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Abstract.  Time history dynamic structural analysis is a time consuming procedure when used for large-
scale structures or iterative analysis in structural optimization. This article proposes a new methodology for 
approximate prediction of extremum point of the response history via wavelets. The method changes 
original record into a reduced record, decreasing the computational time of the analysis. This reduced record 
can be utilized in iterative structural dynamic analysis of optimization and hence significantly reduces the 
overall computational effort. Design examples are included to demonstrate the capability and efficiency of 
the Reduced Record Method (RRM) when utilized in optimal design of frame structures using meta-
heuristic algorithms. 
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1. Introduction 
 

Time history dynamic analysis of structures is a time consuming process, particularly when 

large-scale structures or iterative analysis such as structural design optimization are under 

consideration. Furthermore, this analysis often leads to an overestimate design, thus an 

optimization procedure can be useful in design of structures subjected to time history loading. 

Wavelet transforms are recognized as a fundamental tool for various signal-processing 

applications such as image processing, sound processing, earthquake accelerogram processing, 

ocean wave processing, etc. Wavelet transforms have been applied in many fields, some of these 

applications are presented in Gurley and Kareem (1999). Wavelet analysis is a technique of great 

interest for the analysis and approximation of non-stationary signals. One of the applications of the 

wavelets, which this paper focuses on it, is their utilization for generating an approximate 

earthquake record from an original earthquake record in order to carry out approximate and 

efficient time history analysis of structures with cost effective computational time (Salajegheh et 

al. 2005, Salajegheh and Heidari 2004, 2005). 
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Optimal structural design is usually implemented to determine the design variables so as to 

attain an optimum structural weight or cost, while the design criteria are satisfied (Kaveh and 

Zakian 2012). Recently, some investigators developed meta-heuristic algorithms for structural 

optimization; Gholizadeh and Barzegar (2013) used a sequential harmony search algorithm for 

shape optimization of structures with frequency constraints; Kaveh and Zolghadr (2014) optimized 

truss structures with natural frequency constraints using Democratic PSO. There are a number of 

other papers which discuss structural design optimization using dynamic analysis. Kocer and 

Arora (1999) used simulated annealing and genetic algorithms for design optimization of frames 

with nonlinear time history analysis, Cheng et al. (2000) employed the game theory and genetic 

algorithm for multi-objective optimization of 2D frames under seismic loading, Zou and Chan 

(2005) proposed the use of an optimality criteria based dynamic optimal design of 2D concrete 

frames. Prendes Gero et al. (2005, 2006) employed a modified elitist genetic algorithm for 

dynamic design optimization of 3D steel structures. Salajegheh and Heidari (2004, 2005a, 2005b) 

utilized wavelets, neural network for efficient dynamic analysis and genetic algorithm for optimal 

design of skeletal structures under seismic loading. Gholizadeh and Salajegheh (2009) employed a 

meta-modeling based real valued PSO algorithm for optimizing structures under time history 

loading. Gholizadeh and Samavati (2011) proposed a hybrid methodology for optimal dynamic 

design of structures. Kaveh et al. (2012) performed time-history analysis based optimal design of 

space trusses using an evolution strategy approach, neural network and wavelets. Kaveh and 

Zakian (2014) improved BA optimizer and then employed it for various optimization problems 

incorporating static, dynamic and eigenvalue analysis subjected to different constraints. Kaveh and 

Zakian (2013) performed optimal design of steel moment and shear frames under seismic loading 

using two meta-heuristic algorithms considering stress constraints via simultaneous static-dynamic 

structural analysis. 

In this article, a new methodology is proposed for prediction of extremum point of response 

history via wavelets. This method changes original record into a reduced record which can reduce 

computational effort. The proposed reduced record can be utilized for iterative structural dynamic 

analysis of optimization and hence substantially reduce overall computational effort.  

This article is organized as follows: section 2 is a brief introduction to wavelets, and describes 

approximate time history analysis of structures using wavelets. The proposed so-called reduced 

record method is discussed in section 3, the improved harmony search meta-heuristic algorithm 

(optimizer) is explained in section 4. Section 5 presents the formulation of the dynamic design 

optimization of the skeletal structures. Section 6 and section 7 provide the design examples and 

conclusions, respectively. 

 

 

2. Wavelets 
 
2.1 Preliminary 
 
Wavelets are considered as a modern signal processing tool. Similar to Fourier analysis which 

decomposes a signal into sine waves of various frequencies, wavelet analysis decomposes a signal 

into shifted and scaled versions of the original (or mother) wavelet. There are some important 

differences between Fourier analysis and wavelets. Fourier basis functions are localized in 

frequency but not in time. This means that although we might be able to specify all the frequencies 

present in a signal, but we do not know when they happen. Wavelets have localization ability in 
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both frequency/scale (with dilations) and in time (with translations). This localization is an 

advantage in many cases. Second, many classes of functions can be represented by wavelets in a 

more compact way. For instance, functions with discontinuities and functions with sharp spikes 

usually take significantly fewer wavelet basis functions than sine-cosine basis functions to attain a 

comparable approximation. Therefore, wavelets are superior for representing functions that have 

discontinuities and sharp peaks. They are also more efficient for accurate decomposition and 

reconstruction of finite, non-periodic and non-stationary signals. They are also suitable for 

approximating piecewise smooth signals. 

Another drawback of the Fourier Transform (FT) is that it cannot separate the low and high 

frequencies. In WT the use of a fully scalable window solves the signal-cutting problem. The 

window is shifted along the signal and for every position the spectrum is calculated. Then this 

process is repeated many times with a slightly shorter (or longer) window for every new cycle. At 

the end the result will be a set of time-frequency representations of the signal, all with different 

resolutions. Due to this set of representations it is called a multi-resolution analysis. Wavelets are 

defined in continuous and discrete forms. Here, the discrete form is defined and utilized. 

 

2.2 Discrete wavelet transform 
 
A wavelet transform is defined by a two-parameter family of functions. It can be expressed as 
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where α and β are integers, the functions ψα,β(x) are the wavelet expansion functions and two-

parameter expansion coefficients DWTα,β are called the Discrete Wavelet Transform (DWT) 

coefficients of s(x). 

The wavelet basis functions can be computed from a function ψ(x) called the generating or 

mother wavelet through dilation, α and translation β, parameters 
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Mother wavelet function is not unique, but it must satisfy some conditions. If a scaling function 

φ(x)
 
is considered 
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where Lk is filter coefficients of half band low-pass filters, the mother wavelet is related to the 

scaling function as follows 
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Hk is filter coefficients of half band high-pass filters. m-level wavelet decomposition is 

determined by 
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(a)

 

(b) 

Fig. 1 Wavelet decomposition: (a) multi-level decomposition (b) a single level decomposition details 

of an earthquake record 

 

 

In which coefficients aβ+1,n and dβ+1,n at scale β+1 are given by 
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2.3 Time history analysis using wavelets 
 

Dynamic analysis of the structures under the original earthquake record is usually a time 

consuming process. Recently, a method was suggested for rapid approximate time history dynamic 

analysis of skeletal structures (Salajegheh and Heidari 2005a). In this method, an accelerogram is 

decomposed using Fast Wavelet Transform (FWT) and transformed into a record with a smaller 

points and the dynamic analysis of structures is performed subjected to this reduced points. It 

should be noted that these points are corresponding to time steps or time points of an earthquake 

record. Fig. 1 shows the scheme for decomposition process of an earthquake accelerogram. The 

first part of coefficients (cA) contains the low frequency of the signal, and the other (cD) contains 

the high frequency of the signal. The low frequency content is the most important part because 

most of the earthquake energy input is of its and most of the commonly used structures are along 

with low natural frequencies, on the other hand, general properties of a signal are detected by this 

part. So, this part is used for dynamic analysis of structures. A multilevel decomposition of the 

signal is achieved by an iterative decomposition process. The low-pass filtered output signal is 

used as input record. The decomposition process can be inversed and the original record can be 

computed. This process is called Inverse Discrete Wavelet Transform (IDWT).  

Fundamental steps of this method: 

I) Decompose the earthquake record until a target level.  

II) Use low-frequency part coefficients for dynamic analysis and modify the time intervals of 

time history analysis based on the selected decomposed record. 

III) After dynamic analysis, use IDWT to determine the response of the structure in the original 

space (a time point number equal to time point number of original record). 

642



 

 

 

 

 

 

Reduced record method for efficient time history dynamic analysis and optimal design 

 

3. Proposed reduced record method 
 

3.1 New approach for approximate dynamic analysis using wavelets 
 
There are two problems with using coefficient record for dynamic analysis. Firstly, after 

decomposition of the record to coefficient record, due to the downsampling process, time interval 

of the new record should be changed into a larger value. For instance, number of time points of El 

Centro record and cA1, cA2 and cA3 become 2688, 1344, 672 and 336, respectively. Thus, time 

intervals are taken as 0.02, 0.04, 0.08 and 0.16, respectively, because during each decomposition 

level half of the points are assigned to low frequency part and another half of the points are 

assigned to high frequency part. Also, it depends on the selected mother wavelet, i.e., sometimes 

decomposed signal is shifted or the number of points are more/less than aforementioned time 

points numbers which is expected. As a result, time intervals of the time history analysis cannot be 

attained easily based on above descriptions. 

Secondly, the frequency content of coefficient records cannot be assessed and compared, 

because lengths (number of time points) of these records are different with original record and they 

are scaled as well. 

In the present study, from Daubechies wavelet family, Db2 has been selected to decompose the 

earthquake record. Here, the approximate record is proposed for dynamic analysis. Approximate 

record is a record which is created from its coefficient record by upsampling process (Fig. 2) this 

record has a length of equal to original record, for every considered decomposition level. As an 

example, A3 is an approximate record corresponding to cA3 coefficient record. Fig. 3 illustrates 

the El Centro record and its approximate records A1, A2 and A3. All of them have identical point 

numbers and after each decomposition level, every record becomes smoother than before. 

Although they have identical time point number, but for the reason of smoothness one can read 

them with different time steps, e.g., A1, A2 and A3 records can be used with 0.04, 0.08 and 0.16 

time steps for any mother wavelet in order to fulfill time history analysis. Fig. 4 shows the 

frequency content of those records. Thus, frequency content of them may be compared. Finally,  

 

 

 
Fig. 2 Scheme of creating first level approximate signal from its coefficients 
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Table 1 Maximum responses of time history analysis applying coefficient and approximate records 

No. of 

DOF 

Dynamic analysis using 

cA2 record 

with 672 points 

Dynamic analysis using 

A2 record 

with 672 points 

Dynamic analysis using 

cA3 record 

with 338 points 

Dynamic analysis using 

A3 record 

with 338 points 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

1 12.7592 3.3524 0.0056 12.7813 3.3592 0.0057 11.0168 2.8369 0.0046 11.1648 2.8741 0.0046 

7 10.7972 1.0579 0.0059 10.8154 1.066 0.0059 9.3008 0.8238 0.0047 9.4279 0.8246 0.0047 

10 8.6942 0.9854 0.0062 8.7083 0.9873 0.0063 7.5041 0.8259 0.0049 7.6081 0.8371 0.0044 

16 6.5504 2.9624 0.0069 6.5606 2.9846 0.0069 5.7042 2.2744 0.0052 5.7836 2.2766 0.0052 

18 4.4585 0.7259 0.0058 4.465 0.7272 0.0059 3.9558 0.6088 0.0043 4.0101 0.6172 0.0043 

24 2.5437 1.905 0.0056 2.5471 1.9191 0.0056 2.3372 1.4344 0.004 2.3679 1.4361 0.004 

26 0.9468 0.2711 0.003 0.948 0.2716 0.003 0.9257 0.2271 0.0022 0.9366 0.2303 0.0023 

Time(s) 0.704499 0.704499 0.544896 0.544896 

 

Table 2 Minimum responses of time history analysis applying coefficient and approximate records 

No. of 

DOF 

Dynamic analysis using 

cA2 record 

with 672 points 

Dynamic analysis using 

A2 record 

with 672 points 

Dynamic analysis using 

cA3 record 

with 338 points 

Dynamic analysis using 

A3 record 

with 338 points 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

X 

direction 

Disp. 

Y 

direction 

Disp. 

Rotation 

1 -12.4863 -3.2952 -0.0061 -12.5824 -3.3207 -0.0061 -9.5841 -2.5962 -0.0053 -9.5966 -2.5987 -0.0054 

7 -10.7427 -1.0479 -0.0062 -10.8243 -1.0501 -0.0062 -8.1383 -0.8785 -0.0053 -8.1493 -0.8903 -0.0054 

10 -8.7422 -1.0004 -0.0063 -8.8081 -1.0079 -0.0063 -6.5434 -0.7756 -0.0053 -6.5528 -0.7763 -0.0054 

16 -6.5667 -2.9003 -0.0066 -6.6161 -2.9059 -0.0066 -4.8686 -2.4367 -0.0055 -4.8765 -2.47 -0.0056 

18 -4.3419 -0.747 -0.0055 -4.3752 -0.7525 -0.0055 -3.2123 -0.5719 -0.0047 -3.2183 -0.5725 -0.0047 

24 -2.289 -1.8484 -0.0053 -2.3075 -1.8517 -0.0053 -1.76 -1.5656 -0.0046 -1.803 -1.5874 -0.0046 

26 -0.7441 -0.283 -0.0033 -0.7466 -0.2851 -0.0033 -0.7016 -0.2143 -0.003 -0.6895 -0.2145 -0.003 

Time(s) 0.704499 0.704499 0.544896 0.544896 

 

 

instead of using coefficient records, approximate records are utilized for dynamic analysis with 

these advantages: 

I) The prescribed time intervals of time history analysis can be utilized for every mother 

wavelet and there are no downsampling effects on the time intervals. 

II) Frequency content of every approximate record can be evaluated and compared easily due to 

identical record length without any shifting and scaling. 

III) After dynamic analysis, response is determined and there is no need to implement inverse 

wavelet transform. 

Results of the analysis for the seven-story steel moment frame under El Centro earthquake 

record shown in Fig. 5 are provided in Table 1 and Table 2 demonstrating the efficiency and 

accuracy of the presented approach. In the following sections, this approach is employed for 

approximate time history analysis. 
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Fig. 3 El Centro earthquake record and its decompositions (Approximate records A1,A2, A3) 
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Fig. 4 Frequency content of El Centro earthquake record and its decompositions (Approximate records 

A1, A2, A3) 
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Fig. 5 Schematic of a seven-story steel moment frame 

 

 

3.2 Reduced earthquake record for dynamic analysis 
 
Here, approximate records (A1, A2, and A3) are utilized for dynamic analyses obtained from 

El Centro record. Hence, time intervals of dynamic analyses are chosen as 0.04, 0.08, and 0.16 

seconds, respectively. Obviously, time intervals of original record are equal to 0.02. Newmark-

Beta method (average acceleration) is employed for linear elastic time history analyses. 

For linear elastic time history analysis, the analyst usually wants to find the 

maximum/minimum responses of the structures. Therefore, the time history analysis can be 

performed until the time point when the maximum/minimum response is obtained. 
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Four types of the seven-story frame with different fundamental natural frequencies and 

following relationship are considered: ω1<ω2<ω3<ω4 

 These frequencies are obtained by changing the stiffness of the frame. Results of the time 

history analysis of the frame types subjected to original record, A1, A2 and A3 are provided in 

Tables 3-6 possessing time point numbers corresponding to maximum and minimum responses for 

every lateral transitional degrees of freedom. It is shown that for approximate records, time points 

number values are identical or greater than time points number values of original record, 

particularly for A3. This means that if A3 is used for the dynamic analysis, an upper bound is 

created. In another words, extermum response subjected to original record occurs in an earlier time 

points. This is because of the filtering of the record by wavelet high pass filter. Some exceptions  

 

 
Table 3 Point numbers corresponding to maximum (left) and minimum (right) response for first frame (ω1) 

Original A1 A2 A3 Original A1 A2 A3 

272 272 274 274 306 306 306 306 

272 272 274 274 306 306 306 306 

272 272 274 274 306 306 306 306 

272 272 274 274 306 306 306 306 

273 274 274 274 306 306 306 306 

273 274 274 274 306 306 306 306 

273 274 274 274 306 306 306 306 

273 274 274 274 306 306 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

274 274 274 274 307 308 306 306 

273 274 274 274 307 306 306 306 

273 274 274 274 307 306 306 306 

273 274 274 274 307 306 306 306 

273 274 274 274 307 306 306 306 

272 272 270 274 305 306 306 314 

272 272 270 274 305 306 306 314 

272 272 270 274 305 306 306 314 

272 272 270 274 305 306 306 314 

270 270 270 258 303 304 306 314 

270 270 270 258 303 304 306 314 

270 270 270 258 303 304 306 314 

270 270 270 258 303 304 306 314 
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Table 4 Point numbers corresponding to maximum (left) and minimum (right) response for second frame 

(ω2) 

Original A1 A2 A3 Original A1 A2 A3 

142 142 142 146 118 118 170 170 

142 142 142 146 118 118 170 170 

142 142 142 146 118 118 170 170 

142 142 142 146 118 118 170 170 

142 142 142 146 117 118 118 170 

142 142 142 146 117 118 118 170 

142 142 142 146 117 118 118 170 

142 142 142 146 117 118 118 170 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 116 116 118 218 

142 142 142 146 169 170 170 218 

142 142 142 146 169 170 170 218 

142 142 142 146 169 170 170 218 

142 142 142 146 169 170 170 218 

142 144 142 146 169 218 218 218 

142 144 142 146 169 218 218 218 

142 144 142 146 169 218 218 218 

142 144 142 146 169 218 218 218 

144 144 142 146 218 218 218 218 

144 144 142 146 218 218 218 218 

144 144 142 146 218 218 218 218 

144 144 142 146 218 218 218 218 

 

 

are highlighted in Table 3 but it does not change the result, because maximum points number 

values from all lateral degrees of freedom (corresponding to maximum/minimum response) is 

selected as a critical point number. Critical point number is a time point that time history analysis 

is terminated until that point, while extermum response has been obtained. 

In another aspect, Figs. 6-9 show the point number where the maximum or minimum response 

occurs. Each line illustrates maximum or minimum response of one type of frame with a certain 

fundamental frequency. Clearly, greater point numbers are visible for the frame with lesser 

fundamental frequency. 

By employing El Centro, A1, A2 and A3 records, these figures demonstrate that with dynamic 
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Table 5 Point numbers corresponding to maximum (left) and minimum (right) response for third frame (ω3) 

Original A1 A2 A3 Original A1 A2 A3 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

98 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

134 134 134 138 113 114 114 290 

133 134 134 138 112 112 114 290 

133 134 134 138 112 112 114 290 

133 134 134 138 112 112 114 290 

133 134 134 138 112 112 114 290 

133 134 134 138 110 110 114 290 

133 134 134 138 110 110 114 290 

133 134 134 138 110 110 114 290 

133 134 134 138 110 110 114 290 

 

 

analysis of frame via smaller natural fundamental frequency, greatest time point number is 

achieved, and after that one can utilize this type in order to gain maximum response of different 

types of the frame structure. 

During the size optimization procedure, cross-section areas of members are changed, so a time 

point corresponding to extermum response values should be considered in such a way that during 

this procedure a reliable time point for the entire generated frames (determined from variables’ 

domain) is achieved. Thus, if A3 record has been employed for analyses, an upper bound of 

critical point number has been created. Also, considering a generated frame with minimum 

frequency before the beginning of a size structural optimization, the imposed constraints’ values 

due to the time history dynamic analysis are acceptable i.e., the extermum responses of the entire 
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Table 6 Point numbers corresponding to maximum (left) and minimum (right) response for forth frame (ω4) 

Original A1 A2 A3 Original A1 A2 A3 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 109 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 258 130 110 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

94 94 94 130 109 110 110 114 

93 94 258 130 109 108 110 114 

93 94 258 130 109 108 110 114 

93 94 258 130 109 108 110 114 

93 94 258 130 109 108 110 114 

 

 

generated frames occur in an identical or earlier point number relative to the critical point number. 

Some exceptions of frames ω1, ω2 are visible in Figs. 8 and 9. These exceptions are negligible by 

imposing two frequency constraints consisting of lower bound and upper bound frequency 

constraints. 

Fundamental steps of applying reduced record to the dynamic design optimization can be 

summarized as follows: 

1) From available cross-section areas, assign smallest cross-section to all members of the frame 

(weakest available frame). Perform a time history analysis subjected to A3 record and determine 

the point number corresponding to extremum absolute value of response (maximum or minimum) 

denoted Pl. Also, store the fundamental natural frequency of the structure denoted by ωl. 
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Fig. 6 Time points corresponding to max/min responses versus lateral DOFs under original record 

 

 
Fig. 7 Time points corresponding to max/min responses versus lateral DOFs under approximate record (A1) 

 

 
Fig. 8 Time points corresponding to max/min responses versus lateral DOFs under approximate record (A2) 
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Fig. 9 Time points corresponding to max/min responses versus lateral DOFs under approximate record (A3) 

 

 

2) From available cross-section areas, assign the largest cross-section to all members of the 

frame (strongest available frame). Perform a time history analysis subjected to A3 record and 

determine the point number corresponding to extremum absolute value of response (maximum or 

minimum) denoted Pu. Store the fundamental natural frequency of the structure denoted by ωu as 

well. 

3) Determine the critical point number which is equal to Pcritical=max(Pl, Pu). 

4) Here, a reduced record is the original record that is utilized for time history analysis until a 

time step or the time point equal to Pcritical considering the original time intervals (e.g., 0.02 for El 

Centro record). 

5) In order to have a reliable critical time point during the optimization procedures, impose two 

frequency constraints from predetermined values of the first and second steps as follows 

l

u

lowerbound

upperbound








 (7) 

ω denotes the fundamental frequency of the structure in the current iteration of optimization. 

These frequency constraints make sure us that during the optimization iterations, there is no 

maximum response of the generated frame structure occurring after the determined critical point.  

Reduced Record Method (RRM) has four major advantages including: 

a) Instead of an approximate record, the original record is applied for dynamic analysis in the 

optimization procedures. Therefore, dynamic responses are exact (non-approximate). 

b) Obviously, time intervals are clearly defined. 

c) Computational effort is greatly decreased to about 25 percent of usual analysis. 

d) There is no more need to implement inverse wavelet transforms throughout the process of 

optimization. 

Optimal design of a frame incorporating the proposed methodology is mentioned in sixth 
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section as an example. An improved version of harmony search meta-heuristic algorithm is used as 

an optimizer, (Mahdavi et al. 2007). This method is briefly discussed in following section. 

 
 
4. An improved harmony search 

 

4.1 Harmony search 
 

Geem et al. (2001), Lee and Geem (2004, 2005) presented Harmony Search (HS) algorithm 

which is briefly explained here, more information can be found in the mentioned references. This 

meta-heuristic algorithm was inspired by the process of composing music. A composer wants to 

reach a perfect harmony status in music improvisation. Seeking for pleasant harmonies in 

composing is similar to finding an optimum solution in optimization problems. Generation of a 

new harmony is called improvisation. An improvement on this algorithm is carried out by 

Mahdavi et al. (2007) leading to the Improved Harmony Search (IHS). Here, a discrete edition of 

the IHS is used (Kaveh and Zakian 2013), consisting of the following steps: 

Step 1: Initialization 

Initial random values in their domain are determined. The parameters of the algorithm consist 

of the HMS (Harmony Memory Size), number of variables nv, Harmony Memory Considering 

Rate (HMCR), Pitch Adjusting Rate (PAR), and the maximum number of iterations or terminating 

criterion. HMCR is a fixed value in the range of 0.70-0.95. In this paper, HMCR is taken as 0.95. 

Step 2: Initialize the harmony memory 

In this step the harmony memory is filled with some random solution vectors. 

Step 3: Improvise a new harmony 

A new harmony vector is specified by the following three criteria:  

(1) Using harmony memory,  

(2) Pitch adjustment,  

(3) Random selection.  

In using the harmony memory, the value of the first decision variable for the new vector is 

chosen from any of the values in the specified HM range. The HMCR is the rate of considering one 

value from the historical values stored in the HM, while (1HMCR) is the rate of randomly 

selected value from the possible range of values. xmin, j, xmax,j are lower and upper limits of the 

variable j, respectively. 












)1(],[ max,min,,

,

,
HMCRyprobabilitwithxxx

HMCRyprobabilitwithHMx
x

jjji

ji

ji  (8) 

Then every component achieved by the memory consideration must be tested to determine 

whether it should be pitch-adjusted. This operation utilizes the PAR parameter, which is the rate of 

pitch adjustment as follows 








)1(
,

PARyprobabilitwithno

PARyprobabilitwithyes
xfordecisionadjustingpitch ji  (9) 

The value of (1-PAR) sets the rate of doing nothing. If the pitch adjustment decision for xi,j is 

yes, then xi,j is replaced as follow 
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)*( ,, bwrandxRoundDx jiji   (10) 

Here, bw is the bandwidth that controls the local domain of the pitch adjustment. RoundD 

rounds the solution to the nearest admissible available discrete value. 

Step 4: Update harmony memory 

If the new harmony vector is better than the worst harmony in the HM, based on the objective 

function, the new generated harmony is included in the HM and the existing worst one is excluded 

from HM. 

Step 5: Terminating criterion  

If the fulfilling criterion (maximum number of iterations) is satisfied, computation is 

terminated. Otherwise, Steps 3 and 4 are repeated again. 

 

4.2 Improved harmony search 
 

The difference between the classic version and improved version is that in the classic method 

two parameters of PAR and bw are constant. However, in the improved version which was 

presented by Mahdavi et al. (2007), the PAR and bw are linear increasing and nonlinear decreasing 

relationships with the increment of the iteration, respectively. The basic advantage of the 

aforementioned improvement is that by careful adjustment of these parameters, one can reduce the 

number of iterations as well. Small PAR and big bw values lead to diversity of the algorithm and 

exploration ability of the algorithm is provided. Big PAR and small bw values lead to improvement 

of the solutions in the last iterations resulting is a much better convergence. Here, for a favorable 

performance PARmin and PARmax are selected as 0.35 and 0.99, respectively. These parameters are 

updated as follows 

iter
iter

PARPAR
PARiterPAR 




max

minmax
min

)(
)(  (11) 

)

)(

exp()(
max

max

min

max iter
iter

bw

bw
Ln

bwiterbw 

 
(12) 

where, Iter is the iteration number, Itermax is the  maximum number of iterations, PAR(iter) is the 

pitch adjusting rate at current iteration, PARmin is the minimum pitch adjusting rate, PARmax is the 

maximum pitch adjusting rate, bw(iter) is the bandwidth for current iteration, bwmin is the 

minimum bandwidth, and bwmax is the maximum bandwidth. 

 

 

5. Formulation of dynamic drift design optimization 
 
Structural design optimization problems can be divided into three categories: size optimization, 

shape (geometry) optimization, topology optimization. In the size optimization that is the concern 

of this paper usually design variables are in the form of thickness or dimensions of the members of 

the structure. 

For practical reasons, the cross-section areas of the structural members are considered as design 
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variables, which are selected from a list of available sections. The discrete optimization is 

formulated as follows 

 Rx

1,2,...nvi

]x,...,x,[xX

0(X)g  osubject  t

f(X)   

d

i

nv21

j









Minimize

 (13) 

)X(ff(X)Obj(X)  imizeminto penalty  (14) 

where X is the vector of design variables containing the cross section areas, nv is the number of 

design variables or the number of member groups, and R
d
 is the domain of the design variables. 

Here, Obj(X) is the objective function, f(X) is the structural weight function, and fpenalty(X) is 

penalty function in order to control the constraints 

ii

nv

i

i lxXf 
1

)(   (15) 

],0max[,)1()(
1

1
2 




n

i

ipenalty Xf  
 (16) 

li is the member length, and γi is the material density of the member i. Here, the parameters 1  and 

2  for the penalty function are selected as 1 and 2, respectively.   represents the sum of the 

violated constraints. 

Design constraints are as follows: 

Drift constraints 

nsiDR
h

a

i

ii ,...,2,11 
 

 (17) 

where i is the lateral displacement of the center of the mass in the story i, hi is the height of the 

story i, and DRa is the allowable drift ratio of each story. ns is the number of the frame stories. 

This constraint is time-dependent, and it is handled by a conventional method as described in 

Kocer and Arora(1999). In this method, the time interval is divided into subintervals and the time-

dependent constraints are imposed at grid points. 

Dynamic equilibrium equation of a moment resisting frame subjected to seismic loading can be 

expressed as 

framemomentfor
p

mp
p

tuptuKtuCtuM

elsek

DOFsdirectionxfor

kxk

g












0

)()()()( 

 
(18) 

where M, C and K are the mass, damping, and stiffness matrix of the structure, respectively. )(tu , 

)(tu , )(tu  are the acceleration, velocity and displacement vectors. pk is the kth array of the p 

656



 

 

 

 

 

 

Reduced record method for efficient time history dynamic analysis and optimal design 

 

matrix, mkx denotes the assigned lumped mass of the kth DOF at x direction. )(tug
  is the ground 

acceleration scalar value at the time t, and p is a column matrix. Newmark-Beta integration method 

is used for dynamic analysis, and for damping matrix, the Rayleigh relationship is employed in the 

analysis. More information on this relationship can be found in Clough and Penzien (2003). 

Dynamic analysis, and optimization algorithms are all programmed in Matlab and Wavelet analysis 

are accomplished with Matlab Wavelet Toolbox, Misiti et al. (2005). 

 

 

6. Structural design optimization examples 
 

In this part, optimal design of a frame structure is accomplished using available cross-section 

database Table 7. 

Based on cross-section database, eigenvalue analysis of the two structures with weakest 

members corresponding to minimum fundamental frequency of the structure and with strongest 

members corresponding to maximum fundamental frequency of the structure is performed.  

ωl=4.0292 Hz is the achieved fundamental natural frequency of a frame corresponding to 

weakest (minimum stiffness) frame considering aforementioned database. 

ωu=14.0019 Hz is the achieved fundamental natural frequency of a frame corresponding to 

strongest frame (maximum stiffness) considering aforementioned database. 

 

6.1 Optimal design under El Centro record  
 

For determining the critical time point weakest and strongest frame are analyzed under the A3 

record of El Centro: 

Pl =274 is the point number corresponding to maximum response time point. 

Pu=314 is the point number corresponding to minimum response time point. 

Say Pcritical =320
th
 point as a critical one which is implemented in the optimization procedure. 

Thus, all analyses are accomplished using only 320 steps of the dynamic analysis incorporating 

original record considering two frequency constraints. 

 

 
Table 7 Cross-section database 

No Profile Area (cm
2
) 

Moment of Inertia 

(cm
4
) 

No Profile Area (cm
2
) 

Moment of Inertia 

(cm
4
) 

1 IPE240 39.1 3890 11 IPB300 149 25170 

2 IPE270 45.9 5790 12 IPB320 161 30820 

3 IPE300 53.8 8360 13 IPB340 171 33660 

4 IPE330 62.6 11770 14 IPB360 181 43190 

5 IPE360 72.7 16270 15 IPB400 198 57680 

6 IPB200 78.1 5700 16 IPB450 218 79890 

7 IPB220 91 8090 17 IPB500 239 107200 

8 IPB240 106 11260 18 IPB550 254 136700 

9 IPB260 118 14920 19 IPB600 270 171000 

10 IPB280 131 19270 20 IPB650 286 210600 
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The seven-story moment frame is considered as an example and design variables consisting of 

four columns and two beams groups are defined in Fig. 5. El Centro record is employed for time 

history analysis. Modulus of elasticity, weight density and damping ratio are equal to 2.06×10
7
 

N/cm
2
, 0.077 N/cm

3
and 0.2, respectively. Total mass matrix of the structure consists of global 

structural members’ mass matrix plus lumped mass matrix. 2000 kg lumped masses only have 

been assigned to all transitional degrees of freedom. The only constraint is drift ratio that is 

imposed to all stories of the frame and is limited to 0.005. It should be noted that when reduced 

record method is used, two frequency constraints should be added. Results of optimization 

applying original record and reduced record are provided in Table 8 demonstrating significant 

computational effort reduction. Clearly, there is no inappropriate change in the optimization path 

after using RRM based on Fig. 10 and Table 8. Moreover, Fig. 11, Fig. 12 and Table 9 show that 

for both applied records, no constraints are violated. It should be noticed that in Fig. 12 and Table 

9, the original record has been employed for constraint violation checking. Fundamental frequency 

of the optimal frame structure obtained incorporating reduced record is equal to 12.2236 Hz 

meaning that the frequency constraints are not violated. 

 

 

 
Fig. 10 Convergence history of optimization incorporating two different records of El Centro 

 
Table 8 Optimum solution of IHS incorporating two different records of El Centro 

Group No. 
Optimum cross-section area 

employing the original record (cm
2
)  

Optimum cross-section area 

employing the reduced record (cm
2
) 

1 181 
 

181 

2 270 
 

254 

3 181 
 

181 

4 270 
 

254 

5 270 
 

286 

6 198 
 

198 

Weight(N) 197410 
 

194210 

Optimization Time 

(min) 
129 

 
20 
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Table 9 Drift ratios of the optimum frame structure under El Centro seismic loading 

Story No. 

Drift ratios of optimum frame 

structure 

employing the original record 
 

Drift ratios of optimum frame 

structure 

employing the reduced record 

1 0.0039 
 

0.0042 

2 0.0050 
 

0.0049 

3 0.0049 
 

0.0047 

4 0.0045 
 

0.0043 

5 0.0047 
 

0.0047 

6 0.0047 
 

0.0047 

7 0.0034 
 

0.0034 

 

 
Fig. 11 Maximum drift ratios of optimum solution achieved by dynamic analysis using original record 

of El Centro 

 

 
Fig. 12 Maximum drift ratios of optimum solution achieved by dynamic analysis using reduced record 

of El Centro 

659



 

 

 

 

 

 

A. Kaveh, A.A. Aghakouchak and P. Zakian 

 

6.2 Optimal design under Kobe record 
 

Here, Kobe earthquake record (Fig. 13) with 4096 time points and time intervals of 0.01 are 

applied to the frame structure so as to perform better assessment of proposed methodology. All of 

the properties of the frame are such as previous part. Here, Drift constraint is restricted to 0.005 as 

well.  

For determining the critical time point, the weakest and strongest frame are analyzed under the 

A3 record of Kobe: 

Pl=866 is the point number corresponding to maximum response time point. 

Pu=938 is the point number corresponding to minimum response time point. 

Say Pcritical=940
th
 point as a critical one that is imposed in the optimization procedure. 

Therefore, all analyses are accomplished using just 940 steps of the dynamic analysis 

incorporating original record considering two frequency constraints. 

Outcomes of optimization applying original record and reduced record are provided in Table 10 

demonstrating significant computational effort reduction. Not only there is no inappropriate 

change in the optimization path after using RRM based on Fig. 14 and Table 10, but also Fig. 15 

and Table 11 illustrate that for both applied records, no constraints are violated. Fundamental 

frequency of the optimal frame structure obtained incorporating reduced record is equal to 6.9461 

Hz which means that the frequency constraints are not violated. 

 

 

 
Fig. 13 Kobe earthquake record 

 

 
Fig. 14 Convergence history of optimization incorporating two different records of Kobe 
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Fig. 15 Maximum drift ratios of optimum solution achieved by dynamic analysis using original record 

and reduced record of Kobe 

 
Table 10 Optimum solution of IHS incorporating two different records of Kobe 

Group No. 
Optimum cross-section area 

employing the original record (cm
2
)  

Optimum cross-section area 

employing the reduced record (cm
2
) 

1 53.8 
 

53.8 

2 72.7 
 

72.7 

3 53.8 
 

53.8 

4 72.7 
 

72.7 

5 149 
 

149 

6 45.9 
 

45.9 

Weight(N) 635080 
 

635080 

Optimization Time 

(min) 
201 

 
52 

 
Table 11 Drift ratios of the optimum frame structure under Kobe seismic loading 

Story No. 

Drift ratios of optimum frame 

structure 

employing the original record 
 

Drift ratios of optimum frame 

structure 

employing the reduced record 

1 0.0046 
 

0.0046 

2 0.0046 
 

0.0046 

3 0.0042 
 

0.0042 

4 0.0037 
 

0.0037 

5 0.0040 
 

0.0040 

6 0.0047 
 

0.0047 

7 0.0038 
 

0.0038 
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7. Conclusions 
 

In this article, a new approach is proposed for approximate time history analysis of skeletal 

structures, and then by using this method a methodology so-called reduced record method (RRM) 

is proposed based on approximate prediction of time points corresponding to extermum response 

of the original record. RRM can be used for linear elastic time history analysis of structures during 

the optimization procedures when maximum/minimum responses are under consideration. RRM 

inputs no approximation to the dynamic analysis of the structures, and only determination of the 

critical point number is the vital phase of this method. This method employs a selected original 

record and performs time history analysis until the obtained critical time point of this selected 

record. The presented method reduces the computational effort of time consuming optimization 

procedures associated with seismic analyses to about 25 percent of the time used in ordinary 

procedures. 

Design example has demonstrated efficiency of proposed method. This method can be 

extended to the large-scale frame structures. More investigation should be accomplished for 

assessment of the RRM for other categories of skeletal structures such as trusses, grids and 3D 

frame structures. 
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