitude ratio of P-wave with angle of incidence when upper half-

spaces is stress free 
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Fig. 10 Variation of reflection amplitude ratio of SV wave with angle of incidence when upper 

half-spaces is stress free 
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Fig. 11 Variation of refraction amplitude ratio of thermal wave with angle of incidence when 

upper half-spaces is stress free 
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Fig. 12 Variation of reflection amplitude ratio of P-wave with angle of incidence when upper 

half-spaces is stress free 
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Fig. 13 Variation of reflection amplitude ratio of thermal wave with angle of incidence when 

upper half-spaces is stress free 
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Fig. 14 Variation of refraction amplitude ratio of SV wave with angle of incidence when both the 

half-spaces are under initial compressional stress 
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Fig. 15 Variation of reflection amplitude ratio of SV wave with angle of incidence when both the 

half-spaces are under initial compressional stress 
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Fig. 16 Variation of refraction amplitude ratio of thermal wave with angle of incidence when both 

the half-spaces are under initial compressional stress 
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Fig. 17 Variation of refraction amplitude ratio of P-wave with angle of incidence when both the 

half-spaces are under initial compressional stress 
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Fig. 18 Variation of reflection amplitude ratio of thermal wave with angle of incidence when both 

the half-spaces are under initial compressional stress 
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Fig. 19 Variation of reflection amplitude ratio of P-wave with angle of incidence when both the 

half-spaces are under initial compressional stress 

 

 
292

0 N/m101.1'' Hμe
and coupling parameters 0.005   and 0.003   for medium M1 and M2 

respectively are present. Fig. 9 shows the variation of refraction amplitude ratio of P-wave with 

angle of incidence when upper half-spaces is stress free but magnetic parameter 
292

0 N/m101.1Hμe
, 292

0 N/m101.1'' Hμe  and coupling parameters 0.005   and 0.003   for 

medium M1 and M2 respectively are present. 

Fig. 10 shows the variation of reflection amplitude ratio of SV wave with angle of incidence 

when upper half-spaces is stress free but magnetic parameter 292

0 N/m101.1Hμe , 
292

0 N/m101.1'' Hμe  and coupling parameters 0.005   and 0.003   for medium M1 and M2 

respectively are present. Fig. 11 shows the variation of refraction amplitude ratio of thermal wave 

with angle of incidence when upper half-spaces is stress free but magnetic parameter 
292

0 N/m101.1Hμe , 
292

0 N/m101.1'' Hμe  and coupling parameters 0.005  and 0.003   for 

medium M1 and M2 respectively are present. Fig. 12 shows the variation of reflection amplitude 

ratio of P-wave with angle of incidence when upper half-spaces is stress free but magnetic 

parameter 
292

0 N/m101.1Hμe , 
292

0 N/m101.1'' Hμe  and coupling parameters 0.005   and 

0.003   for medium M1 and M2 respectively are present. Fig. 13 shows the variation of 

reflection amplitude ratio of thermal wave with angle of incidence when upper half-spaces is stress 

free but magnetic parameter 
292

0 N/m101.1Hμe , 
292

0 N/m101.1'' Hμe and coupling parameters 

0.005   and 0.003   for medium M1 and M2 respectively are present. 
 

6.3 The incident wave is SV wave and both the surfaces are under initial compressive 
stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333, -0.433. 

 

Fig. 14 is plotted for refraction amplitude ratio of SV wave with angle of incidence when both 

the half-spaces are under initial compressional stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333,  

-0.433. Refracted waves are greatly influenced by the stresses, temperature and magnetic field of 

the medium. For stresses a=-0.2, -0.4 and b=-0.233, -0.433, the minima occurs at 60°, but for 

stress a=-0.3, b=-0.333, the minima for the wave occurs at 70°. Fig. 15 shows the variation of 

reflection amplitude ratio of SV wave with angle of incidence when both the half-spaces are under 

initial compressional stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333, -0.433. For stresses a=-0.2,  
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-0.4 and b=-0.233, -0.433, the two minima occurs at 20°
 
and 60°, but for stress a=-0.3, b=-0.333, 

the maxima for the wave occurs at 70°. Fig. 16 shows the variation of refraction amplitude ratio of 

thermal wave with angle of incidence when both the half-spaces are under initial compressional 

stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333, -0.433. For stresses a=-0.2, -0.4 and b=-0.233,  

-0.433, the two minima occurs at 50°
 
and 60°, but for stress a=-0.3, b=-0.333, the maxima for the 

wave occurs at 70°. Fig. 17 is plotted for refraction amplitude ratio of P-wave with angle of 

incidence when both the half-spaces are under initial compressional stress a=-0.2, -0.3, -0.4 and 

b=-0.233, -0.333, -0.433. For stresses a=-0.2 and b=-0.233 the maxima occurs at 60°, but for stress 

a=-0.3, b=-0.333, the minima for the wave occurs at 70°. Fig. 18 shows the variation of reflection 

amplitude ratio of thermal wave with angle of incidence when both the half-spaces are under initial 

compressional stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333, -0.433. It is observed that maxima 

and minima changes for reflection and refraction of the wave in the medium. Fig. 19 is plotted for 

reflection amplitude ratio of P-wave with angle of incidence when both the half-spaces are under 

initial compressional stress a=-0.2, -0.3, -0.4 and b=-0.233, -0.333, -0.433. Figs. 14-19 show the 

continuous amplitude ratio for reflection and refraction of SV, P and thermal waves for incident 

angle 60° and beyond that angle the pattern is discontinuous. This rate of change of the amplitude 

ratios is not uniform. This is due to presence of magnetic field in the mediums. 
 
 

7. Conclusions 
 

Numerical calculations in detail are presented for the cases of magneto-thermoelastic SV waves 

incident at the solid-solid interface of the model considered. It has been observed from the above 

numerical values of the reflection and refraction coefficients of SV-wave that negligibly amount of 

energy is reflected or refracted for thermal wave and small amount of energy is reflected and 

refracted for P-wave and SV-wave. These observations are same in both the case of tensile initial 

stresses and compressional stresses. For the both cases of incidence, it is observed that the amplitude 

ratios change with the change in thermal and magnetic parameter. However, the rate of change of the 

amplitude ratios is not uniform. The effect of elasticity is also observed on various reflected and 

refracted waves. The SV-waves, P-waves and thermal waves are greatly influenced by magnetic field, 

temperature field and initial stress present in the mediums. 
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Modelling of magneto-thermoelastic plane waves at the interface… 

Appendix 
 

Solving Eq. (38), we get the solution as 

   
22 1

1 1 4
2

i i i     

        
  

 

Approximate expression for reflection coefficients is obtained by assuming practical values of 

1  and 1  for elastic materials. Solving Eq. (38) and retaining only first degree terms of 

  and  , we get  

1

1
1 (1 )

2
T i      and 

1 1 1

2 2 2
2 1 1

1
( 1)

2
i i         

Similarly, for medium M2 

1

1
1 (1 )

2
i 

       and 
1 1 1

2 2 2
2 1 1

1
( 1)

2
i i             

For sake of convenience, we consider λ=2μ and λ’=2μ’, therefore the stress parameters for both 

the mediums are 
2

P
a


  and 

2

P
b







respectively. Therefore 

2 2 2 2 2 2

1 2 1 2 1 1, , , , , , , , ,c c c c         
 and ξ can 

be written in terms of „a‟ and „b‟ as 

2 2
2 0 0
1

( 2 ) 4
1

2

e eH P H a
c

    

  

    
    

 
, 

2 2
2 0 0

1

( 2 ) 4
1

2

e eH P H b
c

    

  

           
         

, 

 2

2

12

P

a
c




 

 
     ,  

 2

2

12

P

b
c




 

 
       
 

,  

 

   

2
2 2

2 2
1 0

1
,

/ 4 1 / 2
 

e

ac

c H a 


  

 

  

 

   

2
2 2

2 2
1 0

1
,

/ 4 1 / 2e

bc

c H b 


  

     
  

   2 2 2 2
1 0 0 0

1
,

( 2 ) (4 ) / (2 / ) 1e e e

P P P

c H P H P H a a


       
   

      

 

   2 2 2 2
1 0 0 0

1
,

( 2 ) (4 ) / (2 / ) 1e e e

P P P

c H P H P H b b


       

  
    

                   
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 1 2

2

1

2 (1/ ) 1
2

2

P P

Pc a





  
 

 
 

,  

 1 2

2

1

2 (1/ ) 1
2

2

P P

Pc b





 
   

   
  

 

, 

 

 

2
1

(1/ ) 1
,

2
1

(1/ ) 1

b

a











 

1 2 1 1 2 1
1 2 1 2

1 1

sin sin ,sin sin ,sin sin ,sin sin ,
c c

c c
       

      
    

   
 

1 1
2 22 2

2 21 1 2
1 22 2

1

sin sin ,cos 1 sin ,cos 1 sin ,
c

c
     

     
        

     

 

1 1 1
2 2 2 2 2 22 2 2

2 2 21 1 1 2 1
1 22 2 2 2 2 2

1 1 1

cos 1 sin ,cos 1 sin ,cos 1 sin .
c c c

c c c
     

            
            

       

 

1 1 11 1 1

2 2 22 2 2
2 2 2

1 1 1

2 2 2

sin sin sin

(1 ) 2(2 ) (1 ) 2(2 ) 0.01(1 ) 2(2 )
1 sin 1 sin 1 sin

(1 ) (1 ) (1 )
2(1 ) 2(1 )

1
2

(1 )
sin 2

4(1 )

a a a a a b

a a a
ba a

a

a

  

  





 
    

                                              
  

 
 

 

1

2

1

2

2 2 2 2 2 2

2(1 )
(1 ) 0.2(1 ) 2sin 2 .9 sin 2
4(1 ) (2 )

(1 )

(4 2 ) (4 2 ) (4 2 )
.95 2sin (1 sin .95 2sin (1 sin .9 .95 2sin (1 sin

(1 ) (1 ) (1 )

b
a a

a b
a

a a b

a a b

 

     

 
     

    
        

 

           
                 

          
1 1 1

2 2 2
2 2 2(4 2 ) (4 2 ) (4 2 )

0.005 1 sin 0.005 1 sin 0.0033 1 sin
(1 ) (1 ) (1 )

.005 .005 0.0033

b b b

a a a
  


 
 

       
       

       

1 1 1

2 2 2
2

1 1

2 2

1 1

2 2
2

1

2

1

2

1

2

(1 ) (2 ) (1 )
sin cos 1 sin

(1 )
(1 ) (2 )

0.01(1 ) 2(2 )
1 sin sin sin

(1 )
1

2

.1(1 )
0.2(1 ) 2.9

(2 )
(1 )

a b b

a
b a

a b

a
b

b
a

b
a

  

  

  
                

 
 

    
        

    

 
 

 
   



1

2
2

1

2
2 2

1

2

0.1(1 ) (1 )
sin 2 cos 2 .9 1 sin 2

(1 )
(1 )

2

(4 2 ) (1 )
.9 .95 2sin (1 sin .9 1 sin 2 .9 1 1 sin 2

(1 ) (1 ) (1 )
(1 )

(4 2 )
0.0033 1

(1

a b

b a

b a b b

b a b
a

b

  

   

 
     

     
     

 
                                   






 

1

2

3

4

5

6

1

2
2

cos

sin

cos 2

1
sin 2

1

0

0

sin 0 0
)

0.0033 0 0

r

r

r

r
b

r

r

a











 
   
   
   
   

    
         

   
    

 

 
 
 


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Nomenclature 
 

,    Lame‟s constants 
   density 

   Poisson‟s ratio 

pc   specific heat at constant strain 

ijs  components of stress tensor 

T   absolute temperature 

0  reference temperature chosen so that 
0 0/ 1    

P  Initial pressure ( yy xxs s ) 

ije  components of strain tensor 

K  thermal conductivity 

J   current density vector 

e   1/ [2(1 )]  magnetic permeability  

e  electric permittivity 

   initial uniform magnetic intensity vector 

h   induced magnetic field 

0H  magnetic field component 

   induced electric field vector 

D   electric displacement vector 

  magnetic displacement vector 

F   Lorentz force 

ij   Kronecker delta 

  thermoelastic coupling constant  

ui
 components of displacement vector 

0,   relaxation times 

t   time 

e   ( / / /u x v y w z      ) cubical dilatation 

  1/ 2( / / )v x u y    rotational component 

t  coefficient of linear thermal expansion 

  (3 2 ) t    

k   wave number 

  angular frequency  
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