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Abstract. In this paper, a systematic technique is proposed for the optimal placement and design of 
nonlinear dampers for building structures. The concept of Output Frequency Response Function (OFRF) is 
applied to analytically represent the output frequency response of a building frame where nonlinear viscous 
dampers are fitted for suppression of vibration during earthquakes. An effective algorithm is derived using 
the analytical representation to optimally determine the locations and parameters of the nonlinear dampers. 
Various numerical examples are provided to verify the effectiveness of the optimal designs. A comparison of 
the vibration suppression performance with that of the frame structure under a random or uniform damping 
allocation is also made to demonstrate the advantages of the new designs over traditional solutions. 
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1. Introduction 
 

Passive dampers have been widely applied for the vibration control of building structures under 

earthquake ground motions. These dampers include, for example, hysteretic steel dampers, viscous 

wall-type dampers, viscous oil dampers, viscoelastic dampers, and friction dampers etc. The 

optimal or effective placement and design of these dampers to achieve a desired building vibration 

control performance have been comprehensively studied (Takewaki 1997, 2009, Singh and 

Moreschi 2001, Trombetti and Silvestri 2004, Lavan and Levy 2006, Aydin et al. 2007, Cimellaro 

2007, Fujita et al. 2010, Hwang et al. 2013). However, except a few works (Uetani et al. 2003, 

Martinez-Rodrigo and Romero 2003, Goel 2004, Lavan and Levy 2005, Attard 2007, Silvestri et 

al. 2010, Palermo et al. 2013, Lang et al. 2013), most methods assume that both the dampers and 

building structures behave linearly so that well-established linear system methods can be applied 
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to conduct the structural analysis and damper designs.  

Although linear dampers have been widely used in engineering practice, many beneficial 

effects and advantages of nonlinear damping have recently been revealed by researchers (Lang et 

al. 2009, Laalej et al. 2012). In order to exploit these beneficial effects and advantages, effective 

methods are needed for the optimal placement and design of nonlinear dampers for building 

structures. Compared with the optimal damper placement for linear systems where efficient 

response evaluation methods without time-history response analysis can be used, an elaborate 

time-history response analysis is generally required for building structures with nonlinear dampers 

to evaluate the values of an objective function in the optimal design procedure. In order to apply 

an optimal nonlinear damper placement and design in practice, a more efficient optimization 

algorithm is needed to resolve the problems with current approaches, in which procedures are 

often complicated and no explicit relationship between the design objective and design parameters 

can be used to facilitate the optimization process. 

In addition, it has also been realised that some nonlinear characteristics of conventional 

dampers in building applications have to be taken into account in the damper designs. A typical 

example is the need to design the relief force of conventional oil dampers for building structures 

(Adachi et al. 2013a, Murakami et al. 2013). During earthquakes, oil dampers fitted in building 

structures often induce large internal forces into building frames due to intensive ground motions. 

To avoid possible damage that could be caused by such large forces, a so-called relief force 

mechanism is often introduced in oil dampers. Under this mechanism, when the internal force in 

oil dampers arrives at the relief force, the damping coefficient becomes small compared to the 

initial one so that the maximum force produced by oil dampers can be kept in a reasonable range. 

Therefore, there is also a real need to design the relief force of oil dampers such that, subject to 

practical constraints on the relief force and the associated maximum damping force, an optimal 

vibration control performance for building structures can be achieved.  

Motivated by the needs of exploiting advantages of nonlinear dampers over conventional linear 

dampers, a technique for the optimal placement and design of additional nonlinear viscous 

dampers for vibration control of simple Multi-Degree-Of-Freedom (MDOF) systems was proposed 

in Lang et al. (2013). The effectiveness of the technique was demonstrated by the optimal design 

and placement of power-law type nonlinear dampers in a simplified six-story shear building model 

under the harmonic and earthquake loading excitations, respectively. The design issue for the 

relief force of oil dampers was raised in Adachi et al. (2013a) and further investigated in Adachi et 

al. (2013b). In Adachi et al. (2013a), a nonlinear time-history based sensitivity analysis method 

was proposed for the optimal design of oil damper relief forces to minimize the maximum 

interstory drift or acceleration of top-story under design earthquakes and some design constraints. 

In Adachi et al. (2013b), the effects of interstory velocity on optimal along-height allocation of oil 

dampers in super high-rise buildings were studied.  

The present study is based on these previous works and concerned with the development of a 

more general frequency domain analysis based nonlinear damper design approach in order to 

uniformly deal with a range of design problems, including both the optimal placement and design 

of power law-type nonlinear dampers and the optimal design and allocation of relief forces of oil 

dampers in multi-story building frames. Compared to the results in Lang et al. (2013), in this 

study, a more sophisticated design algorithm is proposed that can be applied to much more 

complicated frame models and achieve a verified optimality. The earthquake loadings will be 

considered and the Vibration Power Loss Factor (VPLF) (Guo and Lang 2011) of the building top 
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story displacement vibration will be used as the design objective function. The optimal design will 

be conducted subject to an equality constraint on the sum of design parameters which can, for 

example, be either nonlinear damping coefficients or oil damper relief forces. The detailed design 

procedure will be provided and numerical studies on a multi-story building frame model will be 

conducted to demonstrate the performance of the optimal design approach. 

The present study produces a more systematic approach for the optimal design and placement 

of nonlinear dampers for building structures whose nonlinear characteristic can be specified by a 

single parameter. The method has potential to help structural engineers to derive an optimal 

distribution of nonlinear dampers or oil damper relief forces when commissioning damper retro-

fitting projects for building structures. 

 
 
2. Novelty of the study 
 

The OFRF is a concept based on which, the output frequency response of a wide class of 

nonlinear systems can be represented analytically by a polynomial function of the parameters 

defining the system nonlinearity. In Lang et al. (2013), an algorithm was derived using the OFRF 

concept for optimal placement and design of nonlinear dampers in simple multi-degree-of-freedom 

systems. However, because of complexities with the more realistic multi-story frame model of 

building structures, the algorithm in Lang et al (2013) cannot be directly applied to the nonlinear 

damper designs for multi-story frame structures. In order to resolve this problem, in this study, 

new procedures are proposed to determine the step size that can be used to search for an optimal 

solution and, by introducing these new procedures, a new optimal nonlinear damper design 

algorithm for multi-story frame structures is derived to fulfil the need of the more complicated 

design. In addition to this novel contribution, a more general design problem is considered to 

produce a generic solution which can be used to uniformly deal with various design issues 

including, e.g., the design of power law-type nonlinear dampers and the optimal design of oil 

damper relief forces. Finally, the new method is applied to the optimal placement and design of 

nonlinear dampers in a multi-story building frame model and its performance is verified by using 

various criteria widely used in earthquake engineering. 

 
 

3. Characteristic of nonlinear dampers 
 

3.1 A general description of damping characteristic of nonlinear dampers 
 

In the present study, the design of nonlinear dampers for building frame structures is 

considered and it is assumed that the damping characteristic of the nonlinear dampers can be 

represented by a general description as follows 

  )(

)(

3

3

2

21 )(,,)()( pL

pL upupupuf     (1) 

In Eq. (1), f  represents the damping force of the nonlinear damper and u  denotes the relative 

velocity between the two ends of the damper. 1  and p  are damper characteristic parameters, 

( )i p  represents a continuous function of parameter p, and L(p) indicates that L is dependent on p.  

This description basically assumes that the damping characteristic of nonlinear dampers can be 
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approximated by a polynomial function of u  with L(p) and )(),(, 21 pp L   being the order 

and coefficients of the polynomial, respectively. In addition, it is also assumed that the dampers’ 

nonlinear characteristic can be well determined by a single parameter p. Examples of the 

parameter p can be found in the next section. 

 
3.2 Damping characteristics of power-law nonlinear dampers and oil dampers with relief 

mechanism 
 
The description for the damping characteristic of nonlinear dampers given by Eq. (1) can cover 

a range of characteristics of commercially available nonlinear dampers. The well-known power-

law nonlinear damping characteristic  

 sgn( )    f c u u


  (2) 

as given in Soong and Constantinou (1994) and Hwang (2002) can be considered as a special case 

of Eq. (1). In the case of  >1, this is obvious . In the case of   <1, the gradient of Eq. (2) at 

0u   tends to infinite, Eq. (2) can be regarded as a special case of Eq. (1) with 1   . 

The characteristic of oil dampers with relief force mechanism as shown in Fig. 1 can be 

described analytically as  

  
1

2 1

max

sgn( )

sgn ( )

R R

R

C u

f f C u f C u

f u



    



   

1

1 1 max 2

when         /

when   / / /

otherwise

R

R R R R

u f C

f C u f C f f C



     (3)  

where 1 2 max, , ,R RC C f f  are the parameters and Rf  is referred to as the relief force. 

In practice, C1 is normally fixed and there is a definite relationship between C1 and C2 and 

between Rf  and maxRf . For example, 2 1/ 0.05C C   and maxRf =1.1 Rf .  

 

 

 
Fig. 1 Damping characteristic of oil damper with relief force mechanism 

When 0Rf  , due to continuous property, Eq. (3) can be represented as  
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  ( )3
1 3 ( )( ) ( ) R

R

L f
R L f Rf C u f u f u      (4) 

where ( )RL f  is an odd integer. Obviously, Eq. (4) is a special case of Eq. (1) with   

 11 C  , 
( ),    3,5,..., ( )

,   ( )
0           otherwise

i R R
R i

f i L f
p f p





  


 (5) 

These analyses imply that Eq. (1) can be used to represent a class of characteristics of nonlinear 

dampers and can therefore be used to study the optimal placement and design of a class of 

nonlinear dampers for the vibration control of building structures during earthquakes. 

 

 
4. Analytical representation of top story frequency response of building structures 
in term of nonlinear damping characteristic parameter 

 

Consider an n-story multi-span plane-frame structure with 2n  additionally fitted viscous 

dampers as shown in Fig. 2. The equations of motion for this model can be described by 

 )()()()()( tturttt g FMKXXCXM    (6) 

where M, C, K, X(t) and r denote the system mass, damping and stiffness matrices, nodal 

displacement vector, and influence coefficient vector of the frame, respectively. )(tug
  denotes the 

base acceleration and F(t) represents the influence (force) of the 2 n  additionally fitted viscous 

dampers on the system responses. 

The nodal displacement vector X(t) can be represented as follows. 

  1 11 11 1 1 1 1 1 1( )
T

n s s ij ij n s nst u u v v v v      X  (7) 

where s is the number of span of the structure, ( 1, , )iu i n  represents the horizontal 

displacement at the ith floor, vij, θij (i = 1,…, n j = 1…, s+1) denote the vertical and rotational 

displacements, respectively, at the ith story and the jth span. 

In the present study, the number of the horizontal degree of freedom is assumed to be one at 

each floor. 

Assume that the two viscous dampers at each floor are exactly the same and the damping 

characteristic of the dampers at ith floor can be represented by Eq. (1), that is 

  ( )2 3
1 2 3 ( )( ) ( ) , , ( ) i i

i i

L p
i i i i i i i i i L p i if p p p              1, ,i n  (8) 

where i1  and ip  are the linear and nonlinear characteristic parameters, respectively, of the 

additional dampers at the ith floor and i  represents the relative velocity between the two ends of 

the dampers. 
Obviously ( )tF  in Eq. (6) is completely determined by if  ( 1, ,i n ) in Eq. (8). Considering 

the polynomial form of Eq. (8) and the continuous property of function, α2i(Pi) 1, ,i n , the 

following expression can be introduced by following the analysis similar to that in Lang et al. 

(2013) for a simplified multi-story shear building model. 
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Fig. 2 n-story multi-span frame model of building structures  

 

 

s

k

N

s

ksTop pjQjX )()(
0

 


 , 1, ,k n                     (9) 

where Xtop(jω) is the Fourier transform of the building top story displacement, )( jQks , 

1, ,s N , are the functions of frequency variable   and N  is the order of this polynomial form 

analytical representation of Xtop(jω). These parameters )( jQks  are dependent on the base 

acceleration )(tug
  and all the system parameters apart from Pk. Eq. (9) is an Output Frequency 

Response Function (OFRF) representation of the frequency response of the structural system 

defined by Eq. (6), which describes the frequency response of the top story displacement in term 

of the system nonlinear damping characteristic parameter kp . 

The OFRF is a concept proposed in Lang et al. (2007) which shows that the output frequency 

response of a wide class of nonlinear systems can be represented analytically by a polynomial 

function of the parameters which define the system nonlinearity. Eq. (9) is actually an OFRF 

representation of the frequency response of the structural system with a more general implication. 

This is because when k  takes a specific value k , that is, kk  , Eq. (9) can be described by 

 
s

k

N

s
skTop pjQjX )()(

0

 


  (10) 

In Eq. (10), )( jQ
sk

  1, ,s N , depend not only on the system input (base excitation) and 

linear characteristic parameters as defined by ,M,C K  and  1 1,...,i i n  , but also on kp  

( nkkk ,...,1,1,...,1  ), i.e. all system nonlinear damping characteristic parameters except 
k

p . 
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This feature of the OFRF as described in Eq. (9) implies that the design of the system nonlinear 

damping characteristic parameters  1,...,kp k n  need to be conducted in an iterative way. This 

is one of the basic points of the algorithm that will be introduced in the next section for the optimal 

placement and design of nonlinear dampers represented by Eq. (1) for building structures under 

earthquake loadings. 
 

 
5. Algorithm for optimal placement and design of nonlinear dampers in building 
structures under earthquake loadings 
 

5.1 Damping characteristics 

 

The present study considers the optimal placement and design of additional nonlinear dampers 

for the n -story multi-span building structure subjected to an earthquake loading. According to the 

second design example in Lang et al. (2013), the Vibration Power Loss Factor (VPLF) of the 

structure's top story displacement vibration is used as the design objective function. The VPLF   

was introduced in Guo and Lang (2011) and is defined as 

 %1001
0













P

P
  (11) 

where P0 denotes the power of the original structural system response without any additional 

dampers and P represents the power of the structural system response when a vibration control 

mechanism has been introduced. Therefore, the VPLF indicates the reduction in the power of the 

system vibration response that can be achieved by the introduction of a vibration control 

mechanism. 

Let us denote the time history of the top story displacement of the building during an 

earthquake as xtop(t). P in Eq. (11) can then be written as  

 
T

d
jXdttx

T
P Top

T

top





2
)()(

1 22

0 



  (12) 

where T represents the duration of the earthquake. It is known from Eq.(9) that the following 

relation can be drawn. 

 s

k

N

s

ks

s

k

N

s

ksTop pjQpjQjX )(
~

)()(
2

0

2

0

2

 


  (13) 

where )(
~

jQks  is a function of frequency of the same nature as )( jQks . Substituting Eq. (13) 

into Eq. (12) yields 

 s

k

N

s

ksk pPPP 



2

1

0
 (14) 

where Ns
T

d
jQP ksks 2,...,0,

2
)(

~
 



 


 . Let 

00 kPP  , then  
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2

0 1

( ) 1 100
N

s
k ks k

s

P
p p

P
 



 
    
 

   ( 1, ,k n ) (15) 

where 0 0/ ( ) / ( )ks ks k ksP P P P     . 

Eq. (15) is an OFRF based representation of the design objective function which shows an 

analytical relationship between the VPLF of the top floor displacement and the nonlinear 

characteristic parameter of the additional damper inserted into the kth floor. Based on this 

representation, an algorithm will be derived in the next section for the optimal placement and 

design of nonlinear dampers as described by Eq. (1) for reducing vibrations of the n-story multi-

span frame model shown in Fig. 2 during earthquakes. 

 
5.2 Design algorithm 
 
The basic ideas of the OFRF based algorithm for the optimal placement and design of nonlinear 

dampers can be summarized as follows: 

Step 1: Determine the OFRF representation in terms of the damper characteristic parameter at 

kth floor with respect to a baseline of npp ,,1   and repeat this for all the k’s (k=1,…, 

n). Here a baseline is a set of initial values of npp ,,1  ; the OFRF with respect to a 

base line is a polynomial form representation of the system output frequency response 

in terms of an increment of npp ,,1   relative to the baseline. 

Step 2: From the n OFRFs that have been determined in Step 1, find at which floor, an 

increment for the characteristic parameter of additional dampers needs to be added 

and how much the increment should be. 

Step 3: Make the increment for the damping characteristic parameter on the floor as obtained 

in Step 2, 

Step 4: Repeat the procedure from Step 1 to Step 3 until the design constraint 

 
1

n

s
s

p C


  (16) 

is satisfied where C  is the constraint on the sum of the damping characteristic parameters of 

added dampers.  

It is worth mentioning that another well-known performance criterion for the optimal damper 

placement is associated with the maximum interstory drift and given by  

  max i
i

   (17) 

In the present study, the evaluation of the maximum interstory drift is also conducted as an 

additional check on the vibration performance of building structures in the procedure of the 

optimal damper placement by using the above design ideas. Understanding the relationship 

between the maximum interstory drift and the sum of the damping characteristic parameters is 

helpful for structural engineers in determining the amount of the sum of the damping characteristic 

parameters.  

The details of implementing the design and associated principles are described in the following.   
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Denote q as the index of baseline which also represents the step number of the iterative 

optimization procedure and starts from 0q  . In order to determine the OFRF with respect to a 

baseline npp ,,1   step q , denote the baseline as )(,),(1 qpqp n , and rewrite Eq.(15) in terms of 

kp , an increment of kp , as 

 


















 


N

s

s

knkks

nk

nkk

kq

pqpqpqp

qpqpqpP

qppqpqpP
p

2

1

1

1

1

))(),...,(),...,((            

))(),...,(),...,((

))(,...,)(),...,((
1)(





  1, ,k n  (18) 

where the subscript q on the left hand side of Eq.(18) indicates that the VPLF   is a result 

evaluated with respect to baseline )(,),(1 qpqp n .  

,2,...,1 )),(),...,(),...,(( 1 Nsqpqpqp nkks   in Eq. (18) can be determined from at least 2N 

different increments of pk and the corresponding values of  . Denote these different increments of 

pk as Niipk 2,...,1),(  and the corresponding values of   as ( ( )), 1,...,2q kp i i N   which can be 

evaluated from 2N  simulated system top floor displacement responses to a considered earthquake 

loading when kp takes the values of Niipk 2,...,1  ),(  , respectively. Then 1( ( ),...,ks p q  

( ),..., ( ))k np q p q , s=1,...,2N, can be found by solving the following 2N  simultaneous equations. 

 



N

s

s

knkkskq ipqpqpqpip
2

1

1 )())(),...,(),...,(())((  , 1, ,2i N  (19) 

Thus, by going through the procedure for each k, the OFRFs with respect to the baseline 

)(,),(1 qpqp n  for all the floors can be determined. 

In order to determine at which floor an increment for the damping characteristic parameter 

needs to be made, a gradient of the determined OFRF, i.e., Eq.(18) with respect to the baseline 

)(,),(1 qpqp n  is evaluated as  

 nkqpqpqp
pd

pd
nkkp

k

kq

k
,...,1   )),(),...,(),...,((

)(
110 




 


 (20) 

Then, the number of floor at which an increment for the damping characteristic parameter 

should be made can be found as )(* qk  such that  

  nkqpqpqpqpqpqp nkknkqk
,...,1   )),(),...,(),...,((max))(),...,(),...,(( 1111)(*    (21) 

This is because Eqs. (20) and (21) imply that an increase in the damping parameter p  at floor

)(* qk  on top of the baseline )(),...,(),...,(1 qpqpqp nk  can produce a maximum increase in the 

VPLF value  . 

After finding at which floor the damping characteristic parameter should be increased, the 

amount of the increment will be determined as follows. 

First, solve equation  

1033



 

 

 

 

 

 

Kohei Fujita, Masatoshi Kasagi, Zi-Qiang Lang, Guo Penfei and Izuru Takewaki 

 *

2

1( )
1

( ( ),..., ( )) 0
N

s
nk q s

s

d
p q p q p

d p




 
  

  
 (22) 

to find its minimum positive solution )(qp  and take )(qp  as the upper limit of the increment 

)(qp  at floor )(* qk . This is because an increment of the damping characteristic parameter at 

floor )(* qk  beyond )(qp  will not be able to further reduce the value of VPLF as needed. 

Second, solve the following equation for all  nk ,...,1  except )(* qkk  , respectively, 

 *

2 2

1 1( )
1 1

  ( ( ),..., ( ))  ( ( ),..., ( )) 0
N N

s s
n ks nk q s

s s

p q p q p p q p q p 
 

      (23) 

to find n-1 minimum positive solutions and denote them as ( )jp q  , 1, , 1j n  . Then find the 

increment for *( )
( )

k q
p q  as 

  ( ) min ( ), ( )p q p q p q     (24) 

where  ( ) ( ), 1,..., 1min j
j

p q p q j n     . 

The objective of using this procedure is to determine an increment for )(
)(* qp

qk
 and to make 

sure the following conditions are satisfied when  0, ( )p p q   , 

 
 

0

)(

)(

*

*






qk

qkq

pd

pd
 (25) 

*

2 2

1 1( )
1 1

  ( ( ),..., ( ))  ( ( ),..., ( ))   ( )
N N

s s *
n ks nk q s

s s

p q p q p p q p q p k k q 
 

      (26) 

 

 

 
Fig. 3 Illustration of determining where (which floor) damping should be increased and how 

much the increment should be 
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 Therefore, )(~ qp  is an optimal increment that can be made for Pk
*
(q)

 
(q). Fig. 3 illustrates this 

procedure and the corresponding optimum increment for a case where n=2.  

Based on the ideas and implementation details as described above, the detailed procedure of the 

design algorithm can be summarized as follow. 

(i)  Let q=0, choose a baseline for npp ,,1  , and denote the baseline as )0(,),0(1 npp  . 

(ii) Determine coefficients 1( ( ),..., ( ),..., ( )),  1,..., 2ks k np q p q p q s N   in the OFRF given 

by Eq.(18) with respect to baseline )(,),(1 qpqp n  from 2N simulated system top 

floor displacement responses to a considered earthquake loading in the cases where 

kp takes 2N specified values Niipk 2,...,1 ),(  , respectively. Repeat this procedure 

for k=1,...,n to find OFRF in Eq.(18) with respect to the same baseline for all the 

floors. 

(iii) From  1 1( ( ),..., ( ),..., ( )),  1,...,k k np q p q p q k n  , that have been determined in (ii), find 

)(* qk , the number of floors where an increment for the damping characteristic 

parameter p should be made, using Eq. (21). 

(iv) Determine the increment )(~ qp  for )(
)(* qp

qk
 using Eq. (24) with )(* qk  as found in 

(iii). 

(v) Let )()1( qpqp kk   for   )(but  ,...,1 * qk knk   and *( )
( 1)

k q
p q   

*( )
( ) ( )

k q
p q p q    .  

(vi) Work out 1 ( 1)n
k kp q    

(vii) If 1 ( 1)n
k kp q C    , let q=q+1, and return to (ii) for the next iteration. Otherwise, let  

 



n

k

kqkqk
qpCqpqp

1
)(

)()()1( **  

and finish the algorithm. 

In the algorithm, in addition to an earthquake loading to be considered for the design, the 

parameters N and Niipk 2,...,1  ),(  , also have to be specified. Generally speaking, the appropriate 

values for these parameters are problem dependent. The effects of their choices on the structural 

vibration control performances will be investigated using design examples. 

 

 
6. Numerical examples 

 
For the application of the proposed algorithm to the nonlinear damping designs for building 

structures, a 5-story 4-span plane frame structure is considered. Table 1 shows the member 

property of the plane frame. The possible location to fit the additional dampers is the two spans in 

the middle so that the issue of optimal placement of dampers on the same floor is not considered in 

this case study. In addition to the constraint on the sum of the damping characteristic parameters of 

added dampers, it is also required that the maximum interstory drift should be smaller than 

0.02[m] under the specified input ground motion. This design constraint will be used to make an 

additional check for the building vibration performance during design earthquakes. The ground 
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motions used as the input excitation in the optimal design are generated so as to be compatible 

with the target response spectrum, i.e. the safety-limit response spectrum defined in the Japanese 

Building Earthquake-resistant Design Code. The detailed procedure for ground motion generation 

can be found in Gasparini and Vanmarcke (1976). Fig. 4 shows the time histories of three different 

input excitations which are produced by the same target response spectrum and represented as the 

input A, B and C, respectively. 

The optimal damper placements under different input motions (A, B, C) were derived using the 

design algorithm in Section 5.2 and the results are as shown in Fig. 5 when the damping exponent 

parameter is chosen as 0.3  . From these figures, it can be observed that the optimal damper 

placements are not similar even though the input ground motions have been generated by the same 

target response spectrum. In this simulation, the VPLF for the optimal design demand is set as 

70%. A comparison of the damper placements and the corresponding maximum interstory drifts 

that have been achieved under the three different ground motions is given in Table 2. As the 

maximum interstory drift of the original structural frame under input B is the largest when 

compared with the cases under other ground motions, the input B is used as the target ground 

motion in the optimal design in the following simulations. 

For investigating the variability of the optimal damper placement due to the difference of the 

input ground motion that has been used for the design, consider two cases shown in Fig. 6: (i) the 

input A based optimal design subjected to input A and the input B based optimal design subjected 

to input A, and (ii) the input C based optimal design subjected to input C and the input B based 

optimal design subjected to input C. For simplification in the following figures, the term “Design: 

A” is defined as the optimal design using input A and the term “Input: A” indicates the  
 

 

Table 1 Member cross-section property 

 
Column 

Beam 
Outer column Inner column 

1
st
 story 600 600 22 □-  650 650 22 □-  H 700 250 14 25  -  

2
nd

 story 600 600 22 □-  650 650 22 □-  H 700 250 14 25  -  

3
rd

 story 600 600 22 □-  650 650 22 □-  H 600 250 12 28  -  

4
th

 story 500 500 19 □-  600 600 22 □-  H 600 250 12 28  -  

5
th

 story 500 500 19 □-  600 600 22 □-  H 600 250 12 28  -  

 

Table 2 Optimal damper placement ( 0.3  ) 

 

Damping coefficient ([  
0.3610 N/ m/s ])  max i

i
  

[ 210 m ] 1
st
 story 2

nd
 story 3

rd 
story 4

th 
story 5

th 
story 

Input A 
Initial - - - - - 1.95  

Optimal 0.00  1.74  0.11  0.00  0.00  1.37  

Input B 
Initial - - - - - 3.05  

Optimal 0.00  1.22  0.57  0.092  0.00  1.96  

Input C 
Initial - - - - - 2.64  

Optimal 0.00  0.97  0.52  0.026  0.00  1.50  
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Fig. 4 Three different ground motions generated by the same target response spectrum (a)  

input A, (b) input B, (c) input C 

 

 
Fig. 5 Optimal damper placements ( 0.3  ) (a) input A, (b) input B, (c) input C 

 

 
Fig. 6 Illustration of how an optimal design based on one input is verified for the case where the 

structure is subjected to a different input 
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Fig. 7 Comparison of VPLF and maximum interstory drift (a) “Design: A - Input: A” VS 

“Design: B - Input: A”, (b) “Design: C –Input: C” VS “Design: B - Input: C” 

  

 
Fig. 8 Optimal damper placements under input B (a) 1.0  , (b) 3.0   

 

 
Fig. 9 Improvement of structural performance for optimal damper placements (input B) (a) 

0.3  , (b) 1.0  , (c) 3.0   
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Fig. 10(a) Comparison of time-histories of interstory drift of optimal damping with that for no 

damper (input B) 

 

Fig. 10(b) Magnified figure (12-18 sec)        Fig. 10(c) Magnified figure (24-30 sec) 
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Fig. 11 Maximum deformation of the plane frame with optimal damping design ( 0.3  ) 

 

 
Fig. 12 Comparison of damping force (a) , (b) , (c) 

 

 
Fig. 13 Verification of the optimal damper placement ( 0.3  ) (a) Power of top horizontal 

displacement, (b) Maximum interstory drift 
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interstory drift of the building structures with added nonlinear dampers subjected to input A. 

Fig. 7(a) shows a comparison of VPLF and the maximum interstory drifts of “Design: A - 

Input: A” and those of “Design: B - Input: A”. The added nonlinear damper is expected to be the  

most effective in the former case, i.e. “Design: A - Input: A”. On the other hand, Fig. 7(b) shows a 

comparison of VPLF and the maximum interstory drifts of “Design: C – Input: C” and those of 

“Design: B – Input: C”. From these figures, it can be observed that, if the input is of the same 

target spectrum, there is no significant difference in the structural vibration performance in terms 

of both VPLF and maximum interstory drift even if the designs are different. Therefore, it is 

concluded that, when the proposed technique is applied for the optimal nonlinear damper designs, 

one loading input based optimal design is also valid provided that the input loadings have the same 

target spectrum, i.e. different designs exhibit the same structural vibration performance in terms of 

both VPLF and maximum interstory drift to a common input. A reasonable value of VPLF can be 

determined by the structural performance demand. When the maximum interstory drift is selected 

as the structural performance criterion, the evaluation of the maximum interstory drift in the 

optimal design procedure as shown in Fig. 7 can provide useful information in the decision.  
Fig. 8 shows the optimal damper placement under the input B where the damping exponent 

parameters are taken as 1.0   and 3.0  where the maximum interstory drift as the 

performance criteria is 0.02m. For comparing the improvement of the structural performances by 

the optimal damper placements for  = 0.3, 1.0 and 3.0 , the variation of the VPLFs and the  

maximum interstory drifts are shown in Fig. 9. The maximum interstory drifts for  = 0.3, 1.0 and 

3.0  at the terminal point are 0.02m. From these figures, it is found that VPLF is maximized in the 

optimal design with 0.3  . This may result from the difference of the performance of the 

vibration control for  = 0.3, 1.0 and 3.0  in the range of small deformation (see Fig. 10). Actually 

the nonlinear damper with 0.3   is effective for reducing the small amplitude vibration. 
Fig. 10(a) shows the comparison of the time histories of the interstory drift of the optimal 

damping designs with  = 0.3, 1.0 and 3.0  with those for no additional dampers subjected to the 

input B. The amounts of added damper are given so as to suppress the maximum interstory drift to 

0.02m. It can be observed that the design constraint (the maximum interstory drift=0.02m) can be 

achieved in the optimal damper placement. Figs. 10 (b) and (c) show the magnified time histories 

during (b) 12-18s and (c) 24-30s, respectively, of the interstory drift at the 2nd story. Although the 

design constraints on the maximum interstory drift are satisfied in those optimal designs for  = 

0.3, 1.0 and 3.0 , the performance of the vibration control in the small deformation range indicates 

that the best performance is achieved for 0.3  , the second best is achieved for 1.0  , and the 

worst is in the case of 3.0   (Fig. 10(c)). On the other hand, in the case of very rare earthquakes 

having seismic intensities larger than the design earthquakes, the nonlinear dampers with 3.0   

is much more effective.  

Fig. 11 represents the maximum deformation of the plane frame with the optimal damping 

design using 0.3   under input B. The deformation including nodal vertical displacements and 

nodal rotations can be understood. 
Fig. 12 describes the comparison of the damping force-velocity relations for the optimal 

damper design with different damping parameters 0.3,1.0,3.0   under input B where the 

maximum interstory drift is 0.02. From these figures, the difference of the non-linear and linear 

damper models can be observed from damping forces. The damping forces for the non-linear 

damper with 0.3   are the smallest. Since the damping force may be related with the frame 
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design cost, the optimal damper design using non-linear dampers with 0.3   can be regarded as 

the best solution in this case. 

For the verification of the optimality of the obtained damper placement, Fig. 13 shows the 

comparison of the variation of the power and the maximum interstory drift for the optimal damper 

placement with 0.3   with those for other damper placements under input B. In Fig. 13, the 

uniform damper placement indicates the damper placement where the same amount of damper is 

added at each floor for the same sum of damping coefficients. In addition, the random damper 

placement denotes the damper placement where the random amount of damper is given by using 

Monte Carlo simulation for the same sum of damping coefficients. It can be observed from Fig. 13 

that the optimal damper placement derived by the proposed OFRF based optimal design algorithm 

performs the most effective vibration suppression, achieving the minimum in terms of both VPLF 

and the maximum interstory drift. 

 

 

7. Conclusions 
 

The use of damping devices in building structures for vibration control during earthquakes has 

become a more important subject in structural engineering especially after 2011 Tohoku 

earthquake in Japan. Although the optimal design and placement of dampers in frame structures 

have been comprehensively investigated, most works are concerned with the design and placement 

of linear dampers. Considering dampers’ inherent nonlinear behaviours and potential beneficial 

effects of nonlinear damping on structural vibration control, the analysis of structural behaviours 

including nonlinear dampers and the design of nonlinear dampers for structural vibration 

suppression during earthquake ground motions have recently been studied by some researchers. 

However, there is no a unified approach that can be used systematically to deal with the optimal 

placement and design of a wide range of nonlinear dampers to achieve a general design objective 

such as the reduction of top story vibration energy as required in many practical cases.  

To address these problems, in the present study, a general nonlinear damper model has been 

proposed, which can be used to represent a range of nonlinear dampers including, for example, 

power-law dampers and oil dampers with relief mechanism. Then a general approach has been 

derived for the optimal design and placement of this class of nonlinear dampers in building frame 

structures. The approach is based on a formulation of the structural nonlinear response in the 

frequency domain using the OFRF concept that reveals a simple polynomial relationship in the 

frequency domain between the structural response and parameters defining structural nonlinearity. 

A design criterion concerning the top story vibration energy that can deal with any given loading 

conditions is used for the optimal design.  

Comprehensive numerical studies have been conducted to apply the proposed approach to the 

optimal design of the nonlinear characteristic parameter of power-law dampers. The results have 

verified the performance of the new designs and demonstrated that the new design approach could 

help structural engineers to optimally retrofit or design nonlinear dampers for the vibration control 

of building structures subjected to a wide range of loadings including earthquake ground motions. 

Especially it has been demonstrated that the properties of nonlinear dampers (damping exponent 

parameters for power-law dampers) play a key role in the vibration suppression characteristics in a 

small vibration amplitude. The performance of the vibration control in the small deformation range 

1042



 

 

 

 

 

 

Optimal placement and design of nonlinear dampers for building structures in the frequency domain 

indicates that the best performance is achieved for 0.3  , the second best is achieved for 

1.0  , and the worst is in the case of 3.0  . On the other hand, in the case of very rare 

earthquakes having seismic intensities larger than the design earthquakes, the nonlinear dampers 

with 3.0   is much more effective.  
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