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Abstract.  The current investigation has been conducted to examine the effect of gravity loads on the 
seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The 
proposed model includes the P-Δ effects induced by the building weight. Based on the variational approach, 
a 3D finite element with two nodes and six DOF per node including P-Δ effects is formulated. Dynamic and 
static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame 
systems. The influences of P-Δ effects and height of the building on tip displacements under Hachinohe 
earthquake record are investigated through many structural examples. 
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1. Introduction 
 

Asymmetric buildings are more vulnerable to earthquake hazards compared to those with 

symmetric configuration. The recognition of this sensitivity led the researchers to develop 

analytical and numerical models for dynamic calculation. A general asymmetric tall building may 

consist of any combination of the different structural forms, such as frames, shear walls and 

structural cores. 

In the analysis of the asymmetric height rise building structure, commercial software such as 

ETABS (1995) is used. In general, plan stress elements and beam elements are employed to model 

the shear wall and frames in the analysis of this kind of building structure. Therefore, it is 

necessary to use a refined finite element model for an accurate analysis of the wall-frame 

asymmetric tall building structure. But it would be inefficient to subdivide the entire building 

structure into an finer mesh with a large number of elements because of the tremendous amount of 

analysis time and computer memory cost. 

 To avoid with these difficulties, the most common method of analyzing frame-shear wall 

system adopts the replacement of the original structure by an equivalent plan structure, so that 

available various techniques such as continuum approach can be applied. 
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The most widely used approximate calculations are based on the continuum method, when the 

stiffened building structures is replaced by a (continuous) beam. 

Several authors applied the continuum models for static analysis of building structures stiffened 

by one or several lateral load-resisting systems, (Rutenberg et al. 1975, Hoenderkamp 2001, 

2002). Over the years, the method was extended to eigenvalue problem, that deals with free 

vibration and buckling analyzes (Balendra et al. 1983, Rutenberg et al. 1977, Zalka 2001, 2003, 

Kuang et al. 2004, Meftah et al. 2008). More recently the spectral seismic calculation was 

performed by Tarjan et al. (2004), Meftah et al. (2007). In all of these works, the analyzes were 

limited to finding static and dynamic characteristics of building structures with constant properties 

along their height. 

Quanfeng et al. (1999) presented the transfer matrix method for seismic analysis of tall frame 

shear wall systems having stepped cross sections. 

The most recent contributions are made by Rafezy et al. (2008, 2009). The authors presented a 

simple and accurate numerical model for free vibration analysis of asymmetric tall buildings with 

variable cross sections. 

It is well established that asymmetric buildings exhibit coupled lateral-torsional movements 

when subjected to earthquake ground excitations. Currently, this coupling effect lead to significant 

deflections, and thus, the P-Δ effects should be considered in the structural analyzes. 

For many years, the P-Δ effects are subjected to study and concern to structural engineers. 

Ruge (1934) examined the influence of the column weight on the response of simple elastic 

structures. Jennings et al. (1968) worked on the effects of gravity loads on inelastic structural 

responses. Goel (1969), Andrew (1977) have suggested that, by increasing stiffness of the 

structure and limiting its drift, the influences of P-Δ effects may be ignored in multi-degree -of 

freedom systems. 

Sivakumaran et al. (1994) have formulated a method for seismic analysis of uniform multi-

storey buildings by considering the soil-structure interactions and P-Δ effects. 

Tjondro et al. (1992) have studied the level of significance of the P-Δ effects expressed in 

terms of stability indices, drift indices and the ratio of base shear to total mass. 

Pauly (1978) studied the effects of P-Δ moments on the inelastic dynamic frame responses of 

reinforced concrete structures. 

Carr et al. (1980), using a dynamic time-history analysis for inelastic frame structures, 

investigated the response of several concrete frames with different stiffness properties and 

strength. 

For many years, building codes over the world ignored the influences of the P-Δ effects in the 

dynamic analysis of tall buildings. Probably due to their complexity. Although, the ASCE 7-05 

(2005) recommended the nonlinear static analysis in order to provide the results of the global 

pushover analysis, in which, the gravity loads are applied to the mathematical model of the 

structure. In Eurocode 8 (2003) a simplified approach is proposed. This approach is based on the 

use of the inter-storey drift sensitivity coefficient as function of the design behaviour factor. This 

procedure may lead to unrealistic sections of the structural members or, more often the 

impossibility to consider the P-Δ effects by mean of the simplified method, as suggested by the 

code provisions. 

Recently Adam et al. (2012) treat rigorously the role of P-Δ effects on the collapse capacity of 

the single degree of freedom systems. Black (2011) quantified the role of P-Δ effects on reducing 

the stiffness and strength of steel frame structures. 
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Fig. 1 Floor plan of asymmetric wall-frame building 

 

 

Although the subject of P-Δ effects on seismic analysis of tall buildings is an old one, the 

investigations of these effects were limited to regular buildings. Irregularities in geometry and 

loads are not considered. 

To our best Knowledge, there is not work available in the literature aimed at developing a 

simple finite element which can be used for seismic analysis of stepped frame-wall asymmetric tall 

buildings including P-Δ effects. 

Based on the variational approach, one-dimensional finite element formulation is presented for 

dynamic analysis of irregular tall buildings braced by frame-shear wall systems. The proposed 

element has two nodes and six DOF per node including warping effect. The P-Δ effects are 

described through the geometric stiffness matrix terms. This enlarges the possibilities of solution 

for more general types of structures, like those with variable geometry or loading without any 

further difficulty. 

This study has proved to be useful for understanding how the P-Δ effects decrease the natural 

frequencies. Thus, an accurate assessment of tip displacements of asymmetric tall buildings under 

earthquake excitations can be achieved. 

 

 

2. Problem statement  
 

The building structure considered comprises frames and shear walls as shown in Fig. 1. The 

arrangement of the stiffening system is either symmetrical or arbitrary. 

The arrangement of the lateral load-resisting system is identical at each floor. Hence, the offsets 

of the flexural centre are unchanged along the height of the building. 
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The classes of building structures considered herein have regular and irregular distribution of 

stiffness in the vertical plan. Uniform mass distribution represents a building with the same 

concentrated mass at every storey. 

The P-Δ effects induced by the second order overturning moments are considered in this study. 

Our aim is to develop simple finite element for an accurate assessment of tip displacements of 

building structures. 

 

 

3. Method of analysis 
 

3.1 Basic assumptions of approach 
 

One assumes that the material behaviour is linearly elastic. 

The effects of the longitudinal inertia forces are negligible in comparison to the horizontal and 

torsional inertia forces. 

The floors are considered to be rigid in their plan and they transfer only horizontal forces to the 

lateral load-resisting systems. 

In the finite element formulation, the continuum approach is applied. 

Consider a complex building with the height H, comprised of frames and shear walls as shown  

 

 

  

Fig. 2 Finite element formed by cutting the structure through horizontal plane that correspond to the 
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in Fig. 1. In the analysis, the building structure is dissected into finite elements with two nodes and 

six DOF per node (Fig. 2). Each finite element describes the structural behaviour between two 

adjacent storey levels located respectively at zk and zk+1 coordinates as pictured in Fig. 2. Under the 

action of lateral loads, the flexure-resisting system, such as shear walls are replaced by flexural 

segment. This segment is positioned at the centre of flexural rigidity C, deforming in both flexural 

lateral directions and warping torsion. Similarly, the shear-resisting structural members such as 

frames are replaced by an equivalent shear segment. This shear segment is positioned at the centre 

of shear rigidity S(xs,ys), deforming in both lateral shear directions and St. Venant torsion. The 

vertical z-axis is chosen over the structural height and the nodes of the finite elements are located 

at the centre of flexural rigidity C. The coordinates (xc,yc) represent the position of geometric 

centre G of the floor plan as shown in Fig. 1. 

Each finite element has a uniformly distributed mass m, flexural stiffness EIx, EIy, and shear 

stiffness GAx, GAy in the x and y directions respectively, flexural and shear coupling stiffness EIxy 

and GAxy, warping torsion stiffness EIω and St. Venant torsion constant GJ. 

 

3.2 Variational formulation 
 

Equilibrium equations for the elastic problem are obtained through the principal of virtual 

works Bath (996). For a continuum mechanics problem, it reads 

GeomExtAccInt
PPPP                                              (1) 

where δP
Int

 denotes the virtual work of the internal forces; δP
Ext

 the virtual work given by external 

forces ; δP
Acc

 represents the resulting virtual work put into the system as acceleration and δP
Geom

 is 

the virtual work related to the geometric nonlinearity, so called P-Δ effects. 

 The virtual work given by the internal forces is written as 
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denote the virtual works due to bending and shear deformations 

respectively. 

As started previously, the structure assembled may have different rigidity for each floor. 

Therefore, the structure must be divided along the vertical direction in such way, that the rigidity 

of each storey element becomes constant. Taking a storey element as the i
th
 element formed by 

flexural and shear segments as shown in Fig. 2, the bending and shear virtual works are defined as 
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where u(z,t) and v(z,t) are the deflections of the centre C in x and y directions respectively, and 

θ(z,t) is the angle of rotation of the floor plan about the point C. 

h is the height of each finite element, given by 

                                 (5) 

The external work arising from the earthquake is defined by 
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The virtual work due to the acceleration movement of the building is written as 
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(
..
) denotes second derivatives with respect to time. 

In addition to the above virtual works, the second order terms may be considered which 

account for P-Δ effects. These terms are given by 
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in the above equation w(z) denotes the weight of the structure at the z position of the i
th 

finite 

element. Assuming triangular variation according to the z direction, the expression of w(z) is 

defined as 

                                                                  (11) 

 

3.3 Finite element formulation 
 

The finite element discretization is used for Eqs. (3), (4), (6), (9), (10). This study employs 

three-dimensional finite element bounded by two nodal points. Each node has six degrees of 

freedom (DOF) which describe the lateral displacements (un, vn) and twist angle θn and their 

derivatives at the nodes. The total set of nodal displacements for the elements are 
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(') denotes the derivatives with respect to z direction. With the classical polynomial shape 

functions, the displacements field vector may be written as 
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[U(z)], [V(z)] and [Φ(z)] are the shape functions listed in Appendix. Inserting Eq. (13) into Eq. (1) 

and using Eqs. (3), (4), (6), (9), (10), one obtains the following approximate form of the potential 

energy for each element 
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where 
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where [E]; [G] and [m] represent the flexural stiffness, shear stiffness and mass matrices given 

respectively by 
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[Ke]; [K
Geom

]; and [M]  are respectively, the element stiffness ;geometric and mass matrices. 

R is the inertial radius of gyration given in Appendix. In the framework of finite element 

method, the equilibrium equation is formulated as 
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Σ el denotes the assembling process over basic elements. [Ce] is the element damping matrix. 

 

 

4. Analysis procedures 
 

4.1 Buckling analysis 
 

Buckling analysis of the general structure shown in Fig. 1 is performed by making the nullity of 

the masses and damping matrices in Eq. (14), one gets 
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el

Geom

elel qKwK       (18) 

from the above equation the critical weight which can lead to the instability of the whole building 

structure is determined by solving the equation 
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wcr is considered as the ultimate value of the building weight. The building designer must be 

restricted with this value. 

 

4.2 Free vibration analysis 
 

Free vibration problem of the building structure braced by shear walls and frames in which the 

P-Δ effects are considered, may be formulated in the same fashion as the buckling problem. Then 

one solves the standard eigenvalue problem 
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el el
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in which  μ=w/wcr[0 1] and ω are respectively the weight ratio and the circular frequency. 

 

4.3 Time-history analysis 
 

In this section, the structures are subjected to time-history analysis using Hachinohe earthquake 

record Fig. 3. For consistent analysis, the earthquake record is scaled to the peak acceleration of 

1.0 g (g=9.81 m/s
2
). The dominant frequencies are evaluated by Welch’s method (Welch 1967) 

using fast Fourier transform techniques. These frequencies are in the range of 0.19 to 2.19 Hz  

The damping matrix of the structure is assumed to be proportional to the stiffness and mass 

matrices by the Rayleigh’s proportionality factors α1, α2 (Chopra 2000) as follows 
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Fig. 3 Hachinohe earthquake record 

 

 

The proportionality factors α1, α2 can be obtained from 
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where λj and λp are two chosen natural frequencies of the coupled shear wall structures, which are 

determined by solving the Eq. (20). 

The present study is devoted to concrete material, the 1
st
 and 2

nd
 vibration modes are selected, 

and the viscous damping ξ is fixed to 5% of the critical damping. 

Newmark-β step by-step time integration method (Newmark 1959) is employed to get the 

solution of the dynamic equation, expressed in Eq. (14). 

 

 

5. Numerical investigation 
 

Results obtained via computer programs prepared in FORTRAN are presented for a variety 

wall-frame building structures. 

 

5.1 Validation in free vibration analysis 
 

In order to verify the accuracy and the versatility of the proposed method, the free vibrations 

problem of frame-wall structures of 10, 20, 40 and 60 storey levels proposed by Rafezy et al. 

(2008) is considered. These structures are regrouped into three categories, referring to their floor 

plans (Fig. 4a, b, c). In all twelve asymmetric structures are studied. A concise description of the  
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Fig. 4 Floor plan of the considered structures; (a) Floor plan1; (b) Floor plan2; (c) Floor plan3 
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Table 1a Mechanical properties of the building structures with floor plan of Fig. 4(a) 

Building 

height 

(storeys) 

Floors 

Data groups required to define structure properties 

 

 

m 

(kg/m) 

 

 

r
2

m 

(m
2
) 

Coordinate 
Flexural and torsion 

stiffnesses 

Shear and torsion 

stiffnesses 

xs 

(m) 

ys 

(m) 

xc 

(m) 

yc 

(m) 

EIx 

(10
10 

Nm
2
) 

EIy 

(10
10 

Nm
2
) 

EIw 

(10
12 

Nm
4
) 

GAx 

(10
8
N) 

GAy 

(10
8
N) 

GJ 

(10
11 

Nm
2
) 

10 
1

st
 to 

 10
th
 

77760 180 3.273 0.5 6 3 9.113 6.40 24.99 5.647 5.176 0.5591 

20 
1

st
 to 

20
th
 

77760 180 3.273 0.5 6 3 9.113 6.40 24.99 5.647 5.176 0.5591 

40 

1
st
 to 

20
th
 

77760 180 3.273 0.5 6 3 

11.39 8.00 31.24 11.290 10.350 1.118 

21
st
 to 

40
th
 

9.113 6.40 24.99 5.647 5.176 0.5591 

60 

1
st
 to 

20
th
 

77760 180 3.273 0.5 6 3 

13.67 9.60 37.49 22.590 20.710 2.236 

21
st
 to 

40
th
 

11.39 8.00 31.24 11.290 10.350 1.118 

41
st
 to 

60
th
 

9.113 6.40 24.99 5.647 5.176 0.5591 

 
Table 1b Mechanical properties of the building structures with floor plan of Fig. 4(b) 

Building 

height 

(storeys) 

Floors 

Data groups required to define structure properties 

 

 

m 

(kg/m) 

 

 

r
2

m 

(m
2
) 

Coordinate 
Flexural and torsion 

stiffnesses 

Shear and torsion 

stiffnesses 

xs 

(m) 

ys 

(m) 

xc 

(m) 

yc 

(m) 

EIx 

(10
10 

Nm
2
) 

EIy 

(10
10 

Nm
2
) 

EIw 

(10
12 

Nm
4
) 

GAx 

(10
8
N) 

GAy 

(10
8
N) 

GJ (10
11 

Nm
2
) 

10 1
st
 to 10

th
 77760 400 19.273 0.5 16 3 9.113 6.40 7.073 5.647 5.176 2.426 

20 1
st
 to 20

th
 77760 400 19.273 0.5 16 3 9.113 6.40 7.073 5.647 5.176 2.426 

40 

1
st
 to 20

th
 

77760 400 19.273 0.5 16 3 

11.390 8.00 8.841 11.290 10.350 4.853 

21
st
 to 

40
th
 

9.113 6.40 7.073 5.647 5.176 2.426 

60 

1
st
 to 20

th
 

77760 400 19.273 0.5 16 3 

13.670 9.60 10.61 22.590 20.710 9.705 

21
st
 to 

40
th
 

11.390 8.00 8.841 11.290 10.350 4.853 

41
st
 to 

60
th
 

9.113 6.40 7.073 5.647 5.176 2.426 

 

 

data of these structures is listed in Table 1(a-c). 

The buildings of 10 and 20 storeys high are uniform and their properties are unchanged along 

the height of the structure. But a stepwise change every 20 storeys is considered in the 40 and 60 

storey buildings. All storeys are of 3 m height. 
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Table 1c Mechanical properties of the building structures with floor plan of Fig. 4(c) 

Building 

height 

(storeys) 

Floors 

Data groups required to define structure properties 

 

 

m 

(kg/m) 

 

 

r
2

m 

(m
2
) 

Coordinate 
Flexural and torsion 

stiffnesses 

Shear and torsion 

stiffnesses 

xs 

(m) 

ys 

(m) 

xc 

(m) 

yc 

(m) 

EIx 

(10
10 

Nm
2
) 

EIy 

(10
10 

Nm
2
) 

EIw 

(10
12 

Nm
4
) 

GAx 

(10
8
N) 

GAy 

(10
8
N) 

GJ 

(10
11 

Nm
2
) 

10 
1

st
 to 

10
th
 

77760 340 -22.727 0.5 -14 3 9.113 6.40 7.073 5.647 5.176 3.177 

20 
1

st
 to 

20
th
 

77760 340 -22.727 0.5 -14 3 9.113 6.40 7.073 5.647 5.176 3.177 

40 

1
st
 to 

20
th
 

77760 340 -22.727 0.5 -14 3 

11.390 8.00 8.841 11.290 10.350 6.355 

21
st
 to 

40
th
 

9.113 6.40 7.073 5.647 5.176 3.177 

60 

1
st
 to 

20
th
 

77760 340 -22.727 0.5 -14 3 

13.670 9.60 10.61 22.590 20.710 12.71 

21
st
 to 

40
th
 

11.390 8.00 8.841 11.290 10.350 6.355 

41
st
 to 

60
th
 

9.113 6.40 7.073 5.647 5.176 3.177 

 
Table 2 Comparison of circular frequencies (Hz) of the proposed FEM and Rafezy et al. 2008  

Frequencies 
Floor plan of Fig. 4(a) Floor plan of Fig. 4(b) Floor plan of Fig. 4(c) 

Proposed FEM Rafezy et al. Proposed FEM Rafezy et al. Proposed FEM Rafezy et al. 

10 Storey buildings 

f1 0.93752 0.9377 0.88735 0.8875 0.97626 0.9756 

f2 1.10919 1.1085 1.09101 1.0908 1.05811 1.0587 

f3 1.40692 1.4082 1.35033 1.3505 1.34469 1.3452 

20 Storey buildings 

f1 0.36631 0.3664 0.39710 0.3899 0.34730 0.3475 

f2 0.45149 0.4377 0.40402 0.4065 0.44168 0.4415 

f3 0.51242 0.5259 0.50108 0.5013 0.54556 0.5457 

40 Storey buildings 

f1 0.19131 0.1914 0.19945 0.1966 0.16255 0.1627 

f2 0.24488 0.2439 0.23318 0.2385 0.24825 0.2481 

f3 0.27555 0.2767 0.27207 0.2719 0.32170 0.3216 

60 Storey buildings 

f1 0.14803 0.1485 0.14840 0.1487 0.12101 0.1212 

f2 0.19392 0.1937 0.19197 0.1923 0.19717 0.1971 

f3 0.21644 0.2166 0.21633 0.2162 0.26080 0.2607 
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Table 2 provides the first three frequencies obtained by the proposed FEM without considering 

P-Δ effects. These are compared to those given by Rafezy et al. (2008). The analysis of these data 

prompts the following comments 

• The results given by the proposed FEM agree very well with the results found by Rafezy et al. 

(2008). 

• Use of the proposed FEM is economical with respect to consumption of CPU time, data 

preparation and manipulation efforts. The proposed FEM can be used at the design stages and for 

final analyzes of the building structures. 

 

5.2 Free vibration analysis with P-Δ effects 
 
To objectively assess the influences of P-Δ effects, free vibrations analysis (including P-Δ 

effects) is performed. Again, the earlier twenty building structures are considered. Table 3 

provides the first three frequencies obtained in both with and without considering P-Δ effects. 

These frequencies are denoted respectively by f i
P-Δ

 and
 
f i (i=1-3). This set of results leads to the 

following remarks 

The relative differences in frequencies are more pronounced for the 40 and 60 storey buildings 

compared to those of 10 and 20 storeys. It is shown that the contributions to the higher modes due 

to the P-Δ effects are negligible. In fact, the most important reduction of 8.12%, corresponding to 

the fundamental mode is observed in the case of 60 storey building. 

 
Table 3 Comparison of circular frequencies (Hz) with an without considering P-Δ  

Frequencies 

Floor plan of Fig. 4(a) Floor plan of Fig. 4(b) Floor plan of Fig. 4(c) 

Without 

P-Δ 

effects 

With 

P-Δ 

effects 

Difference   

(%) 

Without 

P-Δ 

effects 

With 

P-Δ 

effects 

Difference   

(%) 

With 

P-Δ 

effects 

Without 

P-Δ 

effects 

Difference   

(%) 

10 Storey buildings 

f1 0.93752 0.93064 0.74% 0.88735 0.87981 0.86% 0.97626 0.96951 0.70% 

f2 1.10919 1.10334 0.53% 1.09101 1.08509 0.54% 1.05811 1.05199 0.58% 

f3 1.40692 1.40242 0.32% 1.35033 1.34554 0.36% 1.34469 1.33975 0.37% 

20 Storey buildings 

f1 0.36631 0.35732 2.52% 0.39710 0.38821 2.29% 0.34730 0.33793 2.77% 

f2 0.45149 0.44800 0.78% 0.40402 0.39605 2.01% 0.44168 0.43406 1.76% 

f3 0.51242 0.50022 2.44% 0.50108 0.49449 1.33% 0.54556 0.53916 1.19% 

40 Storey buildings 

f1 0.19131 0.18281 4.65% 0.19945 0.18991 5.02% 0.16255 0.15245 6.62% 

f2 0.24488 0.23803 2.88% 0.23318 0.22826 2.15% 0.24825 0.24173 2.70% 

f3 0.27555 0.27001 2.05% 0.27207 0.26616 2.22% 0.32170 0.31663 1.60% 

60 Storey buildings 

f1 0.14803 0.14076 5.17% 0.14840 0.14099 5.25% 0.12101 0.11193 8.12% 

f2 0.19392 0.18833 2.97% 0.19197 0.18661 2.87% 0.19717 0.19179 2.81% 

f3 0.21644 0.21169 2.25% 0.21633 0.21149 2.29% 0.26080 0.25674 1.58% 
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(d) 

Fig. 5 P-Δ effects on lateral tip displacements of buildings comprising floor plan1; (a) 10 stories building, 

(b) 20 stories building, (c) 40 stories building and (d) 60 stories building 
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(d) 

Fig. 6 P-Δ effects on lateral tip displacements of buildings comprising floor plan2; (a) 10 stories building, 

(b) 20 stories building, (c) 40 stories building and (d) 60 stories building 
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(d) 

Fig. 7 P-Δ effects on lateral tip displacements of buildings comprising floor plan1 ; (a) 10 stories building, 

(b) 20 stories building, (c) 40 stories building and (d) 60 stories building 
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5.3 Tip deflections under seismic loading 
 

The results for the twelve asymmetric buildings under Hachinohe earthquake record are 

presented below. The purpose of this study is to illustrate how the P-Δ effects influence the tip 

deflections under Hachinohe earthquake record. For this goal, The seismic is considered in the x 

direction. Due to torsional rotation of the building, a much larger displacement is experienced at 

the end of the structure rather than at the centre of mass G. 

Figs. 5-8 compare the peak values of the lateral displacement variations with respect to the 

weight ratio μ. From these figures, the P-Δ effects yield, substantial increases on lateral tip 

deflections of tall buildings. 

Fig. 5(a)-(d) illustrate the variation of the tip displacements according to the weight ratio μ 

expected by the structures of the floor plan of Fig. 4(a). One remark, that for all buildings, the P-Δ 

effects have no significant influences on tip deflections. A moderated increasing of 9 % is reported 

for 20 storey building with μ=6% (Fig. 5(b)). 

The influences of on the tip displacements for buildings referring to floor plan of Fig. 4(b) are 

pictured in Fig. 6(a)-(d). From these figures one finds that the contributions to the tip 

displacements due to P-Δ effects are negligible in the case of 10 and 20 storey buildings. For 

instance, moderate amplification of 13.3% is reached for 20 storey building with μ=6%. 

Contrary, in the cases of 40 and 60 storey buildings (Fig. 6(c), (d)), significant effects are 

reported. The highest amplification of 78% is achieved by 40 storey building with μ=6% .This was 

followed by 60 storey building with a tip displacement amplification of 49%. 

Fig. 7(a)-(d) report the influences of P-Δ effects on tip displacement of the building structures 

corresponding to the floor plan of Fig. 4(c). From these figures, it is worth noting that the 

important effect is achieved in the case of the 60 storey building with a tip deflection amplification 

of 26.5% for μ=6%, whereas, the lateral stability of the 40 storey building has not been 

significantly affected by the gravity loads with a moderate tip displacement amplification of 10%. 

It is needless to say that for 10 and 20 storey buildings (Fig. 7(a), (b)), negligible contributions of 

P-Δ effects are observed. 

The results demonstrated the importance of considering P-Δ effects in the order to provide 

good estimation of the tip deflections of tall buildings. The outcome of this study will find 

application in structural buildings by increasing their structural performances to withstand 

earthquakes without collapsing and without incurring major damages. 

This study demonstrated the feasibility of considering P-Δ effects to predict seismic responses 

of tall buildings. As the natural frequencies of the structural models of 10 and 20 stories are within 

the frequency range of the dominant modes of the Hachinohe earthquake, this study treated 

resonant vibrations. It is probably due to this reason that, there are no particular amplification in 

the seismic responses with respect to P-Δ effects. 

 

 

6. Conclusions 
 

An efficient finite element model for dynamic analysis of building structures braced by shear 

walls and frames including P-Δ effects is proposed. The 3D finite element is formulated for 

dynamic calculation of the doubly asymmetric, three dimensional multi-bay, multi-storey, wall-

frame structures. The accuracy and the efficiency of the proposed method were investigated by 

performing analyses of example structures. 
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The major conclusions of this study are summarized as bellow 

• The main advantage of the proposed approach consists of the drastic reduction of 

computational effort with respect to the classical FEMs. In fact, the convergence tests confirm that 

the proposed finite element with a small number of DOF yield accurate results compared to the 

classical finite elements based on mesh refinements. 

• The results indicate that P-Δ effects decrease the flexibility of the building structure also 

affecting the natural frequencies of the first mode of vibration of the tall building structures with 

40 and 60 storey levels. 

• The P-Δ effects are quit conservative and only a small influence on the tip lateral 

displacements was shown for 10 and 20 storey buildings under Hachenohe earthquake. 

• In this study, focus has been on the weight ratio μ which refers to the gravity loads. The 

contribution of this parameter led to a significant influence on the tip displacement amplification. 

• This study was demonstrated the difficulty to predict the tip displacement amplification due to 

the P-Δ effects. It was commonly stated that the deflections are strongly dominated by the range of 

dominant frequencies of the input earthquake record as a source of resonance effect. 
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Simplified finite element modelling of non uniform tall building structures comprising wall 

Appendix 
 

The shape functions used in section 3 are defined as: 
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where 

   0000)()(0000)()( 4321  NNNNU  ; 

   00)()(0000)()(00 4321  NNNNV  ; 

   )()(0000)()(0000 4321  NNNN ; 

and  

The linear interpolation functions N1(ξ) ;N2(ξ) ; N3(ξ) and N4(ξ) are given by: 

)231()( 32

1  N  ; 

)21()( 32

2   hN ; 

)23()( 32

3  N ; 

)()( 32

4   hN  

where  

h

z
  

For buildings of rectangular plan-shape (Lx B) and subjected to a uniformly distributed mass at 

floor levels, the radius of gyration is obtained from 
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