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Abstract.  The objective of this paper is to investigate the validity of transmitting boundaries in dynamic 
analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is 
considered.  The information about the dimensions and the material properties of the concrete tunnel and 
surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the 
effect of several parameters including the peak value of the horizontal component of earthquake 
displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is 
used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional 
boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented 
by Selvadurai and Karpurapu 1988), and infinite boundaries modelled by dashpot elements (viscous 
boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct 
reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries”. This is true for 
both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic 
load represent two controlling factors in deciding the importance of using infinite boundaries. It was found 
that the results present significant differences when earthquake is applied as a base motion or a pressure load 
is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located 
at the tunnel’s crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from 
tunnel’s centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 
(traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous 
boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding 
soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of 
the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3). 
 

Keywords:  dynamic; soil-structure interaction; infinite element; tunnel; earthquake 

 

 
1. Introduction 

 
Many different approaches have been proposed for solving interaction problems considering 

infinite media by using a mechanism which irreversibly transfers energy from the near field to the 

far field. Generally, in analyzing the dynamic behavior of three dimensional structures, 

particularly when considering the soil-structure interaction or structure–soil-water interaction, 
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modeling of continuous soil environment is necessary in order to illustrate the real behavior (Beer 

and Meek, 1981, Abdel-Fattah et al. 2000). Dynamic analysis of structures occurs in frequency 

domain or time domain. Where, analysis occurs in time domain by applying numerical methods, 

such as finite elements, it is necessary to mesh a limited length of the structure, form their equation 

of motion and after executing boundary conditions reach the results in the form of time history. In 

this kind of analysis, the effects of boundary conditions are effective in the attained results. Bettess 

(1977) and Zinkiewicz et al. (1983) have applied finite element method in such analysis. 

Practically, in this analysis a combination of finite elements together with a few infinite or semi 

infinite elements have been utilized at the boundary points. Infinite elements shall be assumed in 

such a way that the material used shall continue indefinitely and their deformation shall become 

zero at infinity (real situation). 

The viscous boundaries have been widely used for various wave propagation problems. But the 

number of finite elements required can still be large, as such boundaries are usually capable of 

transmitting plane or cylindrical waves only, and therefore they must be placed far from the 

initially disturbed region. FE cloning method for nonlinear dynamic problems involves the inverse 

of Fast Fourier Transform to obtain the time domain results. The boundary element method does 

not require domain discretization and allows a reduction in the spatial dimensionality, but the 

matrix is non-symmetric, non-positive definite and fully populated for single domains and block 

banded for multi-domains. 

Infinite element can be regarded as the natural extension of the finite element to treat 

unbounded domain. In the infinite element method, the near field is modeled by finite elements 

and the far field is modeled by infinite elements. From the algorithmic point of view, the infinite 

element is treated as a standard finite element exceptfor the infinite approximation in the infinite 

direction. So the accuracy of the numerical solution depends only on the finite element method. 

The development of the infinite element has been receiving increased attention. The infinite 

element is very successful in elastostatics, consolidation analysis, seepage flow, hydrodynamics, 

acoustics and other fields. Medina and Penzien (1982), Medina and Taylor (1983), However, there 

were limitations to deal with structures having complex geometries and to solve the multiple wave 

components in layered soil media. Yun et al. (1995) developed more effective infinite elements for 

layered media. Zhao and Valliappan (1993) proposed and developed three dimensional (3D) 

infinite elements of mapped type, respectively. However, only frequency domain elements have 

been developed for solving dynamic problems. Recently, the elastodynamic infinite elements have 

been developed by using wave functions containing various wave components. One of the major 

drawbacks of the method is the necessity of a fundamental solution to exist. Such an analytical 

solution is difficult to derive. 

An efficient stiffness design method for building structures was proposed by Takewaki et al. 

(2002) in which nonlinear soil amplification and soil–structure interaction were taken into account 

in terms of equivalent linearization. A sway-rocking shear building model with appropriate ground 

impedances derived from both finite-element analysis and the equivalent linearization technique 

was used as a simplified design model and super-structure stiffnesses satisfying a desired stiffness 

performance condition were determined for a ground-surface response spectrum. The ground-

surface response spectrum was transformed from the design response spectrum defined at the 

upper surface level of the engineering bedrock via the equivalent linearization technique and the 

one-dimensional wave propagation theory. In the process of the super-structure stiffness design, an 

improved and advanced inverse formulation was developed which regards the fundamental natural 
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frequency of the interaction model as a principal design parameter. The reliability and accuracy of 

the proposed stiffness design method were examined by a two-dimensional finite-element model. 

Inelastic response characteristics of the so-designed model were also investigated. 

Assortment of boundary conditions has an effect on dynamic responses. To reduce such effects, 

usually the length of the track is chosen to such a measure to minimize the dynamic responses of 

the end points of the track elements to zero. Doing so would cause an increase in the length of the 

track and hence add to an equation's degrees of freedom, volume of output and prolongation of 

analysis time. For this reason, a combination of finite elements and infinite beam elements (two 

end elements) was proposed by Zakeri and Xia (2009) for railway track modeling. Also, matrices 

of mass, damping and stiffness of one infinite element which has been laid on a visco-elastic bed, 

have been calculated by implementing selected shape functions. Therefore, by applying two 

infinite beam elements on either side of the model, a railway track is formed like a beam on an 

elastic bed which creates the possibility of eliminating the boundary condition effects. 

The work of Ryu et al. (2010) proposed slightly new three-dimensional radial-shaped dynamic 

infinite elements fully coupled to finite elements for an analysis of soil–structure interaction 

system in a horizontally layered medium. The analysis dealt with a seismic analysis technique for 

a three-dimensional soil–structure interactive system, based on the coupled finite–infinite method 

in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with 

wave functions propagating multi-generated wave components. The accuracy of the dynamic 

infinite element and effectiveness of the seismic analysis technique may be demonstrated through 

a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on 

layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are 

(1) a site response analysis of the well-known Hualien site excited by all travelling wave 

components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of 

a nuclear power plant. The obtained dynamic results show good agreement compared with the 

measured response data and numerical values of other soil–structure interaction analysis package. 

Birk and Behnke (2010) carried out dynamic analysis of arbitrarily shaped three dimensional 

foundations on layered ground using a coupled FEM-SBFEM approach. A novel scaled boundary 

finite element method for the analysis of three-dimensional layered continua over rigid bedrock is 

derived. The accuracy of the new method is demonstrated using rigid circular foundations resting 

on or embedded in nonhomogeneous soil layers as examples. The proposed modified formulation 

significantly broadens the area of application of the scaled boundary finite element method. It can 

be used for the frequency-domain analysis of 3D elastic foundations of arbitrary shape embedded 

in or resting on layered inhomogeneous soil. Its extension to the time-domain is the subject of 

current research. 

Patil et al. (2010) presented an improved solution algorithm based on finite element method for 

the dynamic analysis of rigid pavements resting on Pasternak’s two parameter soil medium. The 

concrete pavement is discretized by finite and infinite plate elements. Infinite elements are helpful 

in appropriate modelling of end conditions. In the underlying Pasternak soil medium the soft 

subgrade soil is modeled by spring elements and the base course is modeled by Pasternak shear 

layer. A parametric study is conducted to investigate the effect of various soil and pavement 

parameters on the response of pavement. 

The effect of soil-structure interaction on the dynamic response of structures has been 

examined by Mahmoudpour et al. (2011). The substructure method using dynamic stiffness of soil 

was used to analyze soil-structure system. A coupled model based on finite element method and 
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scaled boundary finite element method is applied. Finite element method was used to analyze the 

structure, and scaled boundary finite element method is applied in the analysis of unbounded soil 

region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. 

The material behavior of soil and structure was assumed to be linear. The soil region is considered 

as a homogeneous half-space. The analysis was performed in time domain. A computer program 

was prepared to analyze the soil-structure system. Comparing the results with those in literature 

shows the exactness and competency of the proposed method. 

Equivalent dynamic infinite element was proposed by Su and Wang (2013). The idea of the 

method was based on the elastic recovery of general infinite element and the energy absorption of 

viscous boundary. The equivalent dynamic infinite element was not required for wave functions, 

since the waves on the interfaces with adjacent finite and infinite elements are absorbed by the 

equivalent damping. And the role of the far field medium in the elastic recovery has also been 

considered in the equivalent dynamic element. Such an element can be used directly as general 

finite element and appropriates for dynamic soil–structure interaction problems. Numerical 

analyses involving comparisons with known analytical or numerical solutions are presented. The 

results obtained show the effectiveness of the proposed equivalent dynamic infinite element. 

The purpose of this research is to investigate the validity of using transmitting boundaries in 

dynamic analysis of soil-structure interaction problems. As a case study the proposed Baghdad 

metro line will be considered. A parametric study is carried out to investigate the effect of several 

parameters. These parameters are: the peak value of the horizontal component of earthquake 

displacement records, the tunnel diameter and the modular ratio of the concrete lining and the 

surrounding soil. 

 

 

2. Local and non local absorbing boundaries 
 

Absorbing boundary conditions can be subdivided in two main classes: local and non-local 

absorbing boundaries. When the absorbing boundary condition is local in space, the direct 

coupling of the degrees of freedoms is limited to one element of the boundary. In contrast, a non 

local (in space) absorbing boundary condition directly couples all degrees of freedom of the entire 

boundary (Feltrin 1997). 

Generally, non-local absorbing boundary conditions are used in the context of frequency-

domain analysis because the Fourier transform cancels the non-localness with respect to time. But 

in frequency domain analysis, the near as well as the far field have to behave linearly. In contrast, 

local absorbing boundary conditions are used in the context of time domain analysis. Hence they 

can be applied in nonlinear finite element analysis (near field nonlinear, far field linear) as well. 

However, because the accurate absorbing boundary conditions of wave dynamics are non-local in 

space and in time, local absorbing boundary conditions are necessarily approximations. 
Examples of non-local absorbing boundaries in the frequency domain are the boundary integral 

method, the boundary element method, coupled finite element/boundary element method and some 
types of infinite elements in wave dynamics. Non local absorbing boundaries in the time domain 
(the convolution integral approach) are usually derived from the associated frequency domain by 
way of the inverse Fourier transform. Examples of local absorbing boundaries in the time domain 
are the viscous boundaries developed by Lysmer and Kuhlemeyer (1969) and the absorbing 
boundaries proposed by Engquist and Majda (1979). 
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3. Infinite elements 
 

It is convenient to classify infinite elements as of static or dynamic type, as the methods needed 

for the two types are quite different. For static infinite elements, mapped and decay function type 

can also be used for some dynamic problems.  

 Static Infinite Elements 

The succeeding infinite element formulations have followed two main lines of development 

(Bettess, 1992): 

a. Mapping of the element from finite to infinite domain. 

b. Using decay functions in conjunction with the ordinary finite element shape function.  

 Mapped Infinite Elements  

Most of the proposed infinite elements adopted the idea of mapping, or can be cast in that form. 

In 1977, Ungless and Anderson used a term of form 1/(1+r) (r is the radial direction) in three 

dimensional elasticity applications. Medina and Penzin (1982) adopted the same approach. The 

first explicit stated mapping was made by Beer and Meek (1981), who used a mapping which 

included the terms  ξ0  : 

  2 ( ξj+½  ) ξ        for ξ < 0      (5) 

  2 ( ξj+½  ) ξ /(1- ξ )         for ξ > 0    (6) 

They split the mapping into two parts, that from ξ = -1 to ξ = 0 and from ξ = 0 to ξ = 1. The 

procedure used was fairly complicated. 

 
 

4. Selvadurai and karpurapu mapped infinite elements 
 

In 1986, Selvadurai and Karpurapu have extended the scope of mapped type infinite elements 

to analyze the response of two-phase media such as saturated soils. The technique based on 

conventional shape functions and Gauss-Legendre numerical integration was used, thus making 

these elements suitable for implementation in general purpose finite element programs. This kind  

 
 

 
Fig. 1 Composite infinite elements in ξ direction (Karpurapu 1988) 
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Fig. 2 The composite infinite elements adopted in this study for cases (a) and (b) 

 
 

of elements was successfully employed for modeling many geomechanics problems (Karpurapu, 

1988). Fig. 1 illustrates the composite infinite elements extended to infinity in ξ direction and 

Ttable 1 reports their mapping functions, derivatives and shape functions.    

In this study, the derivation of  the mapping functions for the infinite elements will be carried 

out for two different cases: 

case (a) : Infinite element  extended to infinity in the negative ξ direction. 

case (b) : Infinite element  extended to infinity in the negative ξ direction.  

Fig. 2 presents the composite infinite element, while Tables 2 and 3 report the mapping 

functions and the derivatives for cases a and b.   

 
 
5. Computer program 
 

The computer program called “MIXDYN” (Owen and Hinton, 1980) was modified to (Mod-

MIXDYN) by implementing the mapped infinite elements to it; i.e., 5-noded coding of the mapped 

infinite element extended from that presented by Selvadurai and Karpurapu in 1988. The program 

Mod-MIXDYN is coded in Fortran language and implemented on a Pentium-IV personal 

computer.  

 In this paper, the 5-nodeed serendipity mapped infinite element has also been added to the 

finite element models of the computer program (Mod-MIXDYN). 

 

 
6. Description of the case study 

 

The proposed Baghdad metro line consists of two routes of 32 km long and 36 stations 

designed as fortified shelters, as a first stage. The tunnel of reinforced concrete has a circular cross 

section with 5.0 m inner diameter (Diam.) and a 0.45 m lining thickness. The reinforcement details 

and the method of construction were not known. A typical geological section for a specified 

position which is characterized by a tunnel axis depth of 18 m is shown in Fig. 3. This figure also 

illustrates the soil properties of the three layers that characterize the investigated section. The 

properties of the materials involved in the problems are detailed in Table 5. 
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Table 1 Mapping and shape functions for composite mapped infinite element (Karpurapu 1988). 

a. Mapping functions and derivatives 

Node, i 

2-noded 

Superparametric  

 Mi 

5-noded 

Serendipity isoparametric 

Mi 

5-noded 

∂Mi/∂ξ 

5-noded 

∂Mi/∂ξ 

1 )1()1(    )1()1(    2
)1()1(    )1()21(    

2 )1()1(    )1()1(    2
)1()1(    )1()21(    

3 )1(2)1)(1(    )1()
2

1(2    
2

)1()
2

1(2    )1(4    

4 )1(2)1)(1(    )1(2)1)(1(    2
)1()1(    )1(2)1(    

5  )1(2)1)(1(    2
)1()1(    )1(2)1(    

 

b. Shape Functions 

Node, i 
2-noded 

Superparametric Ni 

5-noded 

Serendipity isoparametric Ni 

1 4)1)(1(    4)
2

1)(1(4)1)(
2

1(4)1)(1(    

2 4)1)(1(    4)1)(
2

1(4)
2

1)(1(4)1)(1(    

3  2)
2

1)(1(    

4  2)1)(
2

1(    

5  2)1)(
2

1(    

 

 
Fig. 3 Geological profile of the investigated Baghdad metro line section 
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Table 2 Mapping functions and their derivatives of the 5-noded serendipity mapped infinite 

element adopted in this study for case (a) 

Node, i ξi ξi 
5-noded 

serendipity Mi case a. 

5-noded 

∂Mi/∂ξ 

5-noded 

∂Mi/∂ξ 

1 1 1 )1()1(    2
)1()1(    )1()21(    

2 1 -1 )1()1(    2
)1()1(    )1()21(    

3 1 0 )1()1(2 2    
2

)1()
2

1(2    )1(4    

4 -1 -1 )1(2)1)(1(    2
)1()1(    )1(2)1(    

5 -1 1 )1(2)1)(1(    2
)1()1(    )1(2)1(    

 

Table 3 Mapping functions and their derivatives of the 5-noded serendipity mapped infinite elements 

adopted in this study for case (b) 

Node, i ξi ξi 
5-noded 

serendipity Mi  case b 

5-noded 

∂Mi/∂ξ 

5-noded 

∂Mi/∂ξ 

1 1 1 )1()1(    2
)1()1(    )1()21(    

2 -1 1 )1()1(    2)1()1(    )1()21(    

3 0 1 )1()1(2
2

   
22 )1()1(2    )1(4    

4 -1 -1 )1(2)1)(1(    2
)1()1(    )1(2)1(    

5 1 -1 )1(2)1)(1(    2)1()1(    )1(2)1(    

 

Table 4 General information about the mesh adopted for the three different cases 

Type of information 

Case (1) 

Finite 

elements 

only 

Case (2) 

Finite and infinite 

elements 

Case (3) 

Finite and dashpot 

elements 

No. of nodes 544 581 618 

No. of  finite elements 160 160 160 

No. of  infinite elements - 20 - 

No. of dashpot elements - - 50 

No. of restrained nodes 37 37 50 

Analysis type Plane strain, Large displacement 

Damping parameters 
β 0.00075 

α 0 

 

 

 

282



 

 

 

 

 

 

Dynamic response of a lined tunnel with transmitting boundaries 

Table 5 Material properties 

Property 
Concrete 

lining 

Soil layers 

(1) 

Silty clay 

(2) 

Sand to silty 

sand 

(3) 

Sand 

Modulus of elasticity, E (MPa) 20000 80 180 150 

Poisson’s ratio, µ 0.15 0.333 0.263 0.284 

Friction angle 
o
 - 30

o
 40

o
 37

o
 

Cohesion, c (MPa) - 0.2 0.15 0 

Density  , γ (kg/m
3
) 2400 1950 1970 2000 

 

 
Fig. 4 Case 1 - Finite element mesh with traditional boundaries 

 

 

Modeling and Boundary Conditions:  

Case 1: 

A finite element mesh with traditional boundaries (Fig. 4) is adopted to model the Baghdad 

metro line section. Isoparametric quadrilateral eight-nodded elements are used to model the 

concrete tunnel and the surrounding soil. The boundary side nodes are restrained laterally (only 

vertical displacements are possible), while the lower end nodes of the entire boundary mesh are 

restrained vertically (only horizontal displacements are possible). 

Case 2: 

The 5-node mapped infinite elements presented by Selvadurai and Karpurapu (1988) extends to 

infinity to the right with the other two mapped infinite elements (when infinite direction extends to 

the left and down), derived in this study, are added to the mesh of case 1 as shown in Fig. 5. 
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Fig. 5 Case 2 - The finite element mesh with infinite boundary elements 

 

 

Fig. 6 Case 3 – Finite element mesh with viscous boundaries 

 

 

Case 3: 

A finite element mesh (as in case 1) with dashpot elements is considered to model the viscous 

boundaries as shown in Fig. 6. 

Table 4 summarizes the general information about the finite, infinite and dashpot elements 

meshes for cases 1, 2 and 3. The material properties for the problem are shown in table 5. 
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Fig. 7 The ground motion displacement time-history of El-Centro earthquake 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Pressure load - time history for the three values of ω. 
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Loading: 

Tunnels may be subjected to different types of dynamic loads such as earthquakes, impact 

loads resulting from traffic accidents if they serve as metro lines or traffic tunnels, external blast 

loads coming from direct or indirect hits and the internal blast loads resulting from the explosions 

of demolitions charges caused by sabotage works. In this study, two types of loads are considered: 

1. Time-History Displacement: 

The earthquake load is applied as base displacement motion. The earthquake record of El-

Centro in California, which hit on 18
th
 May 1940 has been used. It is characterized by a s 

magnitude equal to 6.7 on Richter scale and a peak acceleration of 0.35g.  This earthquake was 

scaled to get three different values of peak accelerations: 0.045, 0.065 and 0.13g, which were 

given transformed to peak displacements Ao: 0.035, 0.05 and 0.1 m by means of the fast Fourier 

transform. The ground motion displacement time-history of El-Centro earthquake is shown in Fig. 

7. 

2. Surface Pressure Load 

A sinusoidal pressure load P(t) acting at the free surface above the tunnel was adopted.  

It can be represented by the following equation: 

 P(t) = 380 * sin(4.18879*ω*t)   kN/m
2
 ,   for    0 < t =< 1.5 sec. 

       = 0.0                    kN/m
2
 ,   for 1.5 < t   < 3.0 sec. 

where:      

ω = Angular frequency (rad./sec.). 

f = Cyclic frequency (Hz).  = ω/2π 

T = period (sec./rad.).        = 1/f  

Three different frequencies f: 0.16, 0.24, 0.32 Hz (ω = 1.0, 1.5, 2.0 rad./sec.) were considered 

for the acting sinusoidal pressure load, as shown in Fig. 8. 

 

Parametric Study: 
1. Effect of Peak Displacement: 
The horizontal component of El-Centro earthquake was scaled to have three different values of 

peak displacement to study its effect on the behavior of the tunnel and soil.  
Figs. 9 and 10 show the deflected shape of axes a-a and b-b (shown in Fig. 6) respectively at 

time when the peak displacement occurs along them for both cases (1 and 3), at three different 
values of peak displacement (Ao = 0.035m, 0.05m and 0.1m). 

It can be noticed that the horizontal displacement along axis a-a increases when modeling 
infinite boundaries in case 3, this increase becomes larger near the ground surface about (7.0) 
times the value of case 1 at equal times. On the other hand, the peak value of vertical displacement 
decreases along axis b-b to about 0.2 the value of case 1 at about the same time. 

Figs. 11 and 12 show the time history of horizontal displacement at node B (shown in Fig. 6), 
for both cases 1 and 3 respectively for the three different values of (Ao). 

It can be concluded from these figure that the horizontal displacement on the tunnel’s boundary 
decays significantly when using viscous boundaries (case 3) for all the considered peak 
displacements. This trend  may be attributed to the absorption of the reflected waves made by 
using viscous boundaries which is faster than do the infinite elements. Figs. 15 to 20 show the 
normal stresses x and y time- history, and the shear stress xy at node  B (shown in Fig. 6) for the 
three different values of the peak horizontal displacement Ao for both cases 1 and 3. 

A summary of the comparison between the peak values of displacements and stresses 
predicted at the selected locations are listed in Table 6.  
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Fig. 9 Deflected shape of axis a-a at time of peak 

value of horizontal displacement for three different 

values of (Ao) – cases  (1 and 3) 

Fig. 10 Deflected shape of axis b-b at time of peak 

value of vertical displacement for three different 

values of (Ao) – cases  (1 and 3) 
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Fig. 11 Horizontal displacement - time history at node 

B for three different values of (Ao) - case (1) 

Fig. 12 Horizontal displacement - time history at node 

B for three different values of (Ao) - case (3) 
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Fig. 13 Deflected shape of a-a axis at time of peak 

value of horizontal displacement for three different 

values of (Ec/Es) - cases (1, 2 and 3) 

Fig. 14 Deflected shape of b-b axis at time of peak 

value of vertical displacement for three different 

values of (Ec/Es) - cases (1, 2 and 3) 
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Table 6 Comparison of results. 

(a) Comparison between case 3 and case 1 for peak values of displacements and their times for 

(b) axes a-a , b-b and  nodes B and F  at three different values of the parameter (Ao) 

 Case(3)/Case(1) 

Location Displacement Ao (m) Displ. ratio Time ratio 

axis a-a  Ux 

0.035 1.00 1.00 

0.05 1.00 1.00 

0.1 1.00 1.00 

axis b-b  Uy 

0.035 -0.21 0.97 

0.05 0.21 0.97 

0.1 0.21 0.97 

Node B 
Ux 

 

0.035 -1.10 0.43 

0.05 -1.10 0.43 

0.1 -1.10 0.43 

Node F Ux 

0.035 -0.54 0.73 

0.05 -0.54 0.73 

0.1 -0.54 0.73 

 

(b) : Comparison between case 3 and case 1 peak values of normal stresses σx , σy and shear stress  τxy  at 

node B for three different values of parameter (Ao) 

 Case(3)/Case(1) 

Stresses Ao (m) Stress ratio Time ratio 

σx  

0.035 0.83 1.87 

0.05 0.83 1.87 

0.1 0.84 1.87 

σy 

0.035 -0.92 1.84 

0.05 -0.92 1.84 

0.1 -0.92 1.84 

τxy 

0.035 0.85 0.09 

0.05 0.85 0.09 

0.1 0.85 0.09 

 

 

Effect of the Modular Ratio (Ec/Es):  

By applying the impulse load IL(t), (shown in Fig. 10) at node G (shown in Fig. 6), the effect 

of the ratio of the modulus of elasticity of the concrete lining to that of the soil surrounding the 

tunnel (soil layer type 2) is studied.  

Figs. 13 and 14 show the deflected shape of a-a and b-b axes respectively at time when peak  
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Table 7: Effect of the modular ratio on stresses and displacements. 

(a): A comparison between cases 2, 3 and case 1 peak values of displacements and their times for a-a , b-b 

axes  and  nodes A and F  at three different values of parameter (Ec/Es) 

 Case(2)/Case(1) Case(3)/Case(1) 

Location Displacement Ec/Es Displ. ratio Time ratio Displ. ratio Time ratio 

a-a axis Ux 

400 0.80 0.94 -0.98 0.71 

250 0.82 0.94 -0.92 0.70 

110 0.88 4.56 -0.99 0.73 

b-b axis Uy 

400 0.94 0.94 -0.79 0.36 

250 0.93 1.00 -0.75 0.36 

110 0.93 0.94 -0.85 0.39 

Node 

 A  
Uy 

400 0.97 0.89 1.00 1.00 

250 0.98 0.89 1.00 1.00 

110 0.98 1.00 1.00 1.00 

Node 

F 
Ux 

400 0.80 0.94 -0.98 0.71 

250 0.82 0.94 -0.92 0.70 

110 0.88 4.56 -0.99 0.73 

 

(b): A comparison between case 3 and case 1 peak values of normal stresses σx , σy and shear stress  τxy  for 

nodes A, B and D at three different values of parameter (Ec/Es) 

 Case(3)/Case(1) 

Node Stresses Ec/Es Stress ratio Time ratio 

A σx 

400 1.00 1.00 

250 1.00 1.00 

110 1.00 1.00 

D σx 

400 1.00 1.00 

250 1.00 1.00 

110 0.99 1.00 

B σy 

400 1.00 1.00 

250 1.00 1.00 

110 1.01 1.00 

D σy 

400 -0.50 0.41 

250 0.45 1.00 

110 0.44 0.35 

B τxy 

400 1.00 1.00 

250 1.00 1.00 

110 1.00 1.00 

D τxy 

400 1.00 1.00 

250 1.00 1.00 

110 1.00 1.00 
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displacement occurs along them, for three different values of Ec/Es, (Ec/Es = 400, 250, 110), (Es = 

50×10
3
, 80×10

3
, 180×10

3
 kN/m

2
).   

It is noticed from these figure that considering infinite boundaries reverse the direction of the 

deflected shapes of a-a and b-b axes for the three values of Ec/Es ratio.  

On the other hand, it is concluded that using viscous boundaries has a considerable effect on 

the peak value of the vertical displacement along b-b axis which decreases about 25% from the 

value of case (1), and it reaches the peak value faster 2.8 times than in case (1). 

Modeling of infinite elements in problems of tunnels in clayey ground causes the settlement 

trough which takes the shape of the normal probability distribution to be larger. 

Fig. 15 shows the time-history of vertical displacement at node A (shown in Fig. 6), for the 

three different values of Ec/Es ratio at the three cases 1, 2 and 3.   

Fig. 16 shows the time-history of horizontal displacement at node F (shown in Fig. 6), for the 

same condition. 

 It can be observed that there is a little effect of the presence of infinite boundaries on the peak 

values of the displacements at node A, but it has (especially in case (3) ) a considerable effect on 

the absorbing the waves rapidly than in case (1). 

Figs. 17 and 18 present the time-history of the normal stress σx  at nodes A and D respectively 

under the three different values of Ec/Es and for both cases 1 and 3. Figs. 19 to 22 present the 

time-history of the normal stress σy  and shear stress τxy at nodes B and D under the same above 

conditions. 

A summary of comparison between the peak values of displacements and stresses of the Figs. 

13 to 22 are listed in Table 7. 

 
Effect of the Tunnel’s Diameter: 

By applying the impulse load IL (t) (shown in Fig. 8) at node G (shown in Fig. 6), the effect of 

three different values of the ratio H/Diam is studied where (H) is the tunnel’s depth while (Diam) 

is the inner diameter of the tunnel. 

Figs. 23 and 24 show the deflected shape of a-a and b-b axes respectively at the time when the 

peak values of displacements occur along them for three different values of H/Diam ratio (H/Diam 

= 4, 3.6 and 3.27), (Diam = 4.5, 5.0 and 5.5 m) for cases 1, 2 and 3. It is noticed that considering 

infinite boundaries changes the direction of the deflected shapes of a -a and b-b axes  

for the three values of H/Diam ratio. 

Figs. 25 and 26 show the time history of vertical displacement at node A and horizontal 

displacement at node B (shown in Fig. 6) respectively for the three different values of H/Diam 

ratio for the cases 1, 2 and 3. It can be observed that there is a little effect of the presence of 

infinite boundaries on the peak values of the displacements, but case (3) where dashpots are used 

has a considerable effect on absorbing the waves rapidly than in case (1). 

Figs. 27 and 28 present the time-history of the normal stress σx  at nodes A and B respectively 

under different values of H/Diam and for both cases 1 and 3. Figs. 29 to 32 present the time-

history of the normal stress σy  and shear stress τxy at nodes B and D under the same condition. 

A summary of comparison between the peak values of displacements and stresses of the Figs. 

23 to 32 are listed in Table 8. 
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Table 8: Effect of tunnel’s diameter 

(a): A comparison between case 2, 3 and case 1 peak values of displacements and their times fora-a , b-b 

axes  and  nodes A and F  at three different values of parameter (H/Diam) 

 Case(2)/Case(1) Case(3)/Case(1) 

Location Displacement H/Diam Displ. ratio Time ratio Displ. ratio Time ratio 

a-a axis 
Ux 

 

4 0.92 4.56 -1.00 0.73 

3.6 0.88 4.56 -0.99 0.73 

3.27 0.84 4.56 -0.96 0.73 

b-b axis Uy 

4 0.93 0.94 -0.85 0.39 

3.6 0.93 0.94 -0.85 0.39 

3.27 0.93 1.00 -0.86 0.36 

Node A 
Uy 

 

4 0.98 0.89 1.01 1.13 

3.6 0.98 1.00 1.00 1.00 

3.27 0.97 1.00 1.01 1.00 

Node F Ux 

4 0.92 4.56 -1.00 0.73 

3.6 0.88 4.56 -0.99 0.73 

3.27 0.84 4.56 -0.96 0.73 

 

(b) : A comparison between case 3 and case 1 peak values of normal stresses (σx , σy) and shear stress  (τxy ) 

for nodes A, B and D at three different values of parameter (H/Diam) 

  Case(3)/Case(1) 

Node Stresses H/Diam Stress ratio Time ratio 

A σx  

4 1.00 1.00 

3.6 1.00 1.00 

3.27 1.00 1.00 

D σx 

4 0.99 1.00 

3.6 0.99 1.00 

3.27 0.99 1.00 

B σy 

4 1.00 1.17 

3.6 1.01 1.00 

3.27 1.01 1.00 

D σy  

4 -0.44 1.61 

3.6 0.44 0.35 

3.27 0.44 0.35 

B τxy  

4 1.00 1.00 

3.6 1.00 1.00 

3.27 1.00 1.00 

D τxy 

4 1.00 1.00 

3.6 1.00 1.00 

3.27 1.00 1.00 
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Fig. 15 Vertical displacement - time history at node 

(A) for three different values of (Ec/Es) - cases (1, 

2 and 3) 

Fig. 16 Horizontal displacement - time history at 

node (F) for three different values of (Ec/Es) - 

cases (1, 2 and 3) 
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Fig. 17 Normal stress (x) - time history at node 

(A) for three different values of (Ec/Es) - cases (1 

and 3) 

Fig. 18 Normal stress (x) - time history at node 

(D) for three different values of (Ec/Es) - cases (1 

and 3) 
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Fig. 19 Normal stress (y) - time history at node 

(B) for three different values of (Ec/Es) - cases (1 

and 3) 

Fig. 20 Normal stress (y) - time history at node 

(D) for three different values of (Ec/Es) - cases (1 

and 3) 
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Fig. 21 Shear stress (xy) - time history at node (B) 

for three different values of (Ec/Es) - cases (1 and 

3) 

Fig. 22 Shear stress (xy) - time history at node (D) 

for three different values of (Ec/Es) - cases (1 and 

3) 
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Fig. 23 Deflected shape of a-a axis at time of peak 

value of horizontal displacement for three different 

values of (H/Diam.) - cases (1, 2 and 3) 

Fig. 24 Deflected shape of b-b axis at time of peak 

value of vertical displacement for three different 

values of (H/Diam.) - cases (1, 2 and 3) 
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Fig. 25 Vertical displacement - time history 

at node (A) for three different values of 

(H/Diam.) - cases (1, 2 and 3) 

Fig. 26 Horizontal displacement - time 

history at node (F) for three different values 

of (H/Diam.) - cases (1, 2 and 3) 
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Fig. 27 Normal stress (x) - time history at 

node (A) for three different values of 

(H/Diam.) - cases (1 and 3) 

Fig. 28 Normal stress (x) - time history at 

node (D) for three different values of 

(H/Diam.) - cases (1 and 3) 
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Fig. 29 Normal stress (y) - time history at 

node (B) for three different values of 

(H/Diam.) - cases (1 and 3) 

Fig. 30 Normal stress (y) - time history at 

node (D) for three different values of 

(H/Diam.) - cases (1 and 3) 
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Fig. 31 Shear stress (xy) - time history at 

node (B) for three different values of 

(H/Diam.) - cases (1 and 3) 

Fig. 32 Shear stress (xy) - time history at 

node (D) for three different values of 

(H/Diam.) - cases (1 and 3) 
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7. Conclusions 
 

A dynamic finite-element analysis is carried out for a soil-structure interaction problem 

considering transmitting boundaries. Two types of boundaries are considered in addition to the 

traditional boundaries: viscous boundaries and mapped infinite elements. The following 

conclusions are drawn: 

1) The transmitting boundary absorbs most of the incident energy. The distinct reflections 

observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for 

both cases of using viscous boundaries or mapped infinite elements. 

2) The type and location of the dynamic load represent two controlling factors in deciding the 

importance of using infinite boundaries. It was found that the results present significant differences 

when earthquake is applied as a base motion or a pressure load is applied at the surface ground. 

3) The horizontal displacement on the free surface increases significantly when modeling 

infinite boundaries for all values of the earthquake peak displacement. It increases about 7.0 times 

the value obtained by using finite elements only.  

4) The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel’s 

crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from 

tunnel’s centre respectively) increases with the frequency of the surface pressure load for both 

cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases 

for case 3 (viscous boundaries). 

5) The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the 

surrounding soil) has a considerable effect on the peak value of the horizontal displacement at 

node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, 

and 3).  

6) Considering infinite boundaries changes the direction of the deflected shape of a-a and b-b 

axes (located at the surface and at a distance about 6.5 m from the tunnel’s center respectively) for 

the three values of H/Diam ratio (H: the tunnel depth, Diam: the inner diameter of the tunnel). 

7) There is a little effect of the presence of infinite boundaries on the peak values of the 

displacements but case(3) where dashpots are used has a considerable effect on absorbing the 

waves rapidly than in case (1).    
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