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Abstract.    This paper proposes probabilistic models for estimating the seismic demands on reinforced 
concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the 
bridge columns and the deformation demand on the isolation devices. An experimental design is used to 
generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 
2007) and the Caltrans’ Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time 
history analysis of each bridge to develop probabilistic models that are practical and are able to account for 
the uncertainties and biases in the current, common deterministic model. As application of the developed 
probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates 
the reliability-based design for this type of bridges and contributes to the transition from limit state design to 
performance-based design. 
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1. Introduction 
 

Bridges are key links in the transportation system, and they have shown significant 
vulnerability to earthquakes. Most recently, damage to 174 major bridges, including cracks or 
failures of the bridge piers, caused traffic interruption after the 2008 Wenchuan Earthquake (Qiang 
et al. 2009). Isolation bearings can isolate the heavy bridge superstructure from the substructures, 
such as the abutments and piers, avoiding or reducing damage to the structures. Thus, it is 
important to understand and form proper models to predict the performance of bridges with 
isolation bearings. 

Many studies have been performed to investigate the performance of bridges with base 
isolation and to develop design procedures for new and retrofitted bridges (Priestley et al. 1996, 
Kelly and Naeim 1999, Wilde et al. 2000). Karim and Yamazaki (2003, 2007) developed seismic 
fragility models for base-isolated bridges. However, as recognized by Karim and Yamazaki (2003, 
2007), the fragility models developed are not transportable to other bridges because modeling and 
estimation is carried out at the structural system level. That is, the fragility estimate for a specific 
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structural system cannot be used to assess the fragility of another structure, except as a crude 
approximation. In addition, ideally the fragility models should be derived from first principles, e.g. 
the rules of mechanics. However, assuming an arbitrary distribution function (e.g. lognormal) to 
express the fragility curve and estimating its distribution parameters have no direct physical 
interpretation. 

This paper puts forward a state-of-the-art approach to assess such reliability accounting for 
available information, including mechanical models and engineering knowledge. The proposed 
approach can be used to quantify the actual benefits of constructing or retrofitting a bridge with 
base-isolation in terms of improved reliability. Such information is needed for the best allocation 
of available resources. The proposed formulation maintains the simplicity required for its 
implementation in practice and therefore has the potential to have a real impact on the 
implementation of reliability-based design. 

In this study, we develop probabilistic models to determine seismic demands on single-column 
bent RC bridges using laminated rubber isolators and provide a simple formulation to estimate the 
seismic fragility of these structures. The methodology presented in this paper can be used to 
develop probabilistic models for other types of isolated bridges with only different considerations 
on the design parameters. To facilitate their acceptance, the proposed probabilistic models are 
constructed by developing correction terms to simplified analysis procedures commonly used in 
practice. To provide data for the model development, time-history analyses on 60 typical bridges 
are carried out. The sample bridges are designed according to Caltrans (1999) and AASHTO 
(2007). To provide a representative and diverse sample of bridges, combinations of the basic 
design parameters are obtained using an experimental design (Sacks et al. 1989). An experimental 
design is defined in this paper as a statistical process used to select the values of the considered 
parameters in order to maximize the amount of “information” that can be obtained for a given 
amount of experimental effort (e.g. number of experiments or simulations). The non-linear 
time-history analysis on each bridge provides structural response quantities, such as the shear and 
deformation of the bridge column and the deformation of the isolation device. The probabilistic 
demand models can be of value in providing unbiased estimates of the deformation and shear 
demands and can efficiently assess the reliability of reinforced concrete (RC) bridges for 
performance- and reliability-based design. 

To develop the seismic reliability model, the capacity models developed by Kelly and Naeim 
(1999), Gardoni et al. (2002) and Choe et al. (2007) are used in combination with the proposed 
probabilistic demand models. Importance analysis is carried out to determine the random variables 
that have the main effects on the probability of failure of RC bridges using laminated rubber 
isolators. Based on the results of the importance analysis, a simple and accurate formulation is 
developed to estimate the seismic fragility of these structures. The proposed reliability formulation 
is used for a reliability-based optimal design of the base isolation system. 

This paper is organized into eight sections including this introduction section. The following 
section presents the details on the bridge models and the dynamic analyses including the 
experimental design, the selection of the ground motions, and the results of the nonlinear 
time-history analysis. In the third section, we describe the development of the probabilistic 
demand models. We then present the capacity models used for the reliability analysis. The fifth 
section describes the formulation of the approximate fragility estimates. Next, we present the 
reliability-based optimal design of base isolation systems. We then present an application of the 
proposed models to the fragility of an example bridge and follow this with conclusions from the 
research. 
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2. Bridge models and dynamic analysis 
 

This section describes the design parameters of the isolated RC bridges, the experimental 
design used to generate the sample bridges, and the selection of the ground motion records for the 
dynamic analysis of the finite element (FE) models of these bridges. A three-dimensional model 
for each sample bridge is developed using OpenSees (McKenna et al. 2003). Nonlinear time 
history analysis of each bridge is performed to produce structural responses needed to construct 
the probabilistic models. 
 
 

 
Fig. 1 Cross section of the superstructure of a typical base-isolated bridge with its pier 

 

 
Fig. 2 Typical configuration of the base-isolated bridges 
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2.1 Description of bridges 
 
Design parameters of a base-isolated bridge are selected based on AASHTO (2007) and 

Caltrans (1999). The superstructure is a cast-in-place RC multi-cell box girder with a monolithic 
concrete deck as defined in Section 4 of the AASHTO specifications. Each bridge has three design 
lanes with the clear roadway width, dW , of 10.80 m as shown in Fig. 1. In the figure, cD and dD
represent the column diameter and the deck depth, respectively. The span/depth ratio is 18 as is 
typical for non-prestressed box girders (Barker and Puckett 2007). As shown in Fig. 2, 
laminated-rubber or elastomeric bearings are located at the abutments and on the pier top to 
decouple the vibration of the superstructure and the substructures. It is assumed that two square 
bearings are designed to be placed between the deck and the abutment, and a circular bearing 
between the deck and the pier. Fig. 1 shows the arrangement at the pier while Fig. 2 shows the 
arrangement of the bearings for the bridge. Note that Fig. 2 only shows the typical configuration of 
 
 
Table 1 Design parameters for base-isolated bridges with one single-column bent 

Design parameter Range Number of strata 

Degree of skew, skew  0o – 60o 61 

Range of span length, 2L  15 – 39 m 50 

Span ratio, 2 1/L L  1 – 1.5 50 

Column height, cH  5 – 11 m 20 

Column-diameter-to-deck-depth ratio, /c dD D  0.67 – 1.33 20 

Reinforcement nominal yield strength,
yf  414 – 517 MPa 20 

Concrete compressive strength, cf   28 – 55 MPa 20 

Longitudinal reinforcement ratio of the column, l  1 – 4% 30 

Transverse reinforcement ratio of the column, t  0.4 – 1.1% 30 

Additional superstructure weight, asw  10 – 75% 60 

Soil types, USGS Classification, soilK  A, B, C and D 4 

Number of inner elastomer layers of a bearing, en  3 – 15 13 

Thickness of each inner elastomer layer, et  7.6 – 38 mm 12 

Shape factor of the thickest elastomer layer, bS  3 – 40 60 

Shear modulus of elastomer, bG  552 – 1207 Pa 60 

Pile depth/column height ratio, /p cH H  1 – 3 20 

Abutment backwall stiffness, lK  10 – 30 kN/mm/m 30 

Abutment transverse stiffness, tK  105 – 210 kN/mm 60 
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this class of bridges. Fig. 2 also provides the definitions of other model parameters, such as the 
pile depth, pH , the column height, cH , and bridge spans, 1L  and 2L . 

The design parameters that completely define each base-isolated bridge are divided into “basic” 
and “derived” parameters. Table 1 provides the ranges of the basic parameters considered in the 
experimental design in which each range is divided into a number of strata. The additional dead 
load, asw , due to the railing systems, the transverse diaphragm, the wearing surface, and 

attachments participates in the vibration and affects the response of the entire structural system. 
This load is assumed to vary from 10 to 75 percent of the weight of the structural deck, similar to 
the assumption by Mackie and Stojadinovic (2003). A soil is classified following the USGS Site 
Classifications as A, B, C, or D (PEER 2009), with corresponding average shear wave velocities 
(to a depth of 30 m) greater than 750 m/s, 360-750 m/s, 180-360 m/s and less than 180 m/s, 
respectively. The remaining derived variables are obtained by designing each bridge according to 
AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and Caltrans’ Seismic Design 
Criteria (Caltrans 1999). 
 

2.2 Experimental design for bridge models 
 

A population of isolated bridges is formed by conducting an experimental design using the 
Space-Filling Design technique in which the Stratified Latin Hypercube sampling is used to ensure 
that each design parameter has all portions of its domain represented (Sacks et al. 1989). The 
Space-Filling experimental design is used to fill up the space of the design parameters in a uniform 
fashion (Bates et al. 1996).The range of each design parameter is partitioned into strata and a 
representative value is selected from each stratum. Each bridge is formed by combining the 
representative values of each design parameter such that every representative value is used at least 
once in the whole process. The combination of representative values is oriented so that the 
distance between one selected point that corresponds to one bridge and the other points is 
maximized. As a result, 60 isolated RC bridges are obtained. The period of this bridge population 
that is computed based on the elastic stiffness of the pushover curve varies from 0.274 to 3.174 
seconds (Table 2). 
 

2.3 Selection of ground motion records 
 

Representative ground motion records are selected for the nonlinear time-history dynamic 
analyses of the sample bridges following the bin method in Shome and Cornell (1999) and Huang 
 
 
Table 2 Range of quantities of interest for the base-isolated bridges 

Quantity Range 

Natural period, 1T  0.274 – 3.174 s 

Elastic stiffness of the isolation bearings, iK  0.468 – 423.767 MN/m 

Post-yield stiffness of the isolation bearing, hK  0.151 – 55.785 MN/m 

Characteristic strength of the isolation bearing, Q  0.542 – 422.260 MN 
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et al. (2010). In particular, Huang et al. (2010) developed probabilistic demand models for RC 
bridges without base isolation. To assess the effects of based isolation on the performance and 
reliability of bridges, the same ground motions are used in this study. Following Shome and 
Cornell (1999), the selected ground motions are subdivided into five bins based on moment 
magnitude (M) and the closest distance between the record location and the rupture zone (R). Each 
bin represents specific combinations of the earthquake characteristics and the collection of all bins 
captures all possible characteristics. Thus, each bin should have (1) enough earthquakes to capture 
the variability of the characteristics of that bin and (2) the same number of ground motions as each 
of the other bins. 

Five bins are defined based on M and R. Following Huang et al. (2010), the five bins used are: 
(1) SMSR – Small Magnitude, Short Range: M = [5.5, 6.5]; R = [15 km, 30 km] 
(2) SMLR – Small Magnitude, Long Range: M = [5.5, 6.5]; R = [30 km, 50 km] 
(3) LMSR – Large Magnitude, Short Range: M = [6.5, 7.5]; R = [15 km, 30 km] 
(4) LMLR – Large Magnitude, Long Range: M = [6.5, 7.5]; R = [30 km, 50 km] 
(5) NEAR – Near Field: M = [6.0,7.5]; R = [0 km, 15 km] 

Following the classification in Abrahamson and Silva (1997), to account for the effects of soil 
amplification due to different soil characteristics, the ground motions are divided into two groups.  
Group 1 contains the motions recorded from Site Classes A and B, “rock and shallow” sites, and 
Group 2 contains those from other site classes, “deep soil” sites. Each group has the five bins 
listed earlier, which gives a total of 10 bins. For each bin 20 earthquakes are selected from the 
Pacific Earthquake Engineering Research (PEER) Center Strong Motion Catalog (PEER 2009) so 
that the median pseudo-spectral acceleration ( )PSA value for each bin is close to the 
corresponding theoretical value obtained using the attenuation law in Abrahamson and Silva 
(1997). 

Following Luco (2002), to study the responses of bridges due to larger earthquakes, Huang et 
al. (2010) generated additional ground motions by multiplying the earthquake acceleration records 
in each bin by 8 for the ground motions in Bins I-IV and by 2 for the near-field ground motions 
(Bin V). This scaling process created 10 additional bins (5 for each soil type). 

In addition to the ground motions in Huang et al. (2010), 34 ground motions with the highest 
 
 

 
(a) (b) 

Fig. 3 Pseudo spectra acceleration of additionally selected strong ground motions 
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values of PSA from all available records in the PEER Catalog are also selected for this analysis to 
supplement the data points in the upper tail of the structural dynamic responses and to better 
investigate the nonlinear behavior of the bridge columns. Fig. 3 shows the PSA of the 34 records 
with the highest PSA  including those from the well-known Northridge, Chi-Chi and Kobe 
Earthquakes (which will be used in a later section to show a comparison between the fragility of 
an isolated and a non-isolated example bridge). The ground motion associated to the 1994 
Northridge Earthquake was recorded at the Tarzana – Cedar Hill AStation (SN #341, where SN is 
the unique sequence number of the station). The ground motion associated to the 1995 Kobe 
Earthquake was recorded at the Takatori Station (SN #940). The ground motion associated to the 
1999 Chi-Chi Earthquake was recorded at the CHY080 Station (SN #681). This set of selected 
records includes all the ground motions with PSA values greater than 2.0 g for periods less than 
1.0 s and all those with PSA  values greater than 1.0 g for the greater periods. The accelerograms 
of these ground motions are also scaled up by the factor of 2.0 and 4.0 respectively for the former 
and the latter. While there is a degree of arbitrariness in the scaling factors, the addition of the 
scaled ground motions is intended to supplement the data in the upper tail of the structural 
dynamic responses and allow for a better investigation of the nonlinear behavior of the bridge 
columns. 

For each of the 60 base-isolated bridges, 12 ground motions are randomly selected, one from 
each bin (5 not scaled and 5 scaled) and one from each two additional suites of ground motions 
with high values of PSA (1 not scaled and 1 scaled). Sampling without replacement is used for 
the random selection to ensure that all ground motions are used for the analyses. All earthquake 
records are applied in three orthogonal directions, where one of the two horizontal components is 
randomly assigned to the bridge transverse direction and the other horizontal component to the 
bridge longitudinal direction. 
 

2.4 FE models and nonlinear time history analysis 
 
Under seismic load, the bridge deck is expected to remain elastic (Priestley et al. 1996), 

therefore, it is modeled using elastic elements. Nonlinear fiber elements are used to model the 
 
 

 
Fig. 4 Bilinear model of elastomeric bearing behavior 
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Table 3 Design parameters of the example bridge 

Parameter Distribution Value/Mean 
Standard 
deviation 

Abutment skew, skew  (o) - 0.000 - 

Right span, 2L  (m) Lognormal 38.100 0.381 

Span ratio, 2 1/L L  - 1.250 - 

Column height, cH  (m) Lognormal 6.706 0.067 

Column diameter, cD  (m) Lognormal 1.572 0.031 

Pile-to-column length ratio, /p cH H  - 1.500 - 

Concrete cover, concc  (m) Lognormal 0.038 0.004 

Longitudinal steel yield strength, 
yf  (MPa) Lognormal 437.835 21.892 

Transverse steel yield strength, 
y hf (MPa) Lognormal 350.268 17.513 

Concrete compressive strength, 
cf  (MPa) Lognormal 35.027 3.503 

Longitudinal reinforcement ratio, l (%) - 3.590 - 

Transverse reinforcement ratio, t (%) - 1.060 - 

Longitudinal abutment stiffness, lK (MPa) Lognormal 20.000 4.000 

Transverse abutment stiffness, tK (MN/m) Lognormal 110.000 22.000 

Additional superstructure weight†, asw (%) Normal 45.000 11.250 

Shape factor of the abutment bearing‡, baS  - 6.000 - 

Shape factor of the column bearing‡, 
b pS  - 12.000 - 

Number of internal elastomer layers‡, en  - 9 - 

Elastomer layer thickness‡, et (m) Lognormal 0.020 0.002 

Elastomer shear modulus‡, bG (MPa) Lognormal 0.900 0.180 
†The uncertainty in the mass is taken into account by considering the uncertainty of the additional weight. 
‡Properties only used for the based isolated example bridge 
 
 
column and the drilled shaft. Rigid link elements and zero-length elements are used to model the 
abutment stiffness and the behavior of the elastomeric bearings. The interaction between the 
abutment and the deck end is modeled with elements using a compression gap material (McKenna 
et al. 2003). The elements behave in the way that the stiffness of the abutment will limit the 
horizontal displacement of the deck if the deck end displaces toward the abutment back wall. To 
reflect the variability in the soil type, four different stiffnesses are considered based on the USGS 
(U.S. Geological survey) soil classification. The properties for each spring type can be found in 
Mackie and Stojadinović (2003). The hysteretic response of the bearings under lateral loading has 
significant effects on the behavior of a base-isolated bridge system. The relation between the shear 
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force, bV , and the lateral deformation, bD , of a bearing can be idealized as a bilinear model. This 

model is defined by three parameters: the elastic stiffness, iK , the post-yield stiffness, hK , and 

the characteristic strength, Q , as shown in Fig. 4. Table 2 presents the ranges of these three 
parameters that are computed from the experimental design using the bilinear model in Cheng et 
al. (2008). In the model, ,b yV  and ,b yD  denote the yield shear force and the yield lateral 

deformation.  In the figure, dimensions bh  and R represent the height and the radius of the 

bearing, and   is the angle between the direction of deformation and the intersection of the top 
and bottom faces of the bearing. Cheng et al. (2008) showed that a bilinear model provides 
satisfactory estimation of the bearing behavior for small displacements. However, further works is 
 
 

 
(a) Transverse ground acceleration 

 
(b) Transverse displacement of pier top versus time 

 
(c) Orbital displacement of the non-isolated pier top (d) Orbital displacement of the isolated pier top 
Fig. 5 Performance of the example bridges under the 1994 Northridge Earthquake at the Tarzana Station 
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necessary to develop a more accurate model for large displacements which is beyond the scope of 
this paper. 

Fig. 5 shows the seismic behavior of an example isolated bridge and its corresponding 
non-isolated bridge under the ground motion associated to the Northridge Earthquake. The design 
parameters of the two bridges are the mean values in Table 3. The statistics of each design 
parameters in Table 3will be used for reliability analysis presented later in the paper. The 
non-isolated bridge is obtained by replacing the elastomeric bearing on the pier top with a fixed 
connection between the pier and the superstructure. It is assumed that the example bridges are built 
on a deep soil site (the USGS Classification C). The number of the inner elastomer layers, en , the 

elastomer layer thickness, et , and the elastomer shear modulus, bG , are assumed to be the same 

for the bearings both at the abutments and at the pier. However, the two bearings at each abutment 
can support less vertical loads from the superstructure and hence they have a shape factor, baS , 

that is smaller than the shape factor, bpS , for the bearing at the column. The period of the 

non-isolated bridge is 0.966 s, and that of the base-isolated bridge is 1.591 s. Fig. 5(a) shows the 
time history of the transverse ground acceleration. Fig. 5(b) shows the transverse displacement of 
the pier top of the isolated and non-isolated bridges. The peak displacement of the isolated pier top 
is less than 50 mm, which is approximately one-fourth of the peak displacement of the 
non-isolated bridge. Therefore, the seismic deformation demand on the pier is significantly 
reduced by using elastomeric bearings; the shear demand (not shown here for brevity) has a similar 
reduction. Figs. 5(c) and 6(d) show the orbital displacement of the pier top for the non-isolated and 
isolated bridges, respectively. The maximum horizontal displacements of the non-isolated bridge 
are more than 4 times the maximum horizontal displacements of the isolated bridge. 
 
 
3. Probabilistic demand models 
 

Following Gardoni et al. (2003), the proposed probabilistic demand models are developed from 
deterministic models and procedures that are commonly used in practice. Correction terms are 
developed to amend for the bias typically inherent in the deterministic models and procedures and 
to capture the underlying uncertainties. Probabilistic models are developed for the shear and 
deformation demands on RC columns and the deformation demand on the isolation bearings. 

 
3.1 Modeling of structural demands 
 
Following Gardoni et al. (2002, 2003), the demand quantity of interest kD  is modeled as 

     , , , , ,
ˆ, ,k D k k D k D k D k D kD d     x Θ x x θ

               
 (1) 

where kD  represents the column deformation ( )k   and shear ( )k v , and the bearing 

deformation ( )k b  demands, ˆ ( )xkd  is the demand quantity k  predicted using a 

deterministic model (e.g. a code equation), , ,,( )x θD k D k  is the correction term that captures the 
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potential bias in ˆ ( )xkd , , ,D k D k   is the model error , where ,D k  is a random variable with 

zero mean and unit standard deviation, ,D k  represents the standard deviation of the model error,

x is a vector of geometrical and material properties and ground motion characteristics, and

, , ,( , )Θ θD k D k D k  is a vector of unknown model parameters. Due to the non-negative nature of 

the demand quantities, in this formulation a natural logarithm transformation is used to 
approximately satisfy the following two assumptions: (1) ,D k is not a function of x

(homoskedasticity assumption) and (2) ,D k  has the standard normal distribution (normality 

assumption). In particular, we define ln( / )c cHD   , ln [ / ( )]v c t cD V f A , and 

ln( / )b b bD h  , where c  is the column deformation demand, cV  is the column shear 

demand, b  is the bearing deformation demand, 
tf   is the tensile strength of concrete, and cA  

is the cross-section area of the bridge column. The product of the concrete tensile strength and the 
column cross-sectional area is used herein to normalize the shear demand. In general, ,D  , 

,D v , and ,D b are correlated, with correlating coefficients ,D  , ,D b , and ,D b .  

Therefore the complete set of unknown parameters is 

, , , , , ,( , , , , , )D D D v D b D v D b D vb    Θ Θ Θ Θ . 

Different models and procedures can be used to formulate ˆ ( )kd x . We use a modification of the 

Capacity-demand-diagram Method (Freeman 1998, Chopra and Goel 1999, Fajifar 1999) proposed 
by Gardoni et al. (2003), herein called modified capacity-demand-diagram method. The Modified 
Capacity-demand-diagram Method is based on the well-known capacity spectrum method, which 
has been adopted by the Applied Technology Council (ATC) and the Federal Emergency 
Management Agency (FEMA) in their documents ATC-40 (ATC 1996) and FEMA-274 (FEMA 
1997). This approach is ideally suited because of its simplicity. Note that this selected 
deterministic demand model requires a pushover analysis, where the natural period is computed 
from the elastic stiffness of the pushover curve and half of the superstructure mass. Alternative 
approaches like the Modified Capacity Spectrum Method given in Procedure A of Report 
FEMA-440 (ATC 2005) could also be used but they would require iterative computation and 
convergence is not guaranteed. These limitations make the Modified Capacity Spectrum Method 
less practical. 

The correction term , ,( , )D k D k x θ can be formulated as 

   , , , ,,D k D
T

k D k D k x θ θ H x
                           

 (2) 

where , 1 , 2 ,, [ ]θ    D k D
T

k D kpkD k     ,and , , 1 , 2 ,( ) [ ( ) ( ) ( )]T
D k D k D k D k pk

h h hx xH x   x  is  a 

vector of kp  explanatory variables. The unknown parameters, ,D kθ , are estimated along with 

,D k by calibrating the demand models in Eq. (1). The calibration is carried out using a Bayesian  
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Table 4 Candidate explanatory functions constituting the probabilistic models 

Description Normalized form, ( )kih x  

Constant 1 

Deterministic demand estimate for quantity k  ˆ ( )kd x

Elastic pseudo-spectral acceleration, PSA  ln( / )PSA g  

Pre-yield offset,  ][ ,ykk dd   








ykk

ykkykk

da

dddd

,

,,

 if ,0

 if ,

Post-yield offset,  ][ , ykk dd  







ykkykk

dk

dddd

a
yk

,,  if ,

 if ,0
,

 

Peak ground acceleration, PGA  ln( / )PGA g  

Peak ground velocity, PGV  1ln( / )cPGV T H  

Peak ground displacement, PGD  ln( / )cPGD H  

Earthquake attack angle, with respect to the longitudinal direction, 
EQ EQ  in degrees 

Abutment skew, skew  skew in degrees

Pile-depth-to-column-height ratio, /P Cr  ln( / )P CH H

Ratio of transverse to longitudinal stiffness of the abutment, Ar  ln[ / ( )]t l aK K W

Span ratio 2 1ln( / )L L

Abutment bearing rotational stiffness, arK  ln[ / ( )]ar ai aK K A
Pier bearing rotational stiffness, 

p rK  ln[ / ( )]pr pi pK K A

Soil classification 
1  for soil types A & B

0 for soil types C & DsoilK


 


Number of inner elastomer layers†, en  ln( )ean and ln( )epn

Shape factor of the thickest elastomer layer†, bS  ln( )baS and ln( )bpS
†

ean , baS for bearings the abutments; 
epn , bpS for the bearing at the pier 

 
 
approach (Box and Tiao 1992) with the demand data obtained from the FE analyses and, due to a 
lack of prior information, a non-informative prior. 

Table 4 lists the candidate explanatory functions that are used to form the probabilistic demand 
models. To capture a potential constant bias in the deterministic model, we select the constant 1 as 
a candidate explanatory function. To detect any possible under- or over-estimation of the 

deterministic model, we also select ˆ ( )kd x and the elasticpseudo-spectral acceleration, PSA as 

potential explanatory functions. Different biases and uncertainties in the computation of the 
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column deformation and shear using the deterministic model may depend on the elastic or inelastic 
behavior of the system. Thus, the explanatory functions ][ ,ykk dd   and ][ ,ykk dd  are included to 

represent the pre-yield and post-yield offsets, respectively, where ,
ˆ

k yd stands for the value of the 

response quantity k  determined at yield using the deterministic model. The following quantities 
not accounted for in the deterministic demand model are also considered to construct candidate 
explanatory functions: the peak ground acceleration ( )PGA , the peak ground velocity ( )PGV , 

the peak ground displacement ( )PGD , the attack angle of the earthquake, EQ , defined with 

respect to the longitudinal direction, the abutment skew angle, skew , the 

pile-depth-to-column-height ratio, /P Cr , the ratio of transverse to longitudinal stiffness of the 

abutment, Ar , the span ratio, 2 1/L L , and soil types, soilK . The characteristics and properties of 

the isolation bearings, such as the abutment and pier bearing rotational stiffnesses, arK and prK , 

the number of elastomer layers, en , and the shape factor of the elastomer layer, bS , are also 

considered to construct candidate explanatory functions to account for the effects of the bearings 
on the seismic demands. As shown in Table 4, normalized forms are used to construct the 

candidate explanatory functions, where 1T
 is the natural period of the structure, g  is the gravity 

acceleration, aW  is the abutment width, aiK  and piK  are the elastic stiffness values of the 

abutment and pier bearings, and aA and pA  are the base areas of the abutment and pier bearings. 

 
3.2 Model selection 
 
To facilitate their use in practice, probabilistic models should be as parsimonious as possible.  

That is, based on the general formulation in Eq. (1), 
, ,( , )D k D k x θ  should have as few 

explanatory functions are possible. For the three demand quantities of interest, Fig. 6 presents 
comparisons among alternative probabilistic demand models that have different numbers of 
explanatory functions. The three plots on the left side of Fig. 6 show the coefficient of 

determination 2R  (Weisberg 2005), the adjusted coefficient of determination 
2
adjR  (Sheather 

2008), and the standard deviation of the model errors, ,D k , versus the number of explanatory 

functions. The higher the values of 2R and 
2
adjR are and the smaller the value of ,D k

 
is, the 

better the model is (however, caution should be exercised in the interpretation of 2R  since it does 
not account for the complexity of the model). Note that the coefficient of variation of the responses 
for quantity k  can be computed through the variance of the model errors, 2

,D k , as 

2
, ,. . . exp( ) 1D k D kc o v   . 

The right side of Fig. 6 presents the Akaike’s information criterion (AIC) and the Bayesian 
information criterion (BIC) and are plotted again versus the number of explanatory functions.  
The smaller the values of AIC and BIC are, the better the model is. The models with the minimum  
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(a) Column deformation 

(b) Column shear 

(c) Bearing deformation 
Fig. 6 Comparison of probabilistic models with different number of best explanatory functions 

 
 
BIC values are identified in Fig. 6 with an arrow. Considering these five criteria, we select the 
following three correction terms marked with a circle in Fig. 6 
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   , 1 , 2 , 3 , 4, ,
ˆln ln, xx θ p

D v D v D v soil D v v
c

D v D v

HPGA
K d

g H
   

  
    

  


          
(4) 

   , , , 1 , 2
ˆln,x xθ D b D b vD b D b

PGA
d

g
 

 
 

 


                       
(5) 

These equations show that PGA  has effects on predicting all three structural response 
quantities. 

Tables 5-7 provide the mean values and the standard deviation of 
,D ki and

,D k together with 

their correlation coefficients. As shown in Table 5, the mean estimates of 
, 1D   and 

, 2D   are 

 
 
Table 5 Posterior statistics of parameters in the column deformation model 

,Θ D   Mean Standarddeviation
Correlation coefficient 

, 1D   
, 2D   

, 3D   
, 4D   

, 1D   0.275 0.024  

, 2D   0.929 0.059 0.23  

, 3D   –1.445 0.089 –0.32 –0.86   

, 4D   –0.465 0.022 –0.48 –0.70 0.95  

,D   0.475 0.020 0.02 –0.02 0.03 –0.01 

 
Table 6 Posterior statistics of parameters in the column shear model 

,Θ D v
 Mean Standarddeviation

Correlation coefficient 

, 1D v  
, 2D v  

, 3D v  
, 4D v  

, 1D v  0.240 0.018  

, 2D v  –0.439 0.056 –0.24  

, 3D v  –0.177 0.032 –0.03 0.11   

, 4D v  –0.355 0.015 –0.56 0.81 0.39  

,D v  0.356 0.013 0.02 0.02 0.03 –0.04 

 
Table 7 Posterior statistics of parameters in the bearing deformation model 

,Θ D b
 Mean Standard deviation

Correlation 
coefficient 

, 1D b  
, 2D b  

, 1D b  0.106 0.024 

, 2D b  –0.168 0.010 –0.74 

,D b  0.484 0.021 0.02 –0.1 
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(a) Column deformation 

(b) Column shear 

(c) Bearing deformation 
Fig. 7 Developed probabilistic models in comparison with the corresponding deterministic models 

 
 
positive, and those of 

, 3D   and
, 4D   are negative. Referring to Eq. (2) and, this suggests that 

the deterministic model for predicting the column deformation underestimates or does not account 
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for the effects of PGA  and arK and overestimates the effects of baS . The quantity PGAhas often 

been used to represent the severity of an earthquake ground motion (Karim and Yamazaki 2001, 
Shinozuka et al. 2001); however, PGA  is absent in the deterministic model. The term 

, 1 ln( / )D PGA g  brings PGA  back into the model. The underestimation of the rotational 

stiffness, arK , and the overestimation of the shape factor, baS , of the abutment bearings could be 

due to the fact that the pushover curve was developed using horizontal increasing forces while the 
bridge was seismically excited in three directions. The negative value of 

, 4D   indicates a 

conservative bias in predicting ˆ ( )xd  as consistently shown in Fig. 7. With similar observations 

for Tables 6 and 7, PGAhas an effect on the column shear and bearing deformation that is not 
accounted for in the deterministic models. Therefore, in addition to PSA , which is used in the 

deterministic demand models ˆ ( )xkd , PGA is also informative in predicting  the demands of 

interest. The negative value of 
, 2D v  and 

, 3D v  in Table 6 implies that the deterministic models 

tend to overestimate the effect of the depth of the drilled-shaft pile, 
pH , and the flexibility of the 

soil around this pile, soilK . This indicates that the interaction between the soil 

 
 
Table 8 Posterior statistics of parameters in the trivariate model 

ΘD  Mean 
Standard 
deviation 

Correlation coefficient 

, 1D   
, 2D  , 3D  , 4D  , 1D v , 2D v  

, 3D v  
, 4D v  

, 1D   0.269 0.023      

, 2D   0.853 0.052 0.21      

, 3D   –1.336 0.079 –0.29 –0.86       

, 4D   –0.441 0.019 –0.46 –0.70 0.94      

, 1D v  0.228 0.018 0.39 0.01 –0.00 –0.08     

, 2D v  –0.318 0.042 –0.02 –0.06 0.09 0.09 –0.18    

, 3D v  –0.090 0.024 0.03 –0.01 0.01 –0.00 –0.03 0.11   

, 4D v  –0.315 0.012 –0.17 –0.04 0.06 0.11 –0.59 0.74 0.35  

, 1D b  0.105 0.024 0.37 –0.02 0.03 –0.05 0.61 0.00 0.00 –0.28 

, 2D b  –0.168 0.010 –0.25 0.01 –0.02 0.08 –0.45 –0.02 –0.01 0.38 

,D   0.476 0.020 0.01 –0.04 0.05 –0.00 0.01 0.01 0.01 –0.04 

,D v  0.360 0.014 0.00 –0.03 0.03 –0.01 0.02 0.04 0.05 –0.07 

,D b  0.484 0.021 0.01 –0.00 0.01 0.00 0.02 0.01 0.01 –0.04 

,D v  0.441 0.048 0.01 0.01 –0.01 –0.02 0.01 0.02 0.02 –0.06 

,D b  0.402 0.044 0.02 0.03 –0.02 –0.01 0.01 0.01 0.02 –0.02 

,D vb  0.633 0.044 0.01 –0.00 0.01 0.01 –0.01 –0.03 –0.02 0.06 
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Table 8 Continued 

 Correlation coefficient 

 , 1D b  
, 2D b  

,D   
,D v  

,D b  
,D v  

,D b  

, 2D b  –0.73     

,D   0.01 –0.03      

,D v  0.01 –0.01 0.33     

,D b  0.02 –0.09 0.19 0.49    

,D v  0.02 –0.11 0.15 0.41 0.29   

,D b  0.02 –0.08 0.13 0.21 0.32 0.49  

,D vb  0.01 –0.09 0.02 0.07 0.25 0.14 0.47 

 
 
and the drilled shaft are not properly captured in the deterministic model. Similarly, 

, 4D v  and

, 2D b are negative suggesting that the deterministic models typically result in conservative 

estimates. However, there are difficulties in the interpretation of the numerical values of 
empirical regression coefficients in the case of high correlation between the parameters. 

The probabilistic demand model for the column shear has the smallest standard deviation of the 
model error, 

, 0 .356D v  , and the demand models for column and bearing deformations have 

marginally higher standard deviations of the models errors, 
, 0.475D    and 

, 0.484D b  . 

Because the demands of deformation and shear on the column and the bearing are not independent 
under a seismic event, 

,D ki  and 
,D k are correlated. Gardoni et al. (2003) provided procedures 

to determine the statistics of these parameters and their correlation. Table 8 shows the posterior 
statistics of these parameters and the correlation coefficients,

,D  , 
,D b  and

,D b , between 

the model errors. The estimates of the parameters are nearly the same as those in the univariate 
models when individual demands are considered separately as shown in Tables 5-7. As a result, 

the values of 2R and 
2
adjR for the trivariate models are also the same. 

Fig. 7 compares the accuracy of the developed probabilistic demand models. The validity of the 
proposed models including the assumption of constant variance and normality of the model errors 
is confirmed by diagnostic plots (Rao and Toutenburg 1997). Values that are obtained using the 
deterministic model are plotted versus the observed values for the three structural response 
quantities on the left. Corresponding mean estimates using the newly developed demand models 
are plotted versus the observed values on the right. The solid 1:1 lines are where the predicted 
demands coincide with the observed demands. Two dashed lines above and below the 1:1 line 
represent the standard deviation of model errors. Fig. 7 shows that the deterministic models 
generally underestimate the responses as most data points are below the 1:1 lines. In addition, the 
deterministic models have significant uncertainties (shown by the scatter of the data), especially in 
predicting the column deformation and shear. The corresponding probabilistic demand models are 
successful in correcting the bias and reducing the uncertainties. 
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4. Probabilistic capacity models 
 
The event that the column deformation, shear force, or the bearing deformation exceeds their 

limitsis considered as an undesired performance of the bridge system. The limits are defined as the 
capacities of structures. Probabilistic capacity models for the column deformation and shear force 
were developed by Gardoni et al. (2002) and denoted respectively as 

,( , )x Θ CC  and

,( , )x Θ CC  . Choe et al. (2007) later updated the parameters in these two models using the 

Bayesian updating approach and new laboratory test data for the column. Their models are used 
here with the developed probabilistic demand models to formulate a reliability analysis. The 
capacity model for quantity k  is expressed as 

     , , , , , ,ˆ, , ,x θ x x θk C k C k k C k C k C k C kcC      
                

(6) 

where, similar to the demand model, ˆ ( )kc x  is the capacity quantity k predicted using a 

deterministic model,
, ,( , )x θC k C k  and

,C k  are the correction term and the standard deviation of 

the model error, respectively, and
,C k is a standard normal variable. 

Although an elastomeric bearing can sustain significantly large horizontal displacements, even 
exceeding the horizontal dimension of the bearing as tested in Chang and Seidensticker (1993), the 
bearing under such a large vertical load can easily buckle in the case of excessive horizontal 
displacement. The critical horizontal displacement beyond which the bearing looses stability is 
determined as discussed in Kelly and Naeim (1999). The natural logarithm of the critical 

deformation ratio or the deformation capacity, ˆ ( )xbc , of a circular bearing is obtained as 

  2
ˆ lnx crit

b
b

R d
c

h

 
  

                                  

(7) 

where, coscrit critd  . The bearing buckles when angle , as defined in Fig. 4, reduces to

crit . The value of crit can be obtained by solving the following equations 

 
2

2
sin coscrit crit crit

crit

P

P
  


 

   
                       

(8) 

2 3

2
crit b b

r

R
P S G

t


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(9) 

where P is the vertical load and critP  is the critical load. Parameters rt , bS  or 
b pS , and 

bG are the thickness of elastomer or rubber, the shape factor, and the elastomer shear modulus of 

the bearing material. 
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A probabilistic capacity model should be used due to the presence of uncertainties associated 
with the assumptions made in developing this model. Based on the recommendations of Wen et al. 
(2004) regarding capacity uncertainty and modeling errors, the coefficient of variation for the 
deformation capacity is assumed to be equal to 30%. It is acknowledged that this assumption for 
the model error uncertainty can affect the fragility estimate of the bridge system. Future studies are 
needed to assess the uncertainty of the model error. Thus, the probabilistic capacity form of the 
bearing deformation can be given as 

bCbbb ccC ,)(3.0)()( xxx                             (10) 

5. Formulation of approximate fragility estimates 
 
As discussed in Hirata et al. (1991) and Gardoni et al. (2002), the seismic fragility of a 

structure can be defined as the probability that the seismic demand on the structure is greater than 
or equal to its capacity given a determined set of ground motion parameters, s . Thus, the seismic 
fragility of a structure regarding the response quantity k  can be expressed as the conditional 
probability 

   , , 0k k k kF P g   s Θ x Θ s                         (11) 

where , ,( , )k C k D kΘ Θ Θ . The performance function or limit state function, ( , )k kg x Θ , is 

defined as 

     , ,, , ,k k k C k k D kg C D x Θ x Θ x Θ
                   

 (12) 

Following Gardoni et al. (2002), predictive fragility estimates can be computed considering the 
variability in Θ  as 

     ,s s Θ Θ Θk k k k kF F f d                           (13) 

where  kf Θ  is the posterior probability density function (PDF) of kΘ . 

In case of q  limit states of which any limit being exceeded leads to the undesired performance 
of the structure, the predictive seismic fragility of the structure can be expressed as 

     
1

, 0s x Θ s Θ Θ
q

sys k k
k

F P g f d


 
  

 
                    (14) 

where 1( , , )qΘ Θ Θ . 

Importance analysis can be used to reduce the complexity of reliability analysis by evaluating 
the effects of the variable randomness on the estimated probabilities. A large number of random 
variables make the reliability analysis computationally intensive. Based on the results of the 
importance analysis, only the randomness of important variables can be retained for the reliability 
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analysis. Considering the limit state function k , the importance measure for a vector of rn
random variables, ( , , )z x Θ ε , can be written as (Der Kiureghian and Ke 1985) 

*, *

*, *

'

'
u z

u z

α J D
γ

α J D

T
kT

k T
k

                                   (15) 

where, kα is a normalized vector of the negative gradient of kg  at the design point in the 

standard normal space,
*, *u zJ is the Jacobian of the transformation of unit normal vector u  with 

respect to z , evaluated at the design point, *z , 'D is the diagonal matrix of the standard deviations 

of the normal variables, *, *' * ( *)  u zz z J u u ,which accounts for the uncertainty in each random 

variable. Following the general reliability theory (Ditlevsen and Madsen 1996), the design point is 
defined as the point on the failure or boundary surface in the space of the random variables z that 
is closest to the origin. Fig. 8 presents the results of the importance analysis for the example bridge 
regarding the three limit states when 0.2PGA g . The model errors in both capacity and 

demand models,
,C k and 

,D k , are the most important random variables, especially for high 

values of PSA . 
 
 

 
(a) Column deformation limit state (b) Column shear limit state 

(c) Bearing deformation limit state 
Fig. 8 Comparison of importance of random variables (PGA=0.2 g) 
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An approximate form of the fragility is developed based on this observation. The six model 
errors, 

,C k and 
,D k , are kept random, while the other random variables are replaced with point 

estimates, (e.g. their mean values x̂  and Θ̂ ). Because 
,C k  and 

,D k  are normally distributed 

random variables, the seismic fragility for limit state k  can be determined following Choe et al. 
(2007) as 

     ˆˆ , 1k k k kF F u  s s Θ                        (16) 

where ( )  is the cumulative distribution function (CDF) of a standard normal random variable 
and 
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                 (17) 

Following Zhong et al. (2008) and Huang et al. (2010), an approximate form for the system 
reliability in Eq. (14) can be written considering only the uncertainties in

,C k  and 
,D k  as- 

),(10),ˆ(),()(
1

RusΘxΘss qkk

q

k
syssys gPFF 











                   (18) 

where ( )q   is the -variateq standard normal CDF, ( , , )v bu u uu , and ˆ ˆ[ ]R kl , where 

ˆ
kl  is a point estimate of the correlation between kg  and lg . Assuming the capacities are 

statistically independent of the demands, derivation from kg  and lg  results in 
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where ,
ˆ

C kl is a point estimate of the correlation between ,
ˆˆ( , )k C kC x Θ  and ,

ˆˆ( , )l C lC x Θ  and 

,
ˆ

D kl  is a point estimate of the correlation between ,
ˆˆ( , )k D kD x Θ  and ,

ˆˆ( , )l D lD x Θ . 

One can either evaluate ( )q  using numerical methods for a multi-fold integral or using an 

alternative approximate and usually simpler approach (Pandey 1998, Melchers 1999) as 

         11 1 21
ˆ,u Rq q q k ku u u u                     (20) 

where | 1k ku   is obtained using the following recursive procedure 

1 1 1

2
1 1

, 1
1

m k mk k k k

m k

mk k k k

u A
u k m q

B




  

 


   


                         (21) 

548



 
 
 
 
 
 

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges 

Fig. 9 Contours of the system fragility, ŝysF , as a function of ground motions (in terms of PGA) and 

the shape factor of the isolation bearing ( bpS ) 

 
 

where | 1 | 1 | 1( ) / ( )k k k k k kA       , | 1 | 1 | 1 | 1( )k k k k k k k kB A A     , 1|0 1u u , and
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where ( )   is the standard normal PDF, and |0mk mk  . For the application presented in this 

paper, 3q  , and k  is  , v , or b . 
 
 

6. Reliability-based optimal design 
 
The objective of the reliability-based optimal design can be to minimize the costs (e.g. 

construction or life-cycle cost) under reliability and structural constraints or to maximize the 
reliability of the structure under cost and structural constraints (Royset et al. 2001). In our study, 
the objective is to maximize the reliability or minimize the seismic fragility of an example bridge 
system with the optimal use of the isolation bearing. It is assumed that changing the bearing design 
has minimal effects on the total cost of a construction project. All the design variables given in 
Table 3 except the isolation bearing between the pier and the superstructure are structural 
constraints in the reliability-based optimal design problem. The shape factor of the elastomer layer 
of the bearing, bpS , is a dimensionless quantity and has a wide range of variation as shown in 

Table 1. It is therefore the quantity of choice for the reliability-based optimal analysis. 
Fig. 9 shows the fragility contours as a function of PGA  and bpS . The values of PGA used to 

construct the contour lines are those of the ground motions considered in the experimental design.  
For each ground motion, the value of PSA , which is needed in Eq. (1), is computed using the  
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Fig. 10 Fragility versus the shape factor of the isolation bearing, bpS , at PGA = 2.0 g 

 
 
Newmark’s Average Acceleration Method (Chopra 2000) based on the damping ratio of 5% and 
the natural period of the structural systems. Note that because the selected ground motions have 
different frequency contents, the computed values of PSA do not increase monotonically with 
PGA. 

The fragility values increase with increasing darkness of the shading and are distinguished into 

four regions ˆ0 0.1sysF  , ˆ0.1 0.2sysF  , ˆ0.2 0.3sysF  , ˆ0.3 1.0sysF  . For 8bpS   

the bearing fails due to the loss of stability; therefore, the system fragility is always 1.0 for this 
range of the shape factor. The dashed line at 16bpS   indicates the optimal value of bpS

 
that 

has the least value of fragility for any value of PGA . The natural period of the base-isolated 

bridge corresponding to 16bpS   is 1.424 s. For better understanding of the fragility distribution, 

Fig. 10 shows the fragility as a function of the shape factor at 2.0PGA g . The fragility of the 
bridge system is compared with the fragilities in terms of the column deformation, the column 
shear, and the bearing deformation. The fragility of the bearing tends to decrease with bpS  while 

the fragility in terms of the shear increases. The fragility with regard to the column deformation 
increases first and decreases with the bearing deformation fragility for 19.0bpS  . The optimal 

value for the shape factor is 16.0 as shown in Fig. 9. 
 
 
7. Fragility estimates for an example bridge 

 
Full fragility analysis is now carried out for the example isolated bridge with the optimal value 

of 16.0 for bpS . Fig. 11compares the contours of the component fragility estimates versus PSA 

and PGA computed using the First-order Reliability Method (FORM) (Ditlevsen and Madsen 
1996) (dashed lines) with all the 38 random variables, and the proposed approximate form as in 
Eq. (16), which uses only 2 random variables per mode of failure (solid lines). Each contour line 
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(a) Column deformation limit state (b) Column shear limit state 

(c) Bearing deformation limit state 
Fig. 11 Contour plots of the fragility estimates versus PSA and PGA computed usingthe proposed 

approximate form (solid lines) and FORM analysis (dashed lines) 
 
 
connects pairs of points at the same level of fragility. Consistently with results of the importance 
analysis, the difference between the proposed approximate form and FORM analysis is small. The 
randomness or uncertainty included in the other variables can be neglected without losing 
significant accuracy. Fig. 11 shows that, for given PSA and PGA , failure is most likely to occur 
in the bearing. On the other hand, the column is well protected by the base isolation and the 
probabilities of failure of the column in deformation or shear are small relative to the probability 
of failure of the bearing. 

Fig. 12 compares the system fragility obtained using the proposed approximate form as in Eq. 
(18) (solid lines) with that using an importance sampling technique (Hastings 1970) (dashed lines). 
As a termination criterion, we used 0.05 for the coefficient of variation of the failure probability 
estimate. The two approaches produce similar results. The system fragility in this figure is 
consistently higher than (or at least equal to) the highest component fragility in Fig. 11, confirming 

PGA, g

PS
A

, g

 

 

0.001
0.01

0.02 0.03

0.04 0.05

0.06 0.07

0.08

0 0.5 1 1.5 2
0

0.5

1

1.5

2
FORM

Approximate form

551



 
 
 
 
 
 

Paolo Gardoni and David Trejo 

Fig. 12 Contour plot of the system fragility estimates versus PSA and PGA 
 

 
Fig. 13 Fragility of an isolated (thick lines) and non-isolated (thin lines) bridge under three example 

earthquakes 
 
 
the system fragility is the union of the component fragilities. 

Fig. 13 compares the point estimates of the system fragilities of the base-isolated bridge system 
with those of the corresponding non-isolated bridge system obtained by Huang et al. (2010) for the 
Northridge (SN #341), Kobe (SN #940) and Chi-Chi (SN #681) Earthquakes. The ground motions 
obtained from these events are scaled to create different sets of ground motion records. Each 
record provides one pair of PSA  and PGA  for a fragility estimate. The values of PSA are 
computed using the Newmark’s Average Acceleration Method (Chopra 2000) based on the 
damping ratio of 5% and the natural period of the structural systems. The natural period of the 
non-isolated bridge is 0.966 s and that of the base-isolated bridge is 1.424 s as mentioned earlier. 

Fig. 13 shows that the fragility estimates of the isolated bridge are significantly lower than that 
of the non-isolated bridge, especially for the ground motion associated to the Chi-Chi Earthquake. 
As shown in Fig. 3(a), the ground motion associated to the Chi-Chi Earthquake has its peak PSA  
close to the natural period of the non-isolated bridge ( nT 0.966 s) and therefore the fragility 

experiences the biggest reduction due to the elongation of the natural period brought by the base 
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isolation ( nT 1.424 s). Fig. 13 also shows that the probability of failure for the ground motion 

associated to the Northridge Earthquake is less for both the non-isolated and isolated bridge than 
for the ground motions associated to the Chi-Chi and Kobe Earthquakes.  Furthermore, 
elongating the natural period only has a limited benefit to the fragility estimates. This is because 
the values of PSA at the corresponding natural periods are relatively close. 
 
 
8. Conclusions 
 

Novel probabilistic demand models are developed to assess the seismic deformation and shear 
demands on RC columns and the deformation demand in bearings of base isolated RC bridges. 
The proposed models are unbiased and properly account for the underlying uncertainties. A 
general formulation is developed to assess the reliability of base isolated bridges using the 
proposed demand models. As an illustration, fragility analysis of an example bridge is carried out 
considering shear and deformation modes of failure for the bridge column and deformation mode 
of failure for the rubber-laminated bearings. While only three modes of failure are considered in 
the illustration, the reliability formulation is general and allows considering additional modes of 
failure. Their consideration would possible increase the estimated probabilities of failure. The 
paper quantifies the effectiveness of isolation bearings in reducing the vulnerability bridge systems 
by shifting the natural period of the systems into the less damaging range of the earthquake 
spectral acceleration. A reliability-based optimal design is conducted to find the value of the shape 
factor of the isolation bearing that minimizes the vulnerability of the example base-isolated bridge.  
An approximate formulation to estimate the fragility of base isolated RC bridges is also developed.  
The approximate formulation does not require specialized reliability computer programs and can 
more easily implemented in practice. It is noted that the model for the bearing is a standard simple 
model, typically used for small displacements. Further works is necessary to develop a more 
accurate model for large displacements. 
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