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Abstract.  Multiple tuned mass dampers (MTMDs) tuned to various frequencies have been shown to 
efficiently control the seismic response of structures where multiple modes are dominant. One example is 
irregular structures that are found more vulnerable than their symmetric counterparts. With the technology of 
MTMDs available, design and optimal design methodologies are required for application. Such a 
methodology, in the form of an analysis/redesign (A/R) scheme, has been previously presented by the 
authors while limiting responses of interest to allowable values, i.e., performance-based design (PBD). In 
this paper, the A/R procedure is modified based on formal optimality criteria, making it more cost efficient, 
as well as more computationally efficient. It is shown that by using the methodology presented herein, a 
desired performance level is successfully targeted by adding near-optimal amounts of mass at various 
locations and tuning the TMDs to dampen several of the structure's frequencies. This is done using analysis 
tools only. 
 

Keywords:  irregular structures; multiple tuned mass dampers; multi modal control; seismic design of tall 

buildings; acceleration control 

 

 
1. Introduction 
 

Over the years, effort has been put into evaluating and understanding the seismic behavior of 

structures under seismic loading. In turn, effort has also been put in hopes of enhancing and 

controlling the seismic response so as to reduce resultant damage experienced by structures. This 

is true especially in the case of irregular or complex structures, that are often more vulnerable to 

these loads, due to their irregular nature. In recent years, the performance-based design (PBD) 

approach (e.g., Fajfar and Krawinkler 1997, Priestley 2000) has been adopted for seismic design of 

structures (FEMA 356). Here, structures are controlled and brought to behave within limits of 

desired performance, thus limiting the levels of damage (both structural and nonstructural) 

occurring to the structure following a seismic event. In addition to seismic threats, some structures 

may need to withstand forces created by other hazards, such as wind storms. These situations, 

often referred to as multi-hazard, relate to cases where a dynamic load of more than one source 
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governs the design of the structure.  

In recent decades, there has been a tendency of adding external control systems to enhance 

dynamic structural performance and allow the retrofit of existing structures. Control systems 

include passive and active damping, making use of dampers, and base-isolation systems. Herein, a 

passive control system utilizing Tuned-Mass Dampers (TMD) is chosen. TMDs have been shown 

to be able to eliminate most of the steady state motion of a linear single degree of freedom system 

under a harmonic loading of a given frequency, if properly tuned (e.g., Den-Hartog 1940, 

Warburton 1982, Bakre and Jangid 2007). TMDs have the advantage of their behavior being 

simple to model and their relatively low cost. TMDs have previously been very successfully 

implemented for reduction of vibrations due to wind storms (e.g., McNamara 1977, Luft 1979, 

Wiesner 1979), where a single fundamental mode usually excites the structure. Methods for the 

analysis of TMDs in torsionally coupled systems due to wind have been proposed (Pansare and 

Jangid 2003). An algorithm for the design of multiple active TMDs has been proposed for the 

control of flexural and torsional wind vibrations of tall structures as well (Venanzi et al. 2013). 

Therefore, if TMDs can be proven to be efficient also under seismic loadings (where multiple 

modes of the structure are often excited) they can be a very desirable control solution in the 

context of multi-hazard mitigation for seismic as well as wind loadings, as the same device can be 

used for both phenomena. 

Using such TMDs for the seismic control of multi degree of freedom buildings with multiple 

modes contributing to their response is still limited, since each such damper is capable of 

successfully damping only a single mode of the structure. To overcome this obstacle, using several 

TMDs tuned to several modes of the structure was suggested (Clark, 1998). Seismic control of 

multi degree of freedom structures by means of TMDs and MTMDs (the latter referring to a case 

where the dampening of more than one mode in each direction is targeted) have been previously 

studied (e.g., Wirsching and Campbell 1974, Luft 1979, Jangid and Datta 1997, Sadek et al. 1997, 

Hadi and Arfiadi 1998, Lin et al. 1999, Schmitendorf 2000,  Chen and Wu 2001, Lin et al. 2001, 

Singh et al. 2002, Ahlawat and Ramaswamy 2003, Zuo and Nayfeh 2004, Lee et al. 2006, Li and 

Qu 2006, Desu et al. 2006, Desu et al. 2007, Wang et al. 2009, Fu and Johnson 2009, Luo et al. 

2009, Petti and De Iuliis 2009, Lin et al. 2010, Fu and Johnson 2011, Lin et al. 2011, Almazan et 

al. 2012). Different formulations and design methodologies are used to decide on the location and 

tuning properties of the dampers.  

While the abovementioned studies present a huge step forward, a simple, practical, 

computationally efficient methodology for efficient PBD seismic retrofitting by means of MTMDs 

to control several modes is still lacking. The authors have recently presented a simple and practical 

PBD analysis/redesign procedure for the efficient allocation and sizing of multiple TMDs in 3D 

irregular structures (Lavan and Daniel 2013). This procedure is modified herein so as to make it 

more efficient, both cost-wise and computation-wise. Cost-wise efficiency is attained as the 

solutions obtained are closer to the actual optimal solution of the optimization problem considered. 

Computational efficiency is attained by avoiding evaluation of mean-square response at various 

frequencies, as required by the previous analysis/redesign procedure suggested. The first stage of 

redesign in the analysis/redesign algorithm includes redesign of the sum of masses of all TMDs at 

a specific location, based on the RMS response at that location. Thereafter, in the second stage of 

redesign, the masses of TMDs at the same location, tuned to various frequencies, are updated 

based on approximated gradients. Equal gradients were chosen to distribute the mass amongst 

TMDs at the same location so as to simulate a Karush-Kuhn-Tucker (KKT) solution (see for 
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example, Bazaraa and Shetty 1979) to the optimization problem, promising the solution will be 

near optimum. A full derivation of these KKT conditions is presented. Using the proposed 

methodology, a desired performance level is successfully targeted by adding near-optimal amounts 

of mass at various locations and tuning them to dampen several of the structure's frequencies. In 

addition, the proposed methodology is general, and therefore suitable for use in all types of 

structures, regardless of the extent of their irregularity, their shape or type. 

 

 

2. Problem formulation 
 

2.1 Performance measures 
 

Structural control plays a key role in the PBD concept. To allow a desirable performance state, 

structural responses must often be limited so as to insure a prescribed maximal level of damage to 

structural, as well as nonstructural elements. When using TMDs in the context of multi-hazard 

mitigation, small drifts are expected within the structure during a ground motion. This is due to the 

large stiffness and strength of the structure required to withstand wind loads. In addition, wind 

effects are usually considerable in tall buildings that are often more slender. These will usually 

experience, under seismic loadings, smaller drifts than shorter buildings, and may not even yield 

(Priestley et al. 2007) as indeed was the case in the 2011 Tohoku earthquake (Kasai et al. 2012). 

Furthermore, drifts are reduced by the addition of TMDs even if those were not specifically 

considered as performance measures to be constrained. Thus, in the cases considered, drifts are 

assumed small and are, therefore, not directly dealt with herein. High acceleration at floor levels, 

on the other hand, may still be apparent under these seismic loads, especially in tall buildings 

(Kasai et al. 2012, Pu et al. 2012). Those responses are controlled and limited herein. High 

acceleration levels are often the cause of nonstructural damage, damage to sensitive equipment, as 

well as human discomfort. Reduction of those can also reduce base-shear forces and overturning 

moments (Soong and Dargush 1997, Chen and Wu 2001), and therefore may indirectly lead to 

smaller demands on force controlled elements as well. That is, control of acceleration levels leads 

to an overall better structural behavior, as well as smaller damage levels to nonstructural and force 

controlled structural elements.  

To control accelerations, herein, TMDs are added to the structure. The cost of the control 

systems is determined based on the amount of added mass (this is through direct cost of material; 

void floor space for the control system, where as more mass is added, more valuable floor space is 

needed; and added gravitational forces to the existing structural system, which may lead to the 

need in strengthening those). As more mass is needed, the solution becomes more expensive, and 

therefore less cost-effective. Therefore, the sum of added masses is selected as the objective 

function to be minimized. 

 

2.2 Problem formulation 
 

The problem is formulated so as to try minimize control forces (masses of all dampers) while 
limiting RMS accelerations (stochastic representation of the seismic response in frequency domain) 
at peripheral locations to limits set by the performance criteria. Accelerations are limited at all 
peripheral locations of all floors, as they are the largest accelerations expected within the floor 
limits. Similarly, the TMDs are potentially located at peripheral locations, as these are the most 
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Fig. 1 Locations of TMDs at the floor n 

 

 

efficient locations. At each location, several TMDs are potentially allocated, each tuned to a 

frequency corresponding to a different mode to be dampened (Fig. 1). The problem is formulated 

as 

 
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x
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

                                           (1) 

where (mTMD)l,f is the mass of the TMD located at peripheral location l tuned to frequency f of 

Nmode frequencies, 
RMS

alla   is the allowable RMS total acceleration,   
l

RMS t

px   is the root mean 

square of the total acceleration (noted t) at peripheral (noted p) location l (the l
th
 term of 

 t

pxRMS ), and Nlocations is the number of locations constrained (=4Nfloors where Nfloors is the 

number of floors). 

The problem is formulated as a linear-elastic problem since, as previously mentioned, smaller 

drifts are expected, and, therefore, it is assumed that no significant yielding occurs, and the 

structure behaves mostly linear and remains elastic. This allows the use of simplified and 

computationally efficient tools when solving the problem presented above. If yielding is expected, 

several measures could be used to accommodate that (see e.g., discussion at Lavan and Daniel 

(2013) and references therein). 
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3. Proposed solution scheme 
 

Optimization problems of the type presented above have been solved using formal first-order, 

optimization schemes (Daniel and Lavan 2014), as has been proposed for the seismic design using 

other types of energy dissipation devices (e.g., Takewaki 1997, Takewaki 2000, Takewaki 2000b, 

Takewaki et al. 1999, Lavan and Levy 2005, Lavan and Levy 2006, Lavan and Amir 2014, Lavan 

and Levy 2010). Those, however, require knowledge and tools that are less familiar to practicing 

engineers. Optimality criteria methods have also been used in that context (e.g., Takewaki 1997, 

Levy and Lavan 2006, Lavan and Daniel 2013). Those could be roughly divided into formal 

optimality criteria that are based on KKT conditions (see e.g., Takewaki 1997) and intuitive 

optimality criteria (see e.g., Levy and Lavan 2006, Lavan and Daniel 2013). The solution scheme 

presented herein is a combination of intuitive optimality criteria for the distribution of the total 

mass of TMDs to the various locations, as those proposed by Lavan and Daniel (2013), and formal 

optimality criteria, for the determination of their tuning frequencies. It is of an analysis/redesign 

type and the attained designs satisfy the constraints while reducing the total mass of the MTMDs, 

thus achieving the goals of the performance based design. This procedure is expected to lead to a 

cost efficient solution that is close to the formal optimal one. 

 

3.1 Optimality criteria based design 
 

Optimality criteria methods could be roughly divided to two classes: Intuitive optimality 

criteria methods and more formal optimality criteria methods that are based on satisfying Karush-

Kuhn-Tucker optimality conditions (see e.g., Haftka and Gurdal 1992). While, in general, the 

former methods may not lead to an optimum design, they are well known to lead to very efficient 

designs while requiring a limited number of iterations and make use of analysis tools only. The 

latter methods, on the other hand, do lead to local optimum. They require, however, the derivation 

of the gradients of the objective function and constraints. 

Methods of the formal type have been used for the solution of seismic design using passive 

control devices. Takewaki (1997) tackled the problem of minimizing the sum of the amplitudes of 

the drifts’ transfer functions evaluated at the undamped fundamental natural frequency of plane 

shear frames subject to a constraint on the total added viscous damping. He solved this 

optimization problem by using the optimality criteria he derived based on KKT conditions. The 

derivation of these conditions required the derivation of the gradients of the transfer functions of 

the inter-story drifts, evaluated at the undamped natural frequency of the structure, with respect to 

the damping vector. 

Methods of the intuitive type have also been used in the context of seismic passive control. 

Levy and Lavan (2006) considered the minimization of total added viscous damping in frame 

structures subjected to ground accelerations while constraining inter-story responses. They 

indicated, based on formal optimal solutions attained elsewhere (Lavan and Levy 2005 2006), that: 

“At the optimum, damping is assigned to stories for which the local performance index has 

reached the allowable value. Stories with no assigned damping attain a local performance index 

which is lower or equal to the allowable”. They further used their postulate to formulate a simple 

analysis/redesign type optimization scheme similar to that used for the solution of the truss of 

minimum weight that possesses Fully Stressed Design characteristics (Cilley 1900).  

The authors have also proposed a full resources utilization design (FRUD) criteria for efficient 
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design of MTMDs in 3D irregular structures (Lavan and Daniel 2013). The FRUD criteria were 

stated as follows: TMDs are assigned only to peripheral locations for which the RMS acceleration 

has reached the allowable value under the assumed Power-Spectral Density (PSD) of input 

acceleration. In addition, at each location where mass dampers are placed, TMDs of a given 

frequency are assigned only to frequencies for which the output spectral density is maximal. When 

comparing the attained designs to formal optimal ones it was seen that while the first part of the 

statement holds in the optimal design, the second part, while leading to very efficient designs 

(close to optimal), does not lead to the true optimum. That is, while the intuitive optimality 

criterion formulated for the allocation of TMDs in space seems to hold, the question of how to 

distribute the mass between the various modes still remains. 

In this paper, formal optimality criteria methods to distribute the mass at each location, between 

the various modes, are adopted. This leads to designs that are closer to optimum, while reducing 

the computational effort required (as more efficient frequency domain tools can be used). Using 

these optimality criteria, it is postulated that an efficient optimal, or close to optimal, selection of 

locations and sizes of MTMDs in structures, under a stochastic ground acceleration input, 

possesses the following characteristics: TMDs are assigned to peripheral locations for which the 

RMS acceleration has reached the allowable value under the assumed PSD of input acceleration. 

In addition, at each location to which TMDs are added, TMDs of a given frequency are assigned 

only to frequencies for which the gradient of the RMS response at that location with respect to the 

mass of TMD that mode is set to dampen is most negative. As indicated, the second part of this 

statement is based on optimality criteria methods that are aimed at satisfying the KKT conditions 

for optimum solutions (see e.g., Bazaraa and Shetty 1979). An explanation how the second part of 

the statement represents the KKT conditions can be found in Appendix A. For this derivation, an 

assumption on the KKT conditions is made- that only one constraint is active at the optimum (i.e., 

response at a single location). While this assumption may not always hold, it seems to lead to 

results that are close to the optimum, even when more constraints are active. Furthermore, 

approximated gradients are derived (see Appendix B for derivation, the final formula will be given 

in Section 4, Step 4, Stage 2). This allows the use of the method by engineers while using simple 

formulae rather than having to derive the gradients.  
 
3.2 Analysis/redesign algorithm 
 
Solutions to problems, which possess optimality criteria characteristics, as the ones postulated 

above, are efficiently achieved iteratively using a two step algorithm in each iteration cycle (see 

e.g., Cilley 1900, Haftka and Gurdal 1992). In the first step an analysis is performed for a given 

preliminary design, whereas in the second step the design is changed using a recurrence 

relationship that targets satisfaction of the optimality criterion. The recurrence relation can be 

generally written as 

      

   
  P

allowable

n

ln

l

n

l
pi

pi
xx 










1

 

(2) 

where lx  is the value of the design variable associated with the location l, lpi  is the performance 

measure of interest for the location l, piallowable is the allowable value for the performance measure, 

n - the iteration number and P - a convergence parameter. The advantages of the analysis/redesign 
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algorithm include its simplicity, the need to use analysis tools only, and the fairly small 

computational effort that lies in the small number of analyses required for convergence. Such 

analysis/redesign procedure will be utilized here to attain designs where the mass, frequency and 

locations of MTMDs within framed structures is to be determined, while satisfying both optimality 

criteria presented above. 

 
 

4. Design methodology  
 

Step 1: An allowable RMS acceleration is chosen. The mass, damping and stiffness matrices of 

the structure are assembled according to the relevant dynamic Degrees-of-Freedom (DOFs). 

Solution of the eigenvalue problem determines the structure's natural frequencies and mode shapes. 

A power spectral density (PSD),  S , for the input acceleration is chosen (e.g., white-noise, 

which gives a constant PSD; Clough-Penzien filtered Kanai-Tajimi PSD (Clough and Penzien 

1995) etc.). RMS accelerations under the chosen input PSD are computed for each of the 

structure's DOFs (e.g., using Lyapunov’s equation, see e.g., Kwakernaak and Sivan 1972), and 

then transformed to peripheral coordinates.   

Step 2: If for any peripheral coordinate, l, the RMS acceleration obtained is larger than the 

allowable RMS acceleration, MTMDs are added to suppress the acceleration produced. Each TMD 

of mass (mTMD)l,f is assigned with a DOF for its displacement relative to the ground. At each 

location, modeN  TMDs are potentially added, to suppress modeN  original frequencies of the 

structure. 

The response of each mode could be evaluated based on a Single Degree-of-Freedom (SDOF) 

equivalent system. For the sake of simplicity, in this work Den-Hartog (1940) / Warburton (1982) 

properties were chosen. Nonetheless, more advanced criteria could easily be used with the 

proposed methodology (see e.g., Bakre and Jangid 2007). In the case of optimal Den-Hartog 

properties the following initial properties are taken for the dampers: 

1. For each peripheral coordinate, the initial mass of all TMDs located at that coordinate is 

taken as certain predetermined percentage of the structure's mass (say 1%). It is divided equally 

between the dampers situated at the same location 

     modestructurefl
NM 01.0

,TMDm  (3) 

where l represents the damper's location, f represents the mode dampened and structureM  is the 

structure's total mass. The mass ratio  
fTMDμ  of all TMDs tuned to frequency f is calculated as 

the ratio between the effective TMD mass of all TMDs tuned to frequency f and the f
th
 modal mass 

of the structure. This mass ratio is defined as 

        ffffff
  originalMTmTμ

T

TMD

TT

TMD D  (4) 

where f is the f
th
 mode-shape of the bare structure,  originalM  is the bare frame's mass matrix, T 

is the transformation matrix to peripheral locations, and   
fTMDmD   is a diagonal matrix with 
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the terms  
fNlocations,:1TMDm  sitting on the diagonal. 

2. Each TMD's stiffness is determined according to the frequency of the mode which is 

dampened by the TMD. The frequency is tuned to 

      
fff TMDnTMD 1 μωω                                               (5) 

where  
fnω  is the frequency f  to be dampened. The compatible stiffness is 

      2TMD,TMD,TMD fflfl
ωmk                                              (6) 

3. Each TMD's damping ratio is determined according to 

        3

TMDTMDTMD 183
fff

μμξ                                        (7) 

and the matching damping coefficient 

       
ffflfl nTMD,TMD,TMD 2 ωξmc                                     (8) 

Step 3: The mass, damping and stiffness matrices of the damped frame are updated. Peripheral 

RMS accelerations are then reevaluated.  

Step 4: TMD's masses are re-determined using two stages; the total mass of all dampers 

located at a given location is first determined. This is followed by the distribution of that mass 

between all TMDs at that location, having various tuning frequencies. Following the change in 

mass, the stiffness and damping ratio of each TMD are also updated while keeping the Den-Hartog 

principles intact, using Eqs. (5) - (8). This leads to the optimal stiffnesses and damping ratios of 

the TMDs in each iteration and eliminates some possible effects of the initial design on the final 

one. The two-stage analysis/redesign procedure is carried out iteratively until convergence, in the 

following way: 

Stage 1: The first stage of redesign includes evaluation of the total mass of TMDs at each 

location, promising the existence of the first part of the postulate. This is formulated using 

        
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mmm
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(9) 

where (·)
(n)

 is the value at iteration n, 
  

l

n 1

totalTMD,


m  is the total mass of all dampers at location l, and 

P is a constant which influences the convergence and convergence rate. A large P will result in a 

faster but less stable convergence of the above equation. Based on the authors' experience, a P in 

the range of 0.1-2.0 should be satisfying in terms of stability, convergence and fair amount of 

iterations.  

Stage 2: In the second stage of redesign, the total mass obtained at each location is distributed 

between Nmode dampers (dampening modes  
fnω ) at that same location l, promising the existence 

of the second part of the postulate, using the following 
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and 
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where the approximated gradient 
   
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 is evaluated based on the following equation 

(see Appendix B for derivation of this expression) 
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where the matrix dB  is a transformation matrix, used to assign the TMDs within the structure, 

f is the participation factor of mode f, defined as 
ff
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f
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 where es is the 

excitation direction vector with values of zero and one for DOFs perpendicular and parallel to the 

excitation direction, respectively , and the gradient 
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where   
f

S nω  is the value of the input PSD  S  at the frequency  
fnω . 

In deriving the approximated gradient only, it was assumed that, approximately, the equations 

of motion of the damped structure are not coupled when transformed to the modal coordinates of  
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Fig. 2 Eight-story asymmetric structure 

 

 

the undamped structure, and that the TMDs tuned to dampen a certain mode do not affect the 

response of other modes. It should be noted that when assessing structural responses during the 

analysis stage, the full uncoupled equations of motion are considered. Therefore, this assumption 

only affects the optimality of the design in terms of the total added mass, and does not cause 

violation of the constraints. As will be seen in the examples, the solutions attained by the proposed 

strategy are very close to the formal optimal solution, i.e., the abovementioned assumption is 

acceptable in this context. In addition, for this approximated gradient, the forces in TMDs due to 

the ground's movement are neglected, and it is assumed that forces in all TMDs are created only 

due to the structure's movement.  

Step 5: Repeat steps 3-4 until convergence of the mass is reached. 

 

 
4. Example 

 

The following 8-story asymmetric RC frame structure (Fig. 2) introduced by Tso and Yao 

(1994) is retrofitted using MTMDs for a deterministic ensemble of ground motions exciting the 

structure in the “y” direction). A uniform distributed mass of 0.75 ton/m
2
 is taken. The column 

dimensions are 0.5 m by 0.5 m for frames 1 and 2 and 0.7 m by 0.7 m for frames 3 and 4. The 

beams are 0.4 m wide and 0.6 m tall. 5% Rayleigh damping for the first and second modes is used. 

A 40% reduction of the RMS total acceleration in the bare structure is desired. The response is 
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analyzed under a Clough-Penzien filtered Kanai-Tajimi PSD with parameters fitted to the average 

FFT values of the SE10/50 ground-motion ensemble. The design variables are the locations and 

properties of the individual tuned mass dampers. The dampers are to potentially be located in the 

peripheral frames, where they are most effective, and as the excitation is in the “y” direction only, 

dampers will be assigned only to the peripheral frames 1 and 4, to dampen frequencies of modes 

which involve “y” and “q”. 

Step 1: The mass, inherent damping and stiffness matrices of the frame in the dynamic DOFs 

were constructed. The natural frequencies, of the structure were determined. The first 10 modes 

are: 5.14s (x), 5.46s (y,θ), 7.09s (y,θ), 16.24s (x), 16.94s (y,θ), 22.41s (y,θ), 29.65s (x), 29.88s (y,θ), 

43.8440.92s (y,θ), 44.77s (y,θ). RMS accelerations of the undamped structure are evaluated under 

the Clough-Penzien filtered Kanai-Tajimi PSD with parameters: 
sec

13rad
g   , 98.0g , 

10 S ,  
sec

5.1 rad
f   , and 9.0f . These parameters were computed such that the attained 

PSD fits best the PSD of the SE 10/50 ground motion ensemble (see Lavan and Daniel 2013). The 

allowable RMS acceleration for all peripheral accelerations was earlier adopted as 60% of the 

maximum peripheral RMS acceleration of the bare frame, giving: 28.15RMS
all a . 

Step 2: 160 TMDs were added, as a first guess, with initial properties as given in Table 1. 

Those are comprised of 10 dampers each tuned to a different mode frequency (of modes related to 

“y” and “θ”) at each of the 16 peripheral locations of frames 1 and frame 4. 

Step 3: The mass, stiffness and damping matrices were updated. With the newly-updated 

matrices and the same PSD input, new peripheral RMS accelerations were evaluated. Some of the 

peripheral accelerations in frames 1 and 4 exceeded the allowable. 

 

 
Table 1 Initial properties of TMDs 

No. 

TMD 

Mode to 

 dampen 

Initial mass 

(ton) 

Initial natural 

frequency (rad/sec) 

Initial 

damping ratio 

1-16 2 2.592 5.37 0.0788 

17-32 3 2.592 6.89 0.1004 

33-48 5 2.592 16.64 0.0795 

49-64 6 2.592 21.78 0.0998 

65-80 8 2.592 29.34 0.0805 

81-96 9 2.592 39.79 0.0989 

97-112 10 2.592 43.94 0.0816 

113-128 12 2.592 60.28 0.0822 

129-144 13 2.592 62.30 0.0983 

145-160 15 2.592 77.55 0.0826 

 
Table 2 Final properties of added TMDs 

Frame Floor Mode to dampen Final mass (ton) Final stiffness (kN/m) Final damping ratio 

1 8 2 86.89 2040.89 0.1825 

1 8 5 18.93 5138.92 0.0981 

1 8 8 3.95 3491.48 0.0447 

4 8 3 1.74 58.69 0.0304 
 

87



 

 

 

 

 

 

Yael Daniel and Oren Lavan 

  
(a) (b) 

Fig. 3 Peripheral RMS accelerations of structure with final TMDs (continuous) and sum of 

added masses (dots) (a) frame 1 and (b) frame 4 

 

 

Fig. 4 Convergence of normalized sum of masses (objective function) and maximum 

normalized RMS acceleration (constraint) 

 

 

Step 4: The problem has not converged, and thus the TMDs’ properties were altered, using the 

recurrence relations of Eqs. (9) - (11) and P=0.5 as the convergence parameter, giving updated 

total masses at each DOF. The total mass of each peripheral coordinate was then distributed 

between the 10 dampers at the same location using Eqs. (10) and (11). Iterative analysis/redesign 

as described in Eqs. (9) - (11) while altering the mass of the damper is carried out until 

convergence to allowable levels. Upon convergence, the mass of added dampers are shown in 

Table 2. TMDs with non-zero properties were located at the 8th floors of frame number 1 and 

number 4. The final properties of each added TMD are shown in Table 2. All assigned TMDs add 

up to 4.28% of the original structure’s mass. For all practical reasons, TMDs with small masses 

can be neglected without effecting the response of the structure. 

Finally, an analysis of the retrofitted structure yields the peripheral RMS accelerations shown  
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Table 3 Results comparison 

 % added mass 
Number of iterations/ 

function evaluations* 
Computational time (sec) 

Formal optimal solution 4.00% ~70 ~2400 

A/R frequency response 4.59% ~40 ~600 

A/R approximated gradient 4.28% ~60 ~60 

* Note that as different tools are used in each methodology computational effort cannot be compared 

directly. 

 

 

in Fig. 3. Also in Fig. 3 the total amount of mass at each floor is shown. As can be seen, only 

locations who had reached the maximum allowable RMS total acceleration were assigned with 

added absorbers, making the solution obtained a fully-stressed design. 

Fig. 4 presents the convergence of the design variables (masses) and the performance measure 

(acceleration). As can be seen in Fig. 3, full convergence is reached within about 150 iterations 

(although practically only 60 iterations are required). In the evolution of the solution, it could be 

observed that the algorithm first increases the mass considerably so as to satisfy the acceleration 

constraints (first 5 iterations or so). Then, efforts are made to keep satisfying the constraints while 

significantly minimizing the mass. Monotonic convergence is achieved once the solution reaches 

the vicinity of the optimal design, i.e. from iteration 15 or so and on. It should be noted that the 

same final solution was attained using various initial designs (TMD properties). That is, the 

analysis/redesign algorithm presented herein is stable and is insensitive to random choices of the 

engineer to use it, including the initial guess. Although the problem at hand does not seem to be 

convex the fact that the same solution was attained while starting from various initial designs 

indicates that, with a high probability, the attained solution is the global one. 

The results attained were compared to results attained using formal optimization (Daniel and 

Lavan 2014) and the previous analysis/redesign-based methodology presented by the authors 

(Daniel and Lavan 2011), and are presented in Table 3. Note that the number of iterations/ 

function evaluations needed is given for comparison-of-convergence-sake, however, as different 

tools are used in each methodology (formal optimization tools with sensitivities in the first, 

frequency response analysis at all frequencies in the second, and approximated gradient without 

full frequency analysis in the third), computational effort cannot be compared directly, and 

therefore computational time is also given, to help better estimate computation effort.  

 

 

6. Conclusions 
 

A performance-based methodology for the retrofitting of 3D irregular structures was presented. 

This methodology makes use of an iterative two-step analysis/redesign procedure to limit RMS 

absolute acceleration levels at all peripheral locations to an allowable level. A previous 

methodology for solution of the same problem was previously presented by the authors. It used a 

similar analysis/redesign procedure that was based on an equal frequency responses of modes 

associated with TMDs dampening them for the second stage of the redesign step. This led to a 

solution that was based on analysis tools only, and was fast-converging, but the results were only 

close to optimal (compared to the formal optimal solution of the problem). Herein, a different 
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variation on the analysis/redesign method was suggested, so as to still only use analysis tools, but 

based on a modified refined criteria for the second stage of the redesign step, that is based on 

optimality conditions. This approach, while still fast converging, led to results that were closer to 

the optimal results than the first analysis/redesign methodology used. In addition, thanks to the 

approximated expression of the gradient, and its use in the second stage of the redesign step, full 

frequency analysis is not needed in this analysis/redesign variation, as opposed to the one 

originally suggested, making the proposed methodology even more computationally efficient. 

Results showed that MTMDs can be used for seismic design of structures, and that those can 

reduce accelerations to a desired level. TMDs tuned to several modes and located in different 

peripheral locations are utilized to obtain effectiveness. The results obtained were indeed close to 

the optimal solution of the problem, as was shown. A similar trend was observed in other 

examples as well (e.g., Daniel and Lavan 2013). The advantages of the design methodology 

presented herein include its simplicity, relaying on analysis tools only, its fast convergence, it’s 

generality and suitability to many problems, regardless of irregularities, all of which make it 

applicable for use in practical design. 
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Appendix 
 

Appendix A: KKT conditions derivation 
 

For an optimization problem with the following form 
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a solution *
x is called a Karush–Kuhn–Tucker (KKT) point if it fulfills the following conditions 

(see for example, Bazaraa and Shetty 1979) 
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Where   represents the gradient of a function,   and  represent Lagrange multipliers. In a 

convex problem, a KKT point is necessarily a local as well as a global optimum. In other 

problems, a local minimum will either fulfill the KKT conditions, or be an irregular solution for 

which the vectors     m

i
ii gg
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 x  are linearly-dependent. 

In accordance to Eq. (A4), the optimization problem (Eq. (1)) is formulated such that 
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for which the KKT conditions are 
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For the sake of demonstration let us consider a two story structure ( 2locationsN ) for which in 

each floor, two dampers are potentially added, to suppress two frequencies of the structure 

( 2mod eN ). Thus now the KKT conditions in Eq. (A4) must follow 
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For derivation of the KKT conditions, an assumption is made that at the optimal solution, only 

one constraint is active (i.e., only the acceleration at one location equals the allowable, while the 

other accelerations are all smaller than the allowable). However, it was seen in various examples 

that even if more than one acceleration has reached the allowable, the solution obtained using 

these KKT conditions and the analysis/redesign scheme, is close to the actual optimal solution to 

the problem.  

Under the assumption that only one constraint is active at the optimum, l of all locations, other 

than that of the location where the constraint is active, equal zero (based on (2) in the KKT 

conditions). Thus, the vector of gradients that multiply this factor is of no significance to the KKT 

conditions. Let us assume that for the 2 story example, the acceleration at the second floor equals 

the allowable, while that of the first floor is smaller than the allowable. Therefore: 0;0 21   . 

This leads to 
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Based on Eq. (A5) and noting that 02  and 0, fl (from the KKT conditions in Eq. (A2)), 

it could be observed that if a certain fl , equals zero, the value of the gradient corresponding to 

that fl , , i.e. 
  

 
flTMD

RMS

,

2

t

p

m

x



 
, has to be most negative of all gradient entries that multiply 2  . This 

is since the value of 2  is positive, and will be determined by the equation corresponding to the 

line where the vector multiplying 0, fl equals minus 1. Now, since all other fl ,  are positive, 

and  2  has been determined, the gradient values corresponding to these fl ,  must obtain a less 

negative value in order to satisfy their corresponding equations in Eq. (A5). Note that 0, fl  

only where corresponding masses obtain values larger than zero. Furthermore, if more than one 

fl ,  equals zero, it could be observed, from the corresponding lines in condition (1), that their 

values should be equal and most negative. This is since they are multiplied by the same value of 

2 . In summary, the KKT condition that is obtained (under the assumption that only one 

constraint is active), and then used as the basis of step 2 of the analysis/redesign procedure, is that 

at any location and frequency where there are dampers, the gradient of the constraint at that 

location with respect to masses that have values other than zero (at the optimal solution) are equal 

and most negative. 
 

Appendix B: approximate gradient derivation 
 

As can be seen in the derivation for the KKT conditions in Appendix A, the gradients of the 

constraints with respect to the different design variables (masses) are used. These gradients may be 

derived in an analytical manner. However, this may be rather excruciating for engineers to use. 

Therefore, in this paper, an approximated gradient is derived. The expression for the approximate 

gradient is simple, and can be used together with the analysis/redesign scheme presented above, to 

result in a computationally simple design methodology. To obtain the approximated expression, 

several assumptions are made. Those will be explained within the following derivation. Appendix 

B1 presents a transformation of the Multi Degree-Of-Freedom (MDOF) system to a set of SDOF 

systems. Then, in appendix B2, an approximated gradient is derived based on the SDOF systems 

and their contributions to the MDOF response.  
 

Appendix B1: derivation of equivalent SDOF systems 
For a MDOF structural system with MTMDs under seismic input, the equations of motion can 

be formulated in the following manner 
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(A7) 

where originalM  is the mass matrix of the structure, originalC  is the inherent damping matrix of the 

structure, originalK  is the stiffness matrix of the structure, x , x  and x  are the structure's 

acceleration, velocity and displacement relative to the ground, respectively. 
se  is the influence 
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vector (of the structure), ga  is the ground motion acceleration, TMDm  is the TMDs' mass vector, 

TMDc  is the TMDs' inherent damping vector, TMDk  is the TMDs' stiffness vector, the matrix dB  

is a transformation matrix, used to assign the TMDs within the structure, the matrix dmB  is a 

transformation matrix, used to account for the addition of mass in the direction of which the TMDs 

do not move, and z  and z  are the TMD's velocity and displacement relative to the structure (in 

the same peripheral location), respectively.  D turns a vector    into a diagonal matrix with  its 

elements on the diagonal.  

As for the equations of motion of the TMDs, those can be formulated as 

          gdaemxBmzkzczm d  TMDTMDTMDTMDTMD DDDDD           (A8) 

where z  is the TMDs' acceleration relative to the structure.  

Assuming behavior based on a certain mode, displacements are expressed as 

maxxfx                                                                (A9) 

where maxx  is the displacement where the mode shape f  is normalized to 1.0. Placing this 

expression into Eq. (A7) and Eq. (A8), and assuming that the forces acting on the TMDs (last term 

on right hand side of Eq. (A8)) is negligible, gives 
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and 

        maxTMDTMDTMDTMD xf
 dBmzkzczm DDDD                    (A11) 

Normalizing Eq. (A11)  by the TMDs masses yields 

 max

2
2 xfjjj

  dBzIzIzI                                     (A12) 

It can be seen from Eq. (A12) that z  is proportional to 
fdB . Therefore, it can be written as 

maxzfdBz                                                            (A13) 

where 
maxz  is the value of z in the same location where x is maximal, normalized by fdB at that 

location . Substituting Eq. (A13) into Eq. (A11) gives 

        maxTMDTMDTMDmaxTMD xz ff
  dd BmzkzcBm DDDD                   (A14) 

and therefore 

       maxmaxTMDTMDTMD xzf
  dBmzkzc DDD                          (A15) 
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Substituting Eq. (A14) in Eq. (A10) yields 

  
   maxmaxTMD

maxmaxmaxTMD

xza

xxx

fgs

fff













d

T

doriginal

originaloriginaldm

T

dmoriginal

BmBeM

KCBmBM

D

D
  (A16) 

Substituting Eq. (A13) in Eq. (A14) yields 

     

  maxTMD

maxTMDmaxTMDmaxTMD

x

zzz

f

fff









d

ddd

Bm

BkBcBm

D

DDD




         (A17) 

Multiplying Eq. (A16) by T

f on the left and Eq. (A17) by T

dB
T

f on the left, turns them into 

  
   maxmaxTMD

TT

max

T

max

T

maxTMD

T

xza

xxx

ffgsf

ffjfff













d

T

doriginal

originaloriginaldm

T

dmoriginal

BmBeM

KCBmBM

D

D
    (A18) 

and 

   

    maxTMD

T

maxTMD

T

maxTMD

T

maxTMD

T

xz

zz

ffff

ffff









d

T

dd

T

d

d

T

dd

T

d

T

BmBBkB

BcBBmB

DD

DD




                  (A19) 

Eq. (A18) and Eq. (A19) can be written in short as 

 maxmax

T

maxmaxmax xzmaxKxCxM fgsffff
  eMoriginal

                   
 (A20) 

and 

maxmaxmaxmax xmzkzczm ffff
                                       (A21) 

where 

  

 

 

  fff

fff

fff

fff

fff

fff

k

c

m

K

C

M













d

T

d

d

T

d

d

T

d

original

original

dm

T

dmoriginal

BkB

BcB

BmB

K

C

BmBM

TMD

T

TMD

T

TMD

T

T

T

TMD

T

D

D

D

D













                               

 (A22) 

Eq. (A20) and Eq. (A21) are two SDOF equations (i.e., one DOF of the structure and one of the 

TMDs). For this equivalent SDOF system 
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 

 
f

f

f

f

f

f

M

K

M

m





n

TMD

ω

μ

                                                        (A23) 

Based on these definitions, Eq. (A20) can be normalized in the following manner, to represent 

each of the equivalent SDOF systems 

 maxmaxmax

2

maxmax 2 xzaxxx fgffff
                             (A24) 

where fsff MeMoriginal

T . 

 

Appendix B2: Derivation of approximate gradient 
Under the same assumptions that apply to SRSS (square-root of sum of squares) derivation, it 

can be shown that a mean square response can be represented by the sum of mean-square (MS) of 

modal contributions to a specific response, such that 

     




modesrelevant

)(t

p

)(t

p

f
l

n

fl

n
MSMS xx                                               (A25) 

The contribution of mode f to the mean-square response at a specific location can be shown to 

be 

      
max

)(t

p

22)(t

p

n

flfl

n

f MSMS xTx                                           (A26) 

Substituting Eq. (A26) into Eq. (A25) and taking the root leads to the following root-mean-

square (RMS) acceleration at location l at iteration cycle n 

  
            ........2

max

)(

2

t

p

2

2

2

2max

)(

1

t

p

2

1

2

1

)(t

p





n

l

n

l

l

n

MSMS

RMS

 xTxT

x




        (A27) 

for which the derivative with respect to the design variables (masses) is 

   
    

 
    

 

 

  
    

 
 
 

fl

f

f

n

f

l

n

flf

fl

n

f

flf

l

n

fl

l

n

MS

RMS

MS

RMS

RMS

,TMD

TMD

TMD

max

)(t

p

)(t

p

22

,TMD

max

)(t

p22

)(t

p,TMD

)(t

p
2

2

1

m

μ

μ

x

x

T

m

x
T

xm

x









































    (A28) 

and the derivate 
 
 

fl

f

,TMD

TMD

m

μ




 (in a 3D frame, based on Eq. (A23)) is 
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 
 

 
 

fff

f

fl

f

fl

f
















M

B
m

m
B

m

μ
d

T

d

T

T

,TMD

TMDT

,TMD

TMD

D

                                     (A29) 

Therefore 

   
 

 
  

 
      

 
f

n

f

fff

f

fl

f

l

n

flf

fl

l

n
MS

RMS

RMS

TMD

max

)(t

p

T

,TMD

)(t

p

22

,TMD

)(t

p

μ

x

M

B
m

m
B

x

T

m

x
d

T

d

T


















 




 





D

                  (A30) 

where 
  

 
f

fMSa

TMD

max

μ

 
 is obtained based on a SDOF equivalent system for that mode, using the 

following empiric formula, that was obtained based on curve-fitting techniques 

    
 

        
fff

f

n

f
S

MS
n

5.0

n

12041.1

TMD

TMD

max

)(t

p
003.015099.3 ωωμ

μ

x








            (A31) 
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