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Abstract.  In this paper, a direct identification of modal parameters using the continuous wavelet transform 
is proposed. The purpose of this method is to transform the differential equations of motion into a system of 
algebraic linear equations whose unknown coefficients are modal parameters. The efficiency of the present 
method is confirmed by numerical data, without and with noise contamination, simulated from a discrete 
forced system with four degrees-of-freedom (4DOF) proportionally damped. 
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1. Introduction 
 

The signal processing by wavelet transform was initially formulated by (Grossmann and Morlet 

1984). The wavelet analysis, like all other time-frequency transforms, can identify instantaneous 

frequencies (time-frequency analysis) and detect discontinuities in signals, long-term evolution 

(trends), and self-similarity (fractal signals). So, through a better description of the signal, the 

wavelet analysis facilitates the identification of modal parameters from the vibratory response of 

mechanical structures. One of the first authors having used the Continuous Wavelet Transform 

(CWT) for modal identification was Staszewski (Staszewski 1997) in the mid-nineties. He 

considered the Morlet wavelet function and applied it to estimate the modal damping ratios of a 

mechanical system. Slavic et al. (2003) proposed a closely related method, though their method 

used the Gabor wavelet function. These identification techniques apply the CWT to the free 

vibratory response of mechanical systems to identify modal parameters (Le and Argoul 2004). The 

free response of mechanical systems is usually asymptotic, and in this case the representation of 
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the CWT is concentrated along a curve in the time-frequency domain, called a “ridge” (Carmona 

et al. 1998). The modal parameters identification can be performed by extracting ridges from the 

modulus or phase of the CWT of the analyzed signal (Slavic et al. 2003, Lardies 2002, Le and 

Argoul 2004, Argoul and Erlicher 2005, Tan et al. 2007, Ü lker-Kaustel and Karoumi 2011). A 

complete procedure for modal identification from free responses based on the CWT is presented 

by Le and Argoul (Le and Argoul 2004), where the characteristics of three complex mother 

wavelets are compared: the Morlet wavelet, the Cauchy wavelet and the harmonic wavelet. 

Chakraborty et al. (2006) preferred the modified Littlewood-Paley wavelets because this basis 

function has the advantage being more closely representative of a vibrating signal. However, this 

basis function is real and the notion of ridges is more difficult to define in the time-frequency 

plane. The previous identification techniques are based on the computation of the modulus of the 

CWT and their efficiency has been tested on free-decay responses of linear structures. Moreover, 

they have also been applied to the free responses of linear non-proportional damped systems 

(Erlicher and Argoul 2007), to weakly non-linear systems (Lardies and Ta 2005, Staszewski 1998, 

Argoul and Le 2003) and to time variant systems (Marchesiello et al. 2009), (Kougioumtzoglou 

and Spanos 2013). These techniques can also be applied to measured responses under ambient 

vibration by converting random responses to free decay responses with the random decrement 

technique (Lardies 2002). However, the identification results depend strongly on the accuracy of 

the random decrement technique, which requires a large number of measurement points.  

According to the classification proposed by Maia and al. (Maia et al. 1998), the identification 

methods can be classified as “indirect” or “direct”. In the indirect case, the identification is based 

on the modal parameters by using the dynamic responses of the structure and these parameters are 

usually nonlinear in the expression of the dynamic time response, even if the behaviour of the 

system is linear, which usually leads to the use of an iterative procedure to solve the optimization 

problem. Convergence problems can then occur, and computational cost becomes high. However, 

the proposed identification technique can be classified as “direct” because the identification is 

directly based on the general matrix equation of dynamic equilibrium. As the parameters to be 

identified are generally linear in the differential equations of motion, which govern the dynamical 

behaviour of the system, direct methods use linear operators to the set of differential equations of 

motion, transforming them into an algebraic system. This leads to classical linear optimization that 

can be solved in one step by singular value decomposition or normal equations. Orthogonal 

functions are frequently used because of their property of integration, based on a square matrix 

with constant elements. This property allows for the transformation of the set of differential 

equations, which govern the dynamical behaviour of the system, into a set of algebraic equations. 

Several methods have already been proposed to transform differential equations governing 

mechanical system behaviour into algebraic equations by using the well-known properties of 

polynomial functions. They are called Continuous Time Identification (CTI) methods within the 

field of systems theory (Mensler 1999). In CTI approaches, orthogonal functions are frequently 

used for the integral formulation of differential equations (Mensler 1999, Pacheco and Steffen 

2002, Rémond et al. 2008). Their main advantage is that they transform the integration of signals 

into a simpler integration of these functions by using a square matrix that depends on the 

orthogonal functions. Therefore, the differential equations governing the behaviour of the 

mechanical discrete system can be transformed into algebraic equations. Pacheco and Steffen 

(2002) compared different kinds of orthogonal bases such as Jacobi, Legendre or Chebyshev 

polynomials, Block-Pulse or Walsh functions and, of course, Fourier series. They also mentioned 

the case of integral formulation in the field of inverse problems and the simplicity of calculation 
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for sensitivity analysis problems. 

More recently, Rémond et al. (2008) used Chebyshev polynomials to improve classical CTI 

methods for the identification and inverse formulation of mechanical systems. To avoid some 

problems with these polynomials, they proposed alternative formulations to first decompose the 

signal into components and then to estimate the parameters for each component of the signal. 

Rouby et al. (2010) proposed a unified formulation of a direct identification method for linear 

mechanical systems. Linear operators are applied to the set of motion differential equations, 

transforming it into an algebraic system. The cases of expansion on Chebyshev polynomials and of 

Cauchy CWT are studied with a focus on their similarities and differences in writing and 

performances. Here, in the same way, the CWT is applied directly to the differential equations that 

govern the dynamic behaviour of the studied discrete system. However, the modal matrix is first 

identified from the extracted ridges of the transient part of the responses and then applied to 

transform the motion equations in a simpler form, that are decoupled in the case of proportional 

damping. 

The result is a set of algebraic equations where the unknowns are the mechanical parameters to 

be identified. The number of identified parameters is far less than the number of algebraic 

equations. Usually, the algebraic equations are linear with respect to the modal parameters to be 

identified. A simple linear regression technique can then give an estimation of the parameters. The 

proposed methodology is then validated by numerically simulated responses from discrete 

systems. 

As mentioned previously, the aim of this paper is to propose a direct identification of modal 

parameters using the continuous wavelet transform. Firstly, the CWT method is presented as well 

as its characteristics useful for our study. In the second step, the identification of modal parameters, 

obtained by solving the differential equation of motion, is illustrated in the case of the forced 

vibrations of a linear oscillator. Finally, the proposed method is presented in more detail and 

applied to the case of the forced vibrations of a mechanical linear system with multiple Degrees of 

Freedom (DoF). 

 

 

2. The Continuous Cauchy Wavelet Transform (CCWT) 
 
The CWT of a real signal )(tu  of finite energy is defined by (Mallat 1999): 

                   dt
a

bt
tu

a
abtuT 
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Where the analyzing function )(t  is called the “mother wavelet” and )(t  is its complex 

conjugate. The real parameters  0aa and b introduce scale-dilation and time-translation, 

respectively and the CWT makes use of shifted and scaled copies of 





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whose )(RL norms are independent of a. An alternative formulation of the wavelet transform can 

be obtained by applying Parseval’s theorem to Eq. (1): 

             
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Where dtet ti






  )()(ˆ is the Fourier transform of the mother wavelet. In the 

time-frequency plot, the squared modulus of the CWT represents the signal energy density and is 

called the scalogram: 

                     

2

0)( ),)](([),(
f

f
btuTfbSCALu 

   (3) 

where 00 2f is the angular frequency when the absolute value of the Fourier transform )(ˆ  of 

the mother wavelet exhibits a peak. The normalized scalogram defines a local wavelet spectrum:

,),(][
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buT
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fbE CWTu 


 which has been widely used for the analysis of 

non-stationary signals (Carmona et al. 1998) and also for the analysis of structure responses under 

ambient excitations (Argoul et al. 2005). 

In the case of a frequency and amplitude modulated signal with M distinct frequency 

components, defined as:  
 


M

j

M

j

jjj ttAtutu
1 1

))(cos()()()(   where the variation of the 

amplitude )(tAj is slow compared to that of the phase )(tj (asymptotic signals), the scalogram of 

the signal )(tu has one particularity : there exists a set of special points in the time-scale plane 

),( ab called ridges, such that the energy of the CWT of )(tu  tends to be localized around each 

ridge, and this restriction of the CWT to all ridges, called the “skeleton”, is very close to the signal 

itself. There are several ways to define a ridge (for more details see (Carmona et al. 1998)); we 

used the one where the ridge corresponds to the region where the modulus of the CWT is 

maximum: 
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Where )()( ba u

rj
is the scale parameter corresponding to the

thj ridge present in the CWT of the signal. 

Extracting the ridge and calculating the skeleton allow for an estimation of the frequency content 

of the signal and its reconstruction. Eq. (5) states that the CWT of an asymptotic signal ju  

computed on the ridge is proportional to the complex signal )(
)(

bz ju
:  
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With )(
)(

bz ju
being the analytic signal associated with the component ju (for more details see 

(Carmona et al. 1998, Argoul and Le 2003)). The following Eq. (6) shows that it is possible to 

isolate the
thj frequency component )(bu j from the CWT of a multi-component signal: 
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where .Re  is the real part of the complex function within brackets. 
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In our study, we used the standard Cauchy wavelet )(tn with order n obtained from the 

modified Cauchy wavelet: 

1

)(















n

n
it

i
t


 with 1 . In the following,  is replaced by n  

and the CWT becomes the Continuous Cauchy Wavelet Trnasform (CCWT). The uncertainty of 

n  is:
12

12

2

1






n

n
n  (Erlicher and Argoul 2007). The Heisenberg uncertainty principle states 

that the uncertainty is always greater than or equal to 1/2 (Carmona et al. 1998). For the Cauchy 

wavelet, as n is increasing, the value of n  rapidly becomes close to the boundary 0.5: 

,505.0510.053.0
1005010
   etc. 

The Fourier transform of n  is: )()!/2()(ˆ   Hnen
n

  where )(H  is the 

Heaviside function. Cauchy wavelets and their first and second derivatives are admissible and 

progressive (Le and Argoul 2004); for instance, the wavelet is progressive when:

0:0)(ˆ   n . Using integration by parts and due to the properties for the decrease of the 

functions )(tn  when t , we obtain:  
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The choice of the Cauchy mother wavelet n  is crucial in Eqs. (7) and (8) because its first 

and second derivatives are directly linked to Cauchy mother wavelets of higher order: 

)()1()( 1 tnit nn    and )()2()1()( 2 tnnt nn   . Thus, the CCWT of order n of the 

first derivative of a signal can be related to the CCWT of order n + 1 of the signal. This property is 

not retained for the modified Morlet mother wavelet used by several authors (for example (Lardies 

2002): )0()(
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longer a Morlet wavelet. In (Le and Argoul 2004), the authors, referring to the frequency analysis 

filters, compared the wavelet analysis to a band pass filter with a quality factor Q  defined as: 
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and equal to 
2

12 


n
Q  for the standard Cauchy wavelet n . Moreover, to avoid modal 

coupling and the problem of edge effects, the values for the quality factor are chosen as follows: 

maxmin QQQ   with 
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max   where fc  and tc  are coefficients  
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whose values are close to 5, L is the finite length of the recorded signal, j  is the frequency to 

identify for ,1 Mj  and  )(),(min 11 Jjjjjd    is a characteristic angular  

frequency discrepancy between two close angular frequencies with 00   and 
L

M


 1 . The 

choice of a suitable tc value, i.e. a value such that the residual edge effects do not affect the modal 

identification substantially, has already been discussed in (Erlicher and Argoul 2007) without 

making reference to a specific mother wavelet. In the following, we choose: 5 ft cc .  

 

 

3. Identification method 
 
In this part, we introduce the direct modal parameter identification method by applying the 

CCWT to the differential motion equations. Two types of linear systems will be studied: an 

oscillator with viscous damping and a discrete system with N  DoF assuming proportional 

viscous damping. 

 
3.1 Case of a linear oscillator with viscous damping 
 
Here, we are studying the case of a linear oscillator with an angular frequency , damping 

factor   and mass m . This oscillator is subjected to an excitation )(tp  applied to the mass m . 

Setting ,2   and  2  with 0,0    and 
4

2
  , the normalized differential 

equation of motion is written as follows: 
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where )(tu  is the displacement of the mass m , and 0u  and 0u  are the initial conditions. The 

response )(tu  can be written as the sum of the transient part and the steady state part: )(tu  
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The general expression of the transient part 
)(tru  and of the steady state part are given by:  
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and  

 dthp
m
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Where )(th  is the impulse response function: te
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the CCWT is a linear operator, we apply the CCWT to the previous Eqs. (13) and (14) with the 

mother wavelet and we obtain: 
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By substituting Eqs. (7) and (8) into the two previous Eqs. (19) and (20), we obtain: 
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(21) and (22), we obtain the system of equations below:  
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 (23) 

The three parameters   , and m to be identified are solutions of the algebraic system of Eq. 

(23) which can be written for any point  )( )(

,
tru

rab  on the ridge of 
)(tru for the two first equations 

and for any point  )( )(

,
tru

rab  on the ridge of 
)(stu for the two last equations. For all the points on 

both ridges, we obtain a system of algebraic equations with three unknowns (   ,  and 1/m) that 

can be written in matrix form: yxA  . This equation is solved by MATLAB software with the 

normal equation:   yAAAx TT 1
 , assuming A

T 
A invertible; this resolves the problem of inversion 

by minimizing 
2

yxA  in the least squares sense. 

In the case of a linear oscillator submitted to an external force, three parameters   , and 1/m 

are to be identified. Two points, at least, of the time-frequency plane are needed: one on the ridge 

of the transient response and one on the steady-state response. However, the efficiency of the 

proposed identification technique depends strongly on the location and the number of points 

chosen along the ridge under consideration. They must be chosen in the time-frequency plane 

where edge effects are negligible. For example, when ω  is the modal angular frequency under 

consideration, b  will belong to  tt ,  where the interval  tt ,  is included in the validity 

domain of the CCWT  so that:   









12

2
,

2
,







  Qc
L

Qc
tt

tt
, 1ω  and 2ω being close to ω   

(Le and Argoul 2004). In our study, the ridges are extracted by using the Crazy Climber's 

Algorithm (CCA) (Carmona et al. 1998). In the CCA, a number of particles (the climbers) are 

initially randomly seeded on a domain D in the time-frequency plane at initial step. Then each 

climber starts a random walk on D influenced (in a way similar to the simulated annealing 

algorithm) by the local values of the scalogram (b,f)SCAL(ψψ
u  of the measured signal u. In 

summary, the algorithm combines simulated annealing in the frequency f direction and symmetric 

random walk in the time b  direction (Carmona et al. 1999). 

 
3.2 Case of a linear proportionally damped system with multiple DoF 
 

In this part, we are interested by the case of linear system with N DoF, using proportional 

damping (also called Basile's hypothesis in French terminology). During the tests, NP measurement 

points are collected with NP≤N. So, by using the principle of mode superposition, the k
th 

component (1≤k≤NP) of the displacement vector is given by: 



N

j

jkj

N

j

kjk tqφtutu
11

)()()(  

where qj(t) is the generalized modal coordinate of the j
th
 mode and φkj is the component (k, j) of the 

modal matrix Φ  that has dimensions (NN). The columns of Φ  are formed by the N real modal 
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shapes:  T

Nj2j1jj
φ.......,,φ,φφ   for Nj1  , having orthogonal properties according to the mass 

matrix M , stiffness matrix K , and damping matrix C . Each modal shape has to be normalized; 

we chose 1φ
1j
  for all  N1,j . 

By applying Basile's hypothesis (or Rayleigh's hypothesis of proportionality between stiffness 

and damping), we have: ijij
T
i mM   , ijij

T
i kK    and .2 ijiiijij

T
i mcC   Setting 

2

jj
ωα   and jjj

ωξ2β   and we can express the N decoupled differential equations of motion 

as follows:

 

)(
1

)()()( tp
m

tqαtqβtq j

j

jjjjj   .  

Two initial conditions must be imposed: 0)0( j,j qq   and 0)0( j,qq    

As in the case of single degree of fredom, the generalized response (t)q
j

 for the thj  mode is 

the sum of the transient and steady state parts: )()()( )()( tqtqtq tr
j

tr
jj   where: 


















tω)qβq(
ω

tωqe(t)q jj,jj,

j

jj,

t
β

( tr)
j

~sin~
1~cos 000

2   (24) 

and  

 
t

jj

j

(st)
j dtτ)(th(ττp

m
(t)q

0

1
 (25) 

where (t)h
j

 is the thj  impulse response function: tω~sine
ω~m

1
(t)h

j

t
2

β

jj

j

j


  with .
4

~
2
j

jj

β
αω   

For the generalized response (t)q
j

, the identification process of the three parameters 
j

α , 
j

β  and 

j
m  would be the same as in the case of a simple oscillator. However, 



N

1j
jkjk
(t)qφ(t)u  is 

measured instead of (t)q
j

. The linearity property of CCWT allows to write: 

     )a,b()t(uT)a,b()t(uTa,buT
N

1j
kj

N

1j
kjk nnn












 
 

     


N

1j

)tr(

j

)tr(

jkj
)a,b()t(qT)a,b()t(qT

nn 


 

(26) 

but knowledge of the CCWT of (tr)

j
q  or of (st)

j
q  needs the assessment of the modal matrix.  

Thus, the first step is the identification of the modal matrix   from the transient part. From 

the expression of the modal components (t)u(tr)

kj
, it can be easily deduced that:  

kj

j1 j

jkj

(tr)

1 j

(tr)

kj
φ

(t)qφ

(t)qφ

(t)u

(t)u
  (27) 

From Eq. (6), it is possible to isolate the thj  frequency component (b)u(tr)

kj
 of (b)u

k
 from the 

CCWT of the multi-component signal (b)u
k

.  
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  













)(ωψ̂

(b)ab,uT2
Re(b)u

0n

(tr)

rkψ(tr)

k

jn

 

(28) 

and similarly with the thj  frequency component (b)u(tr)

1j
 of (b)u

1
.  

  













)(ωψ̂

(b)ab,uT2
Re(b)u

0n

(tr)

r1ψ(tr)

1 j

jn

 

(29) 

Finally, we obtain: 

   
   (b)b,a(t)uTRe

(b)b,a(t)uTRe
φ

(tr)

rj1ψ

(tr)

rkψ

kj

jn



 

(30) 

From the thj  extracted ridges 
kj

R  extracted from the transient part of each response 
k

u , the 

relationship Eq. (30) allows to estimate 
kj

φ  by computing the following parameter: 

   
   

j

jR
jn

R

N

1l
l

(tr)

rj1ψ

l

(tr)

rkψ

kj
N

)(bab,(t)uTRe

)(bab,(t)uTRe

φ






 

(31) 

computed with 
jR

N  points chosen on the ridge 
j

R  of the time interval previously defined to 

avoid edge effects: 













j

ψt

j

ψt

l
ω

Q2μc
L,

ω

Q2μc
b . 

Then, it will be possible to calculate the generalized response vector: uΦq _1 . 

Finally, in the same way as in the case of a single DoF system, the modal parameters : 
j

β , 
j

α  

and 
j

m  can be estimated for each mode j . 

The procedure to identify the modal parameters for N  DoF system, is given below: 

 Compute and plot the scalogram signals of vector u  with the curves of              

side-effects, which limit the validity domain. 

 Extract the ridges by applying the CCA. 

 Estimate the modal matrix from the transient part of each measured              

signal. 

 For each mode, resolve Eq. (23) as in the case of a linear oscillator. 

 

 

4. Application to a system with four DoF 

 
4.1 Numerical response without noise 
 

The Fig. 1 illustrates the 4 DoF system used for testing the efficiency of our method. Its exact 

modal frequencies 
j

f  for 4j1   and the corresponding quality factors are given in Table 1.  
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Fig. 1 (4DoF) system with proportional damping 

 
Table 1 Values of the exact frequencies and quality factor Qj for each mode 

Frequency band  

[Hz] 

Exact frequency
j

f   

[Hz] 

Interval of the 

Quality factor 

Quality factor 

j
Q  

922020 ..  f
 1.499 0415543 .. Q

 10 

565922 ..  f
 4.298 6042564 .. Q

 30 

527565 ..  f
 6.800 26675915 .. Q

 40 

010527 ..  f
 8.203 44819515 .. Q

 45 

 

 

This system is then subjected to a harmonic force: )sin()( 0 tFtF F with  1222  FF f
1srd75.40 

 and to an initial displacement of: .m10(0)u(0)u(0)u(0)u 3

4321

  
For each mode of vibration, the CCWT is computed for a frequency band centered around its 

eigen frequency 
j

f  and for an adapted quality factor 
j

Q  for 4j1  . The quality factors for 

extracting each modal component j  are chosen to satisfy the inequality: 
maxjmin

QQQ   in order 

to avoid edge effects and modal coupling as presented before. Finally, the quality factor for the 

extraction of the harmonic excitation force is taken equal to 50. 

Exact and identified modal parameters (eigen frequencies 
j

f , modal damping ratio 
j

ξ  and 

modal mass 
j

m ) for each mode are given in Table 2 as well as the relative errors between the 

exact values and the identified ones. These errors are very small (around 1%), demonstrating the 

effectiveness of the method in identifying modal parameters in the case of a linear model with 

proportional viscous damping. 

The Fig. 2(a) shows the time evolution of the first component (t)u
1

 of the displacement. Its 

Fourier spectrum is given in Fig. 2(b), and its scalogram with extracted ridges in Fig. 2(c), where 

the four green curves represent each of the four ridges associated to the transient part (t)u(tr)

1j
 of 

each modal component (t)u
1j

 4j1   of (t)u
1

. The yellow curve corresponds to the ridge of the 

steady state part (t)u (st)

1
 of (t)u

1
. In Fig. 2(c), the bounds of the time interval chosen for the 
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Table 2 Exact and identified modal parameters, without noise 

Mode 

Damping Frequency Modal mass 

exact 

value 

[%] 

identified 

value 

[%] 

relative 

error 

[%] 

exact 

value 

[Hz] 

identified 

value 

[Hz] 

relative 

error 

[%] 

exact 

value 

[Kg] 

identified 

value 

[Kg] 

relative 

error 

[%] 

1 2.00 1.98 0.98 1.499 1.499 0.00 1731.00 1731.38 0.02 

2 2.00 1.97 1.45 4.298 4.300 0.05 278.50 281.21 0.97 

3 2.67 2.65 0.86 6.800 6.800 0.00 262.86 263.05 0.07 

4 3.10 3.07 1.17 8.203 8.202 0.01 493.26 500.67 1.50 

 

 
Fig. 2 (4 DoF) system : (a) time representation of (t)u

1
, (b) its fourier spectrum and (c) its scalograme 

and extracted ridges 

 

 

identification along each ridge are also indicated with two black dotted lines.  

Due to the edge effect and in order to well illustrate the vibration responses in the 

time-frequency domain, we used the zero padding technique by adding zeros to time-domain 

signal for 0≤t≤6 and 34≤t≤40s, see Fig. 2(a). 

The identified components φij of the normalized modal matrix are compared to the exact ones 

in Table 3. It can be noted that the discrepancies between the exact and identified values are very 

small and, this proves the effectiveness of the proposed method. 

 
4.2 Analysis of noise effects 
 

To test the influence of noise effects on the results of the proposed identification method, an 

amount of noise ηk(t) is added to the simulated signals uk(t). It is modeled by the centered normal 

distribution. This noise representation is classically used with simulated data as large frequency 
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bandwidth components in order to analyse the robustness of the method. The signal-to-noise ratio 

(SNR):  

 
 (t)ηVariance

(t)uVariance
Log10SNR

k

k)(uk 

 
(32) 

is then used in order to compare the level of the signal to the level of noise. Two cases 

corresponding to dB19.22SNR
)(uk   (strong noise) and dB63.81SNR

)(uk   (weak noise) are 

considered. Figs. 3 and 4 present the time and the frequency evolutions, as well as the scalogram 

of (t)u
1

when perturbed by a noise with a SNR of dB19.22  and dB63.81 , respectively. The 

identification results given in Tables 3, 4 and 5, show that the proposed method is quite effective, 

even in presence of noise. 

 

 

Table 3 Exact and identified modal shapes 

Modal Shapes Exact Values 
Identified modal shapes 

Without noise Noise of 63dB Noise of 19dB 

ϕ11 1 1 1 1 

ϕ12 1.764 1.764 1.765 1.760 

ϕ13 2.414 2.414 2.417 2.419 

ϕ14 2.715 2.715 2.718 2.730 

ϕ21 1 1 1 1 

ϕ22 0.964 0.964 0.964 0.965 

ϕ23 -0.082 -0.082 -0.076 -0.090 

ϕ24 0.922 -0.923 -0.917 -0.935 

ϕ31 1 1 1 1 

ϕ32 -0.407 -0.405 -0.401 -0.395 

ϕ33 -0.954 -0.955 -0.950 -0.901 

ϕ34 0.744 0.744 0.745 0.741 

ϕ41 1 1 1 1 

ϕ42 -1.446 -1.417 -1.331 -1.410 

ϕ43 1.246 1.239 1.173 1.247 

ϕ44 -0.537 -0.550 -0.580 -0.579 

 
Table 4 Exact and identified modal parameters, weak noise -SNR=63.81dB 

Mode 

Damping Frequency Modal mass 

exact 

value 

[%] 

identified 

value 

[%] 

relative 

error 

[%] 

Exact 

value 

[Hz] 

identified 

value 

[Hz] 

relative 

error 

[%] 

exact 

value 

[Kg] 

identified 

value 

[Kg] 

relative 

error 

[%] 

1 2.00 2.02 1.22 1.499 1.499 0.00 1731.00 1716.22 0.85 

2 2.00 1.86 7.03 4.298 4.250 1.10 278.50 280.49 0.59 

3 2.67 2.65 0.76 6.800 6.817 0.26 262.86 264.93 0.79 

4 3.10 3.07 1.15 8.203 8.202 0.01 493.26 523.63 6.15 
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Table 5 Exact and identified modal parameters, strong noise -SNR=19.22dB 

Mode 

Damping Frequency Modal mass 

exact 

value 

[%] 

identified 

value 

[%] 

relative 

error 

[%] 

exact 

value 

[Hz] 

identified 

value 

[Hz] 

relative 

error 

[%] 

exact 

value 

[Kg] 

identified 

value 

[Kg] 

relative 

error 

[%] 

1 2.00 2.00 0.20 1.499 1.499 0.00 1731.00 1891.52 9.27 

2 2.00 1.55 22.35 4.298 4.246 1.20 278.50 285.68 2.37 

3 2.67 2.79 4.43 6.800 6.804 0.06 262.86 262.68 0.07 

4 3.10 2.75 11.39 8.203 8.198 0.06 493.26 513.24 4.05 

 

 
Fig. 3 (4Dof) system – case of noise : dBSNR 8163. - (a) time representation of )(tu

1
, (b) its fourier 

spectrum and (c) its scalogram and extracted ridges 

 

 
Fig. 4 (4Dof) system – case of strong noise : dBSNR 2219.  - (a) Time representation of )(tu

1
, (b) its 

Fourier spectrum and (c) its scalogram and extracted ridges 
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5. Conclusions 
 

In this paper, a direct parameter identification method based on the continuous wavelet 

transform is presented. This method is applied to forced responses of linear structures and their 

modal parameters are identified. Its efficiency has been tested on numerical simulations. The effect 

of additive white noise on signals is also investigated. The identification results are very 

satisfactory even in the presence of noisy signals. Its application to other real cases of civil 

engineering structures is under study. 
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