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Abstract.  This paper proposes a two-stage imaging approach for quantitative inspection of damages in 
metallic plates using the fundamental anti-symmetric mode of (A0) Lamb wave. The proposed approach 
employs a number of transducers to transmit and receive A0 Lamb wave pulses, and hence, to sequentially 
scan the plate structures before and after the presence of damage. The approach is applied to image the 
corrosion damages, which are simplified as a reduction of plate thickness in this study. In stage-one of the 
proposed approach a damage location image is reconstructed by analyzing the cross-correlation of the 
wavelet coefficient calculated from the excitation pulse and scattered wave signals for each transducer pairs 
to determine the damage location. In stage-two the Lamb wave diffraction tomography is then used to 
reconstruct a thickness reduction image for evaluating the size and depth of the damage. Finite element 
simulations are carried out to provide a comprehensive verification of the proposed imaging approach. A 
number of numerical case studies considering a circular transducer network with eight transducers are used 
to identify the damages with different locations, sizes and thicknesses. The results show that the proposed 
methodology is able to accurately identify the damage locations with inaccuracy of the order of few 
millimeters of a circular inspection area of 100 mm

2
 and provide a reasonable estimation of the size and 

depth of the damages. 
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1. Introduction 
 

Early detection of damage in structures is crucial to avoid costly repairs and essential to prevent 

catastrophic failure. Different inspection methods have been developed to ensure the safety of 

civil, mechanical and aerospace structures (Carden and Fanning 2004, Farrar and Worden 2007, 

Lam et al. 2008, Ng et al. 2009a), all of which are prone to deterioration over time. Of all the 

causes of deterioration, corrosion is the most ubiquitous. A study by Virrmani in 2002 showed that 

the estimated cost of the corrosion ranges from 1-5% of most countries’ gross national product 

(2002). Therefore, detection and sizing of corrosion in metallic structures using new technologies 

is of growing interest in a wide range of engineering industries. Conventional ultrasonic and eddy 

current methods (Achenbach 2000) have been commonly employed in industry for detecting and  
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sizing the corrosion. However, one major limitation of these techniques is that they are 
only able to inspect the area covered by the probe. This makes the inspection process time 
consuming when investigating large structural areas, and cannot be used for inspecting 
inaccessible areas. Therefore, it is important to develop a reliable technique for rapid, accurate and 
long range inspection of damage. 

In the last decade, Lamb waves have received considerable attention (Alleyen et al. 2001, Rose 
2002) because they are highly sensitive to small and different types of damages in structures. 
Moreover, Lamb waves are able to propagate a long distance, and can be used to inspect a large 
area of a structure. Apart from the essential requirement that inspection systems must be reliable, 
two highly desirable features are a capacity for graphic representation and the ability to evaluate 
damage quantitatively. Quantitative imaging of damage provides information about not only the 
location, but also the size and depth of the damage. A number of quantitative damage imaging 
techniques using Lamb waves have been proposed in the literature, such as a pre-stack reverse-
time migration technique (Lin and Yuan 2001), tomography (Jansen and Hutchins 1990) and 
diffraction tomography (Malyarenko and Hinders 2001). The method proposed in this paper is a 
two-stage approach, which is an extension of Lamb wave diffraction tomography, using Lamb 
waves for the quantitative imaging of plate thickness reduction. 

 
1.1 Background of the proposed method 
 
Within the context of Lamb waves, the fundamental idea of tomography is to using Lamb wave 

propagation characteristics to reconstruct a spatial distribution of the material properties of an 
unknown object from projection data. The first investigation of the use of tomography to 
reconstruct an image of damage based on the time-of-flight information from Lamb waves was 
undertaken by Jansen and Hutchins (1990). Their study assumed the Lamb wave propagation was 
in the form of straight rays. A decade later, a research team led by Hinders carried out a number of 
studies in Lamb wave tomography. Malyarenko and Hinders (2000), Leonard et al. (2002) studied 
a number of time-of-flight tomography algorithms using Lamb waves and provided an extensive 
bibliography of literature in this research area. Leonard and Hinders (2005) subsequently 
demonstrated that time-of-flight Lamb wave tomography could be used for inspecting curved 
panels. Recently, Belanger and Cawley (2009) investigated the feasibility of using low frequency 
Lamb waves in time-of-flight tomography. They concluded that the straight-ray assumption was 
not valid for Lamb wave scattering at damage. 

Malyarenko and Hinders (2001) proposed including diffraction in the time-of-flight Lamb wave 
tomography. They compared the performance of time-of-flight tomography with the straight-ray 
assumption, and the incorporation of the diffraction effect in the reconstruction. The study showed 
that Lamb wave diffraction tomography could further improve image quality and resolution. 
Belanger et al. (2010) proposed a time-of-flight diffraction tomography within the Born 
approximation using low frequency Lamb waves. Their study employed a transducer network with 
64 transducers to evaluate reduction in plate thickness. The results showed that the damage 
location, size and depth could be accurately determined. Recently Huthwaite et al. (2013) 
introduced a hybrid algorithm for robust breast ultrasound tomography to the field of Lamb wave 
tomography. They demonstrated that the hybrid algorithm could further improve the resolution of 
the reconstructed image.  

Wang and Rose (2003) proposed a Lamb wave diffraction tomography framework based on 
Mindlin plate theory for imaging inhomogeneities, such as change in Young’s modulus, shear 
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modulus, density or plate thickness. The reconstruction was based on the Born approximation of 
scattered waves, and a direct Fourier inversion approach was used to reconstruct the damage 
image. Rohde et al. (2008) examined the performance of the Mindlin plate theory-based Lamb 
wave diffraction tomography with a fixed parallel transducer network using numerical simulation 
data, but found that a large number of measurement locations were required to obtain sufficient 
scattered wave data for unbiased reconstruction. A year later, using the far-field Born 
approximation, Rohde et al. (2009) demonstrated that reconstruction of the damage image could 
be achieved by using eight transducers only. Rose and Wang (2010) proposed a computationally 
efficient, filtered back-propagation algorithm to further improve Mindlin plate theory-based Lamb 
wave diffraction tomography. Wang and Rose (2013) carried out study of the minimum sensor 
density in the context of the diffraction tomography. They showed that the number of sensors 
required for in-situ imaging of damages in plates using diffraction tomography approach could be 
reduced through understanding of the mathematical structure, properties of the multistatic data 
matrix and the reconstruction algorithm. Recently Chan et al. (2014) proposed a generic 
diffraction tomography framework for imaging damage in plates. The capability of the proposed 
method was demonstrated using numerical simulations and experimental data. 

 
1.2 The proposed method 
 
The current study focused on further development of the Mindlin plate theory-based Lamb 

wave diffraction tomography. Although the far-field Born approximation approach could 
substantially reduce the number of measurement locations for scattered waves, this approach 
essentially assumes the damage is at the center of the transducer network. This limits the capacity 
of the method in practical applications. The study reported in this paper therefore had two main 
objectives. The first was to overcome the unintentional centering of the damage by introducing a 
two-stage approach. In stage-one, the location of the damage is determined. In stage-two, the same 
set of the scattered wave data is modified based on the identified damage location and used to 
reconstruct the damage image following Lamb wave diffraction tomography. The second objective 
was to provide a comprehensive numerical verification of Lamb wave diffraction tomography in 
order to assess the quality of the reconstructed image for different conditions of damages. It should 
be noted that the framework of the Lamb wave diffraction tomography was developed based on 
the assumption of a single wave mode. The current study also investigated the performance of 
Lamb wave diffraction tomography when wave scattering was affected by mode conversion.  

The paper is organized as follows. Section 2 introduces the two-stage approach for quantitative 
imaging of damage in plate structures. Section 2.1 describes the first stage of the proposed 
methodology. It is a framework for reconstructing an image to determine the damage location by 
analyzing the cross-correlation between the excitation pulse and scattered waves. The second stage 
of the proposed methodology is then discussed in Section 2.2. In stage-two, the identified damage 
location from stage-one is incorporated into the Mindlin plate theory-based Lamb wave diffraction 
tomography in order to achieve a more practical quantitative imaging of the damage. Section 3 
presents a comprehensive numerical verification of the proposed method using three-dimensional 
(3D) explicit finite element (FE) simulations. A number of numerical case studies, which target 
different damage conditions, are used to assess the performance of the proposed two-stage imaging 
approach. Finally, conclusions are presented in Section 4. 
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(a) Lamb wave excitation, scattering at defect and 
measurement by a pair of transducers 

(b) Signal paths 

Fig. 1 Schematic diagram of the imaging algorithm 
 
 

2. Two-stage approach for quantitative imaging of laminar damage 
 
The proposed method is a two-stage approach that provides quantitative imaging of laminar 

damage in plate-like structures using the fundamental asymmetric mode (A0) of Lamb wave. It 
utilizes a distributed network of N transducers, in which each transducer acts as both actuator and 
sensor to excite and measure the Lamb wave signals. In stage-one an image indicating the location 
of the damage is reconstructed by analyzing the cross-correlation of the damage information 
extracted from the incident pulse and scattered wave signals. Using the same set of data, and based 
on the identified damage location, an image indicating the size and depth of the damage can then 
be reconstructed by Lamb wave diffraction tomography in stage-two. 

Both imaging algorithms in stages-one and -two rely on the same sequential scan process, in 
which one of the transducers is used to excite the A0 Lamb wave while the rest of the transducers, 
i.e., N-1 transducers, are used for measuring the impinging waves. Fig. 1(a) shows a schematic 
diagram of two transducers a and b, which is a pair of the transducers in the distributed transducer 
network, for illustrating the scan process. As an example, transducer a is used to actuate the Lamb 
wave while transducer b is used for sensing. Wave scattering occurs when the incident wave 
interacts with the damage, as shown in Fig. 1(a). Considering the process shown in Fig. 1(a) as an 
actuator/sensor signal path, a distributed network of N transducers would result in total of N(N-1) 
actuator/sensor signal paths as shown in Fig. 1(b). The measured Lamb wave signals by transducer 
b contain both incident wave and scattered wave signals, but the damage information exists in the 
scattered wave signal only. Hence, a baseline subtraction process (Veidt and Ng 2011) is required 
to extract the scattered signal uab

S  as 

uab
S  uab

D  uab
UD                                 (1) 

where uab
D  and uab

UD  are the measured signals from damaged and intact structures, respectively. 
The extracted scattered wave signals are then processed by the imaging algorithm in stage-two of 
the proposed method for quantitative identification of the damage. Sections 2.1 and 2.2 describe 
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the details of the imaging algorithm based on the cross-correlation analysis and Lamb wave 
diffraction tomography for determining the damage location and quantitatively identifying the 
damage. 

 
2.1 Stage-one: Identification of damage location based on cross-correlation analysis 
 
Using the scattered wave signals obtained from the sequential scan and baseline subtraction 

process, an image indicating the damage location can be generated by analyzing the cross-
correlation of the incident pulse and scattered wave signals. The damage location can be identified 
by discretizing the inspection area into a set of image pixels located at (x,y). Using transducers a 
and b in Fig. 1(a) as an example, the inspection area can be discretized by image pixels as shown 
in Fig. 2. The image pixel at (x,y) contributed by the transducers a and b is defined as (Wang et al. 
2004, Ng and Veidt 2009) 

Iab x, y   Cab Tab x, y                           (2) 

where Tab is the arrival time of the scattered wave corresponding to the wave travelling from the 
transducer a at (xa, ya) to the image pixel Iab at (x,y) and then from the image pixel to the 
transducer b at (xb,yb) and is defined as 

Tab x, y  
yb  y 2  xb  x 2  y  ya 2  x  xa 2

cg
             (3) 

Since the structure is designed and the transducer network is installed before carrying out the 
damage inspection, the location of the transducers, (xa,ya) and (xb,yb), is known in advance. cg is 
the group velocity of the A0 Lamb wave that can be determined theoretically or measured 
experimentally. Cab is the cross-correlation between the incident pulse generated by transducer a  
 
 

 
Fig. 2 Discretization of inspection area by image pixels and characteristic parameters for the proposed 
damage imaging algorithm based on cross-correlation analysis 
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and the scattered wave signal measured by transducer b which determines a time shift describing 
the location of the scattering source. For the proposed method, the continuous Gabor wavelet 
transform is employed to enhance the accuracy of the cross-correlation analysis. Hence, the cross-
correlation Cab is defined as (Ng et al. 2009b) 

Cab t   WTab
S  

0

T
 WT F   t  d                       (4) 

where T is the duration of the measured signals. WTab
S  is the wavelet coefficient of the scattering 

signal at excitation frequency, in which transducers a and b act as actuator and sensor, 
respectively. WTF is the wavelet coefficient of the excitation pulse at the excitation frequency. 
These wavelet coefficients can be calculated by continuous Gabor wavelet transform (Kishimoto 
et al. 1995, Ng et al. 2009b) as 

WT p,q   u t  1

q
 t  p

q







dt



                      (5) 

where u(t) is an arbitrary time series representing the scattering signal uab
(s) and excitation pulse in 

this study. p and q are the translation parameter and scaling parameter controlling the shift of the 
wavelet in time and wavelet frequency bandwidth.   is the complex conjugate of the mother 
wavelet ψ and is defined as 

 p,q t   1

q


t  p

q







                         (6) 

As the Gabor function’s well-defined frequency characteristics are useful for extracting a 
particular harmonic component of dispersive waves, it is employed as the mother wavelet in this 
study. The Gabor function is defined as 

G t   1

4

0


exp 

0 /  2
2

t2  i0t












                  (7) 

where ω0 and µ are positive constants and are usually chosen as 2π and  2 / ln2  5.336 
(Kishimoto et al. 1995), respectively. 

For each actuator and sensor signal path, an image indicating the possible locations of the 
damage can be reconstructed using Eq. (2). The actuator and sensor signal path image is an ellipse 
formed by image pixels with identical relative intensity with two foci at the locations of 
transducers a and b. For the distributed network of N transducers as shown in Fig. 1(b), the image 
indicating the location of the damage can be reconstructed by superimposing the power flux of 
N(N-1) actuator and sensor signal path images as (Wang et al. 2004, Ng and Veidt 2009) 

I x, y   abIab
2

b1,ba

N


a1

N

                         (8) 

where ηab are the weighting factors to account for varying sensitivities of individual transducers 
and are equal to unity for uniform aperture weighting. 
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2.2 Stage-two: Quantitative imaging of defect based on Lamb wave diffraction tomography 
 
After the defect location is determined in stage-one, the same set of scattered wave signals can 

then be employed for quantitative imaging of the damage using Lamb wave diffraction 
tomography (Wang and Rose 2003, Rohde et al. 2008, Rose and Wang 2010). This damage 
imaging reconstruction framework was developed based on Mindlin plate theory to represent 
Lamb wave scattering by inhomogeneities with the consideration of the wave field diffraction. The 
following sub-sections describe the detail of representing the damage by perturbation functions, 
Born approximation of the scattered waves and image reconstruction by direct Fourier inversion 
approach. 

 
2.1.1 Representation of defect by perturbation functions 
Within the framework of Mindlin plate theory, the equations of motion are given by (Graff 

1991) 

M xx

x

M yx

y
Qx  I

2x

t2  mx

M xy

x

M yy

y
Qy   I

2y

t2  my

Qx

x

Qy

y
 h

2 w

t2  f

                     (9) 

where Mxx, Myy, Mxy, and Myx are the bending moments, noting that Mxy=Myx. Qx and Qy are the 
shear forces. Ωx, Ωy and w are in-plane rotations and plate-normal defection, respectively. ρ is the 
density of the material. I=h3/12 is the moment of inertia and h is the thickness of the plate. mx, my 
and f are the distributed bending moments and lateral pressure, respectively. The bending moments 
and the shear force can be related to rotations and deflections by 

M xx  D
x

x


y

y







M yy  D
y

y
 x

x







M xy  
1 

2
D

y

x

x

y







Qx 
2Gh

w

x
x







Qy 
2Gh

w

y
y







                         (10) 

where D=Eh3/[12(1-v2)] is the plate bending stiffness. E and v are the Young’s modulus and 

Poisson’s ratio. G is the shear modulus and 12/K  is the shear correction factor for accurate 
representation of the low frequency behavior (Graff 1991). In the current study a damage region Σ 
is treated as an inhomogeneity with reduced flexural stiffness. The fundamental plate-theory 
variables in the damage region Σ are represented by local perturbations as (Rose and Wang 2010) 
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         D  1 s1 x  D

 2Gh   1 s2 x  
2Gh

    I   1 s3 x  I

    h   1 s4 x  h

                        (11) 

where the fundamental plate-theory variables with superscript Σ represent the plate properties 
within the damage region Σ. x=(x,y) is an arbitrary location. si(x) for i=1,2,3,4 are the perturbation 
functions which are non-zero within the damage region x∈Σ. The fundamental plate-theory 
variables within the damage region in Eq. (11) have smaller values than those outside the damage 
region. The quantitative imaging of damage is achieved by reconstructing the perturbation 
functions si(x) from the same set of scattered signals obtained in Section 2.1.  

 
2.1.2 Born approximation of scattered waves 
It can be assumed that the deflection potential of the incident wave at the excitation frequency 

ω can be represented as (Wang et al. 2004) 

û I x,   eik1
I x                            (12) 

where k1
I  k1[cos I ,sin I ] . k1 is the wavenumber evaluated using Mindlin plate theory and 

θI=arctan(y/x) is the incident wave propagation direction. The variable with superscript I indicates 
the wave parameter corresponding to the incident wave. In the case that the damage is a weak 
scattering inhomogeneity,    ωuωu x,x, IS ˆˆ  , the scattered wave can be obtained using the Born 
approximation as (Wang and Chang 2005, Ng et al. 2012) 

ûB
S x,   s1D

I g3 ,  s2
2Gh u

I 
I  g3  g33,   s3I 2

I g3  s4h 2g33




d2


    (13) 

where ûB
S  is the scattered wave obtained by the Born approximation. The comma indicates the 

differentiation between subscripts [α,β]=1,2. ξ represents an arbitrary point within the damage 
region. Γαβ is the plate theory strain given by 

   , 
1

2
 ,   ,                     (14) 

where αβ is the Kronecker delta. g31, g32 and g33 are Green’s functions (Rose and Wang 2004) 

g31  
H0

1  k1rs 
x

, g32  
H0

1  k1rs 
y

, g33  
H0

1  k1rs 
1

           (15) 

where rs  x  2  y  2 .   i / 4D(k1
2  k2

2 ) and 1  1  2 / 2Gk1
2 . k2 is the wavenumber of 

the second possible wave mode in Mindlin plate theory. Hn
1 ()  represents the n-th order Hankel 

function of the first kind. 
 
2.1.3 Reconstruction of perturbation functions by direct Fourier inversion 
The Born approximation of the scattered wave in Eq. (13) can be simplified by considering the 
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far-field asymptotic expression of the Hankel function as (Wang and Chang 2005, Ng et al. 2012) 

lim
kx 

H0
1  k1rs   2

k1rs

e
i k1rs


4





                        (16) 

The scattered wave can then be expressed as (Wang and Rose 2003) 

uB
S rs , S , I ,   Pn k1, S  I  Ŝn k1

S  k1
I  2

k1rs

e
i k1rs


4



















n1

4

            (17) 

where θI and θS are the angle of the incident and scattered waves, respectively. 
k1

I  k1[cos I ,sin I ] and k1
S  k1[cos S ,sin S ] are the incident and scattered wave vector. Pn for 

n=1,2,3,4 are defined as 

P1 k1,    i k1
2

4 k1
2  k2

2  cos2  sin2                    (18) 

P2 k1,    i 2Ghk1
2 1 2

4D k1
2  k2

2  cos                    (19) 

P3 k1,   iI 2 k1
2

4D k1
2  k2

2  cos                       (20) 

P4 k1,   ih 2

4D k1
2  k2

2 
                       (21) 

where Ŝn (k) is the two-dimensional (2D) Fourier transform of the perturbation functions, which 
are given as 

Ŝn k   sn  

 eikd                         (22) 

Eq. (17) provides a linear relationship between the scattered wave and spatial transform values 
of sn(ξ) for n=1,2,3,4. However, the relative contribution of each of sn(ξ) depends on the type of 
damage. In the proposed method a combination of the perturbation functions 
3s1(ξ)=s2(ξ)=3s3(ξ)=s4(ξ) is used for reconstructing the reduction in thickness due to corrosion in 
metallic plate structures. For a fixed incident wave angle θI, the measured scattered waves at 
various scattered angles θS provide values of Fourier transform Ŝn (k) on a circle in k-space with 

center k1
I  and radius k1 as shown in Fig. 3. Hence, the required data for image reconstruction, 

which is the data throughout a circular region of radius 2k1 in the k-space, can be obtained by 
varying the incident wave angle θI.  

The perturbation functions sn(ξ), which provide a quantitative imaging of the damage, are 
evaluated by carrying out the 2D inverse Fourier transform of the obtained Ŝn (k) as 
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(a) Physical space (b) k-space 

Fig. 3 Schematic representation between physical space and k-space via Born approximation 
 
 
where k=[kx,ky]=[k1(cosθS-cosθI),k1(sinθS-sinθI)]. However, there is a computational difficulty for 
directing the Fourier inversion in the diffraction tomography. The scattered wave data must be cast 
onto a uniform calculation grid in k-space before the 2D inverse Fourier transform. The proposed 
method therefore employs a bilinear interpolation in the 2D Fourier interpolation. 

As noted earlier, Lamb wave diffraction tomography assumes the weak scattering 
inhomogeneity must be located at the center of the transducer network. This limitation can be 
overcome by modifying the amplitude and phase of the measured scattered wave signals if the 
damage location is known. The proposed two-stage damage measurement technique overcomes 
this limitation by first determining the damage location during stage-one. The distance between the 
damage and the center of the transducer network is obtained in order to determine the required 
amplitude and phase modification for the scattered wave signals. The aforementioned Lamb wave 
diffraction tomography algorithm can then be employed to reconstruct the damage image using the 
modified scattered wave signals. 

 
 

3. Numerical case studies 
 
3.1 3D explicit finite element simulations 
 
A 3D explicit FE method was used to simulate the Lamb wave propagation and scattering at 

damages in a steel plate. The dimension of the steel plate was 300×300×6 mm3. The material 
properties of the steel plate are summarized in Table 1. The numerical simulated data of a number  
 

 

Table 1 Material properties of steel plate 

E v ρ 

203 GPa 0.29 7800 kg/m3 
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Table 2 Location of transducer and corresponding scattering angles 

Transducer x (mm) y (mm) Scattering angles (θS) 

T1 -50.00 0.00 180 
T2 -35.36 -35.36 215 
T3 0.00 -50.00 270 
T4 35.36 -35.36 315 
T5 50.00 0.00 0 
T6 35.36 35.36 45 
T7 0.00 50.00 90 
T8 -35.36 35.36 135 

 

Fig. 4 Transducer network and signal paths 
 
 

of case studies was then used to verify the proposed method. All numerical simulations in the 
current study were calculated using commercial FE software LS-DYNA, which employs the 
explicit central different integration scheme to calculate the response of the wave propagation. 
Eight-noded 3D reduced integration solid brick elements with hourglass control were used in the 
model, in which each node has three translation degrees of freedom. 

It is assumed that eight circular piezoceramic transducers with 5 mm diameters were surface 
mounted to the plate to form a circular transducer network with a 100 mm diameter circular 
inspection region. These transducers were labeled in counter-clockwise order from T1 to T8 as 
shown in Fig. 4. As discussed in Section 2, the proposed method requires sequentially exciting the 
transducers from T1 to T8 to obtain the data for the proposed imaging algorithm. The signal paths 
in the sequential scan process are shown in Fig. 4. Table 2 summarizes the transducer locations and 
the corresponding scattering angles defined in Fig. 3(a).  

The A0 Lamb wave was excited by applying nodal displacement in the out-of-plane direction to 
surface FE nodes covered by the transducer to simulate a piston type excitation (Ng and Veidt 
2012). A 200 kHz narrow band six-cycle sinusoidal tone burst pulse modulated by a Hanning 
window was used as the excitation signal. The wavelength of the A0 Lamb wave at 200 kHz was 
11.99 mm, which is in the same order of sizes as the damages of interest in this study. The out-of-
plane displacement of the surface FE nodes located at the center of the transducers were calculated  
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Fig. 5 Dispersion curves 
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Fig. 6 Normalized out-of-plane displacement amplitude as a function of wave propagation distance 
 
 

and used in the proposed method. Most of the solid brick elements in the FE model had an in-
plane square shape with dimensions 0.75×0.75 mm2. The thickness of the solid brick elements was 
0.375 mm, which ensured there were 16 layers of solid brick elements in the thickness direction of 
the plate. In the numerical simulation the maximum incremental time step, which ensures the 
stability of the dynamic analysis, was automatically controlled by LS-DYNA based on the element 
size and material properties. This means that there are at least 31 FE nodes per wavelength to 
ensure the accuracy of the simulation results. Hourglassing modes were minimized by applying 
suitable hourglass controls. The total hourglassing energy was less than 0.45% of the internal 
energy for all simulations. 

Figs. 5(a) and 5(b) show the analytical results based on Mindlin plate theory and FE-calculated 
results of A0 Lamb wave group velocity and wavelength dispersion curves. The dispersion curves 
of the FE simulation results were obtained by sweeping the excitation frequency from 20 kHz to 
300 kHz in steps of 20 kHz. At each excitation frequency, Lamb wave signals were calculated at 
five locations. The group and phase velocity were calculated by averaging the results of all 
measurement points. In this study the group velocity was calculated using the energy density 
spectrum of the measured out-of-plane displacement by the Gabor wavelet transform as described 
in Section 2.1. The calculated phase velocity was then used to determine the wavelength of the 
excited A0 Lamb wave.  

832



 
 
 
 
 
 

A two-stage approach for quantitative damage imaging in metallic plates using Lamb waves 

Table 3 Summary of all damage cases in numerical case studies 

Case Defect location Diameter Percentage and type of thickness reduction 

A x=0.00 mm, y=0.00 mm 3.00 mm 12.5% symmetrical reduction of thickness 

B x=0.00 mm, y=0.00 mm 3.00 mm 6.25% non-symmetrical reduction of thickness 

C x=0.00 mm, y=0.00 mm 5.00 mm 6.25% non-symmetrical reduction of thickness 

D x=-15.00 mm, y=0.00 mm 3.00 mm 6.25% non-symmetrical reduction of thickness 

E x=-15.00 mm, y=15.00 mm 3.00 mm 6.25% non-symmetrical reduction of thickness 

 

 
Fig. 7 Cross-section view of the plate thickness reduction 

 
 
Fig. 6 shows the amplitude decay of the Lamb wave for a propagation distance between 10 mm 

to 200 mm with steps of 10 mm. In Fig. 6 the amplitudes of all measurement locations were 
normalized by the amplitude measured at 10 mm away from the excitation center. In Figs. 5 and 6 
reasonable agreement was found between the analytical and FE simulation results. This 
observation demonstrated that the FE simulation could be used as a tool to validate the proposed 
defect imaging method. The small discrepancy between the analytical and FE simulation results in 
Figs. 5 and 6 can be treated as errors caused by measurement noise or modeling error in the 
numerical case studies simulating a practical situation. 

Five cases of damage were considered in this study. They consisted of different sizes and types 
of thickness reductions to provide a comprehensive verification of the proposed damage imaging 
method. Defining the center of the transducer network as the origin, the details, such as damage 
location, diameter, and type and percentage of thickness reduction for each damage case, are 
summarized in Table 3.  

 
3.2 Results of damage imaging 
 
3.2.1 Case A: Symmetrical reduction of plate thickness located at the center of the 

transducer network 
The damage considered in Case A was a 3 mm diameter circular plate thickness reduction 

located at x=0 mm, y=0 mm (center of the transducer network). The percentage of thickness 
reduction was 12.5% and was symmetrical about the mid-plane of the plate as shown in Fig. 7(a), 
and therefore, there was no mode conversion effect in the scattered waves. Case A was treated as a 
benchmark to demonstrate the proposed method. It should be noted that the imaging algorithms in 
stages-one and -two do not take into account the mode conversion effect in the image 
reconstruction. Case A, therefore, was considered the simplest damage condition and the condition 
most able to record the best performance in determining the damage location and plate thickness 
reduction. 
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Fig. 8 (a) Scattered wave signal measured at transducer T6 while T1 is excited in Case A; (b) 
scaleogram obtained using Gabor wavelet transform; (c) normalized wavelet coefficient at 
excitation frequency 200 kHz 

 

 
(a) Reconstructed damage 
location image (white cross: 
identified defect location; black 
circle: true defect location and 
size) 

(b) Reconstructed plate thickness 
reduction percentage image 
(close up view at defect region; 
black circle: true defect location 
and size) 

(c) Plate thickness reduction 
percentage profile across the 
damage (black solid line: 
reconstructed profile; blue 
dashed line: true profile) 

Fig. 9 Reconstructed image of the defect in Case A 
 
 

As described in Section 2.1, the imaging algorithm in stage-one requires the scattered wave 
signals to be extracted using the baseline subtraction approach. Fig. 8(a) shows the scattered wave 
signal measured by transducer T6 while T1 was used for excitation. As shown in Fig. 8(b), the 
scaleogram of the scattered waves can be calculated using the Gabor wavelet transform as 
described in Section 2.1. The scaleogram indicates the energy distribution of the wave signal in the 
time-frequency domain. Fig. 8(c) shows the corresponding normalized wavelet coefficients at the 
excitation frequency, which were used as Eq. (4) to reconstruct an image for determining the 
damage location. 
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Table 4 Summary of identified damage locations 

Case Damage location Identified location 

A x=0.00 mm, y=0.00 mm x=0.00 mm, y=0.00 mm 
B x=0.00 mm, y=0.00 mm x=0.00 mm, y=0.00 mm 
C x=0.00 mm, y=0.00 mm x=0.00 mm, y=0.00 mm 
D x=-15.00 mm, y=0.00 mm x=-14.00 mm, y=0.00 mm 
E x=-15.00 mm, y=15.00 mm x=-16.00 mm, y=16.00 mm 

 

 
(a) Reconstructed damage 
location image (white cross: 
identified defect location; black 
circle: true defect location and 
size) 

(b) Reconstructed plate thickness 
reduction percentage image 
(close up view at defect region; 
black circle: true defect location 
and size) 

(c) Plate thickness reduction 
percentage profile across the 
damage (black solid line: 
reconstructed profile; blue 
dashed line: true profile) 

Fig. 10 Reconstructed image of the defect in Case B 
 
 
Fig. 9(a) shows the reconstructed damage location image for Case A. The white circles indicate 

the transducer locations and the black circle is the true damage location and size. The damage 
location was determined by the image pixel having the maximum value. The identified damage 
location was marked with a white cross to accurately highlight the area of weakness. The 
identified damage location is also listed in Table 4. Fig. 9(b) shows a close up view of the central 
40×40 mm2 region of the plate thickness reduction percentage image reconstructed during stage-
two of the proposed method. The corresponding plate thickness reduction percentage profile across 
the damage is shown in Fig. 9(c). The black solid and blue dashed lines are the reconstructed and 
true plate thickness reduction profile, respectively. There is a very good agreement between the 
reconstructed and true plate thickness reduction percentage in Case A. 

 
3.2.2 Cases B and C: Non-symmetrical reduction of plate thickness located at the center 

of the transducer network 
Cases B and C considered, respectively, a 3 mm and 5 mm diameter circular plate thickness 

reduction located at the center of the transducer network. The cases involved smaller percentages 
of thickness reduction (6.25% reduction of thickness) compared to Case A. The plate thickness 
reductions in Cases B and C were generated by reducing thickness at one side of the plate as 
shown in Fig. 7(b), and were therefore non-symmetrical about the mid-plane of the plate. The 
scattered waves in Cases B and C contain both fundamental symmetric mode (S0) and A0 Lamb 
waves. It should be noted that the proposed imaging method only takes into account the scattering  
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(a) Reconstructed damage 
location image (while cross: 
identified defect location; black 
circle: true defect location and 
size) 

(b) Reconstructed plate thickness 
reduction percentage image (close 
up view at defect region; black 
circle: true defect location and 
size) 

(c) Plate thickness reduction 
percentage profile across the 
damage (black solid line: 
reconstructed profile; blue 
dashed line: true profile) 

Fig. 11 Reconstructed image of the defect in Case C 
 

 
(a) Reconstructed damage location image (white 
cross: identified defect location; black circle: true 
defect location and size) 

(b) Reconstructed plate thickness reduction 
percentage image (close up view at defect region; 
black circle: true defect location and size) 

Fig. 12 Reconstructed images of the damage in Case D 
 
 

of the A0 Lamb wave. These two cases were therefore used to assess the performance of the 
proposed method in the presence of the mode conversion effect. 

Figs. 10(a) and 11(a) show the reconstructed damage location for Cases B and C, respectively. 
Both images accurately indicate the damage location. The identified defect locations are listed in 
Table 4. Figs. 10(b) and 11(b) show the reconstructed plate thickness reduction percentage for 
Cases B and C, respectively. There is good agreement between the size indicated by the 
reconstructed plate thickness reduction percentage image and the true damage size. Figs. 10(c) and 
11(c) show the plate thickness reduction percentage profile across the damage. Reasonable 
agreement was obtained between the reconstructed and true plate thickness reduction percentage 
profile in Case B. The results show that, although the imaging algorithms in stages-one and -two 
did not take into account the effect of mode conversion, the non-symmetrical reduction of plate 
thicknesses can still be reasonably identified from the reconstructed image. 

However, the reconstructed and true plate thickness reduction percentage profile in Case C is 
greater than that in Case B as shown in Fig. 11(c). The reconstructed plate thickness reduction  
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(a) Reconstructed plate location image (white 
cross: identified defect location; black circle: true 
defect location and size) 

(b) Reconstructed plate thickness reduction 
percentage image (close up view at defect region; 
black circle: true defect location and size) 

Fig. 13 Plate thickness reduction percentage profile of the damage in Case E 
 

 
(a) Plate thickness reduction percentage profile 
across the damage in x-axis (black solid line: 
reconstructed profile; blue dashed line: true 
profile) 

(b) Plate thickness reduction percentage profile 
across the damage in y-axis (black solid line: 
reconstructed profile; blue dashed line: true 
profile) 

Fig. 14 Plate thickness reduction percentage profiles of the damage in Case D 
 
 

percentage profile over-estimates the true thickness reduction, but the estimated and true values 
are still in the same order of magnitude. The main reason for this is that the diameter of the 
circular thickness reduction in Case C does not completely fulfill the weak scattering 
inhomogeneity assumption as discussed in Section 2.1.2, and the performance of the reconstructed 
plate thickness reduction percentage in Case C is not as good as that in Case B. It should be noted 
that the proposed method targets the early detection of damage. The weak scattering 
inhomogeneity is very suitable for this situation. 

 
3.2.3 Cases D and E: Non-symmetrical reduction of plate thickness located off the center 

of the transducer network 
Lamb wave diffraction tomography with far-field Born approximation assumes the damage is 

at the center of the transducer network. The proposed two-stage approach overcomes this 
limitation by first determining the location of the damage in stage-one, and then, modifying the  
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(a) Profile across the damage in x-axis (black solid 
line: reconstructed thickness reduction; blue 
dashed line: true thickness reduction) 

(b) Profile across the damage in y-axis (black solid 
line: reconstructed thickness reduction; blue 
dashed line: true thickness reduction) 

Fig. 15 Plate thickness reduction percentage profiles of the damage in Case E 
 
 

amplitudes and phases of the scattering wave signals. The amplitude and phase modification 
allows the direct application of the far-field Born approximation in the damage imaging. However, 
the level of error in the identified damage location has an impact on the performance of the 
extended Lamb wave diffraction tomography in stage-two. Cases D and E considered plate 
thickness reduction with the same size and depth as Case B but they were located at x=-15 mm, 
y=0 mm and x=-15 mm, y=15 mm, respectively. The first objective of these two cases was to 
demonstrate the capacity of the proposed method to image damage located away from the center of 
the transducer network. The second objective was to evaluate the accuracy and the impact of the 
newly identified damage location error on the of the reconstructed plate thickness reduction image 
in stage-two of the proposed method.  

Fig. 12(a) and 13(a) are the reconstructed image of damage location images for Cases D and E. 
As indicated by the white crosses in both figures, the identified damage locations are x=-14 mm, 
y=0 mm and x=-16 mm, y=16 mm for Cases D and E, respectively. The identified damage 
locations are also listed in Table 4. The maximum damage location error is only 1 mm for a 100 
mm diameter circular inspection area. The amplitude and phase of the scattered wave signals were 
then modified based on the identified damage locations. The modified scattered wave signals are 
the artificial equivalent of scattered waves from the damage, with the same size and shape but 
located at the center of the transducer network. Thus the Lamb wave diffraction tomography with 
the far-field Born approximation can be directly applied, using modified scattered wave signals to 
reconstruct a plate thickness reduction located away from the center of the transducer network. 
Figs. 12(b) and 13(b) show the reconstructed plate thickness reduction percentage images for 
Cases D and E, respectively. The corresponding thickness reduction percentage profiles across the 
damage on the x- and y- axes are shown in Figs. 14 and 15. Overall, the reconstructed thickness 
reduction percentage images of Cases D and E are not as accurate as Case B due to the error in the 
identified damage locations in stage-one. However, the reconstructed thickness reduction 
percentage images are still able to indicate reasonable size and depth of the plate thickness 
reduction. 
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4. Conclusions 
 
This paper has proposed a two-stage approach for quantitative imaging of damages in metallic 

plates. The damages considered in this study were circular symmetrical and non-symmetrical 
reductions of plate thickness. In stage-one the location of the damage was determined by analyzing 
the cross-correlation of the wavelet coefficients extracted from incident pulses and scattered wave 
signals in the sequential scan process. The same set of scattered wave signals was then used to 
reconstruct the plate thickness reduction percentage image in stage-two for evaluating the damage. 
The method is practical in terms of the number of transducers required since only eight transducers 
are needed to achieve quantitative imaging of damage in plate structures. 

The proposed two-stage imaging algorithm has been verified by a number of numerical case 
studies using 3D explicit FE simulations. This paper has demonstrated that the proposed two-stage 
approach is able to overcome the limitation of the Lamb wave diffraction tomography with far-
field Born approximation. Hence the proposed methodology is applicable for damage at different 
locations within the transducer network. The results of the numerical case studies have shown that 
the proposed two-stage approach is able to accurately locate the damage with accuracy of the order 
of a few millimeters of a circular inspection area of 100mm2 and provide a reasonable estimation 
of the size and depth of the damage. Although the two-stage approach only takes into account the 
A0 Lamb wave, the reconstructed image is still able to achieve reasonable accuracy for non-
symmetrical reduction of plate thickness, in which the mode conversion occurs in the Lamb wave 
scattering. Further research work is to carry out experimental studies for demonstrating the 
practicability of the proposed method in real applications. 
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